Commit 6b25b023 authored by Jürgen Matzka's avatar Jürgen Matzka
Browse files

SUPPLANT-Programme BUG-fix bei temp-correction, WNG blf-files

parent 168c79ee
......@@ -21,8 +21,8 @@
% attachment: same file
clear all
startdate = jd2000(2018, 05, 15); % HERE START DATE FOR non-online
enddate = jd2000(2018, 05, 16); % HERE END DATE FOR non-online
startdate = jd2000(2018, 05, 17); % HERE START DATE FOR non-online
enddate = jd2000(2018, 05, 17); % HERE END DATE FOR non-online
station = 'VNA1';
%station = 'WNG1';
......
......@@ -51,8 +51,8 @@ supplementer = 'WNG2g'; % VON HIER DATEN HOLEN
% reading of SUP files!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! COULD BE
% VERY EASY
start_supp = jd2000(2015, 07, 17, 6 + 46 / 60) %Stunde Minute/60 INKLUSIVE
end___supp = jd2000(2015, 07, 17, 6 + 58 / 60) %Stunde Minute/60 EXKLUSIVE
start_supp = jd2000(2014, 10, 20, 11 + 55 / 60) %Stunde Minute/60 INKLUSIVE
end___supp = jd2000(2014, 10, 20, 12 + 20 / 60) %Stunde Minute/60 EXKLUSIVE
% chooses data investigation interval to determine linear relationship
% or user select a start and end data
......@@ -145,9 +145,9 @@ clear data HNvar HEvar Zvar
% apply temperature correction
[HNvar HEvar Zvar]= ... % take temperature corrected, daily
apply_temp2var(station, data.time, ...
apply_temp2var(supplementer, data.time, ...
data.HNvar, data.HEvar, data.Zvar, data.T1, data.T2,...
1);
1); %corrected from station to supplementer, jmat 2018-05-
time2 = [time2; data.time];
if time1 ~= time2, error('problem with time array'), end
HNvar2 = [HNvar2; HNvar]; % take temperature corrected, daily
......
......@@ -48,11 +48,11 @@ supplementer1 = 'file'; % supplementer ist stationsname z. Bsp. 'THL4d'
% 'definitive_NGK6g'
start_day = jd2000(2014, 01, 01);
end_day = jd2000(2018, 12, 31);
end_day = jd2000(2017, 12, 31);
plotfigures = 0; % 1 = 4 Bilder pro Tag, nur bei max 3 Tagen? setzen.
SUP_file = 'O:\jmat\cfg\SUP_WNG1g.2014.txt';
SUP_file = 'O:\jmat\cfg\SUP_WNG0g.2014.txt';
......@@ -208,7 +208,7 @@ clear data HNvar HEvar Zvar
% apply temperature correction
[HNvar HEvar Zvar]= ... % take temperature corrected, daily
apply_temp2var(station, data.time, ...
apply_temp2var(supplementer, data.time, ...
data.HNvar, data.HEvar, data.Zvar, data.T1, data.T2,...
1);
time2 = [time2; data.time];
......
......@@ -29,7 +29,7 @@ station = 'WNG1';
%calculate IAF files for timeinterval:
timeinterval = [2014; 1; 1]; %start year, start month, number of months
timeinterval = [2014; 9; 2]; %start year, start month, number of months
% works for 2011 data onwards--
......@@ -59,8 +59,7 @@ end
if strcmp(station(1:3), 'WNG') % Hauptsystem ist WNG1, use6 ist WNG0
use6 = [2014, 1, 17, 0, 2014, 1, 24, 0
2014, 5, 15, 0, 2014, 5, 21, 0
2015, 7, 2, 0, 2015, 7, 6, 0
3000, 1, 1, 0, 3000, 1, 2, 0];%
3000, 1, 1, 0, 3000, 1, 2, 0];%
end
if strcmp(station(1:3), 'NGK') % Hauptsystem in NGK0, use6 ist NGK1
use6 = [3000, 1, 1, 0, 3000, 1, 2, 0];
......
......@@ -56,8 +56,8 @@ clear all
% TDC works only after 2011 01 01
% station = 'TDC1d'; startime= jd2000(2011, 1, 1);
% station = 'WNG0g', startime= jd2000(2014, 1, 1);
% station = 'WNG1g', startime= jd2000(2014, 1, 1);
station = 'WNG2g', startime= jd2000(2014, 1, 1);
station = 'WNG1g', startime= jd2000(2014, 1, 1);
% station = 'WNG2g', startime= jd2000(2014, 1, 1);
% station = 'VNA1s', startime= jd2000(2013, 11, 01);
% station = 'TTB0g'; startime= jd2000(2015, 11, 01);
% station = 'TTB1l'; startime= jd2000(2008, 06, 01);
......@@ -84,7 +84,7 @@ endscvtime = jd2000(2017, 9, 19);
% baselinetype = 'QD';
baselinetype = 'definitive';
%baselinetype = 'test';
write_IBFV200_for_year = 2017; %this I want to automize!!!!!!!!
write_IBFV200_for_year = 2014; %this I want to automize!!!!!!!!
DI_filename = ['Y:\DTU\ops\absolutes\DI_' station '.txt'];
......@@ -3533,8 +3533,54 @@ if strcmp(station(1:3), 'WNG')
'Absolute measurements were of varying quality. ';
'The main theodolite was replaced in March 2015 ';
'and found to be damaged. ';
'The temperature of the main and back up ';
'variometer varied between 15 and 28 degree C. ';
'A number of absolute measurements gave similarly';
'deviating baselines for all variometers (up to ';
'four). In these cases, we believe that the ';
'deviation in the calculated baselines is not due';
'to true baseline shifts of the variometers, but ';
'due to erroneous absolutes. Similarly, we take ';
'baseline deviations that appear along the ';
'inclination component as indicator for errors in';
'the inclination absolutes and not as a shift in ';
'H and Z baselines of the variometer that by ';
'chance result in an apparent inclination change.';
'Such absolutes were entirely removed or their ';
'baselines were given very little or no weight in';
'the baseline adoption process. ';
'The temperature of the main WN1 and backup WN0 ';
'variometer sometimes changed due to heating ';
'malfunctions, resulting in temperatures between ';
'15 and 28 degree C in the variometer house. For ';
'the period August 10 to November 8, 2014, when ';
'the temperature was quickly rising from 18 to 28';
'degree C and back, the variometer raw data was ';
'computationally corrected for temperature ';
'variations. ';
'The FGE of WN1 experienced a jump in the ';
'declination baseline during a data gap from May ';
'15 to May 20, 2014. ';
'The FGE of system WN0 was under suspicion of ';
'having technical problems. On November 19, 2014,';
'it was replaced with a new FGE that was found to';
'have a strong temperature dependency. Therefore,';
'it was decided to treat the system WN1 as the ';
'main sytem from January 1st, 2014 onwards. ';
'Two further variometers WN2, a non-suspended FGE';
'with some temperature control, and WN3, a buried';
'magnetotellurics fluxgate, are also available. ';
'Given the overall challenges for 2014, we have ';
'introduced the above mentioned processing ';
'software to WNG to be able to correct ';
'temperature problems and analysed the baselines ';
'of all four variometers carefully to isolate ';
'erros in the absoute measurements and problems ';
'in individual variometers. We checked the ',
'quality of the resulting defintive data by ';
'firstly looking at the comparison with the total';
'field of the absolute instrument (differences < ';
'1 nT) and by comparison with Niemegk (NGK) ';
'defintive data (differences < 1 nT for X, Z and ';
'< 2 nT for Y). ';
' ';
'PROCEDURES: ';
'Absolutes were regularly taken by Erika Koenig ';
......@@ -3572,10 +3618,11 @@ if strcmp(station(1:3), 'WNG')
'none ';
' ';
'TEMPERATURE PROBLEMS: ';
'none ';
'See text above. ';
' ';
'VARIOMETER QUALITY: ';
'good ';
'Good, except temperature problems and a baseline';
'jump in May 2014, see text above. ';
' ';
'RECORDING ABSOLUTE SCALAR QUALITY: ';
'good ';
......@@ -3637,7 +3684,116 @@ if strcmp(station(1:3), 'NGK')
end % if
end %if
if strcmp(station(1:3), 'NGK')
if write_IBFV200_for_year == 2017
observed_s(6) = 5.12;
observed_s(11) = 5.08;
observed_s(18) = 5.13;
observed_s(27) = 5.09;
observed_s(37) = 5.12;
observed_s(42) = 5.12;
observed_s(47) = 5.13;
observed_s(55) = 5.09;
observed_s(61) = 5.12;
observed_s(65) = 5.11;
observed_s(76) = 5.14;
observed_s(81) = 5.13;
end % if
end %if
% Wie wird der Zeitstempel von observed_s festgelegt?
% Ich vermute, wir geben die Absolutmessungsnummer in diesem jahr ein, die
% der Pfeilerdifferenz zeitlich am nhsten kommt
if strcmp(station(1:3), 'WNG')
if write_IBFV200_for_year == 2014
observed_s(1) = -3.37;
observed_s(2) = -3.20;
observed_s(8) = -3.47;
observed_s(9) = -3.51;
observed_s(11) = -3.31;
observed_s(12) = -3.41;
observed_s(14) = -3.28;
observed_s(15) = -3.04;
observed_s(16) = -3.24;
observed_s(17) = -3.32;
observed_s(19) = -3.32;
observed_s(21) = -3.34;
observed_s(22) = -3.37;
observed_s(25) = -3.37;
observed_s(26) = -3.18;
observed_s(28) = -3.10;
observed_s(31) = -3.36;
observed_s(32) = -3.36;
observed_s(34) = -3.36;
observed_s(36) = -3.28;
observed_s(37) = -3.58;
observed_s(38) = -3.25;
end % if 2014
if write_IBFV200_for_year == 2015
observed_s(1) = -3.28;
observed_s(2) = -3.22;
observed_s(5) = -3.16;
observed_s(6) = -3.18;
observed_s(9) = -3.14;
observed_s(10) = -3.22;
observed_s(18) = -3.16;
observed_s(20) = -1.53 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(23) = -1.99 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(25) = -1.45 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(26) = -1.51 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(27) = -1.62 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(33) = -1.92 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(35) = -1.39 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(40) = -1.67 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(42) = -1.68 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(43) = -1.57 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(46) = -1.73 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(47) = -1.65 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
end % if 2015
if write_IBFV200_for_year == 2016
observed_s(1) = -1.93 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(2) = -1.96 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(3) = -1.95 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(5) = -2.07 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(17) = -2.23 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(18) = -2.23 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(33) = -1.60 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(34) = -1.63 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(35) = -1.78 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(41) = -1.67 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(44) = -1.75 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(47) = -1.78 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(48) = -1.77 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(50) = -1.86 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(55) = -1.18 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(57) = -1.20 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(59) = -1.99 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(60) = -2.00 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(63) = -2.05 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
end % if 2016
if write_IBFV200_for_year == 2017
observed_s(1) = -2.17 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(2) = -2.13 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(3) = -2.18 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(4) = -2.14 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(5) = -2.26 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(6) = -2.10 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(9) = -1.77 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(10) = -1.85 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(11) = -1.70 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(12) = -1.69 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(14) = -1.88 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(16) = -1.98 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(18) = -2.04 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(19) = -2.07 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(20) = -2.08 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(21) = -2.03 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(22) = -2.05 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(23) = -1.96 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(24) = -2.12 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(25) = -2.04 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
observed_s(26) = -2.11 - 1.6; %-1.6 becasue of new pillar (NW instead of NE) andsmall jump
end % if 2017
end %if WNG
%
%
% define starting DOY for BLV-file
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment