core.py 6.42 KB
Newer Older
Sebastian Heimann's avatar
Sebastian Heimann committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import sys
import os
import logging
import os.path as op

import numpy as num

from pyrocko import pile, trace, util, io
from pyrocko.parstack import parstack

from lassie import common, plot, grid as gridmod

logger = logging.getLogger('lassie.core')


def scan(
        config,
18
19
        override_tmin=None,
        override_tmax=None,
Sebastian Heimann's avatar
Sebastian Heimann committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        show_detections=False,
        show_movie=False,
        force=False,
        stop_after_first=False):

    if config.detections_path:
        if op.exists(config.detections_path):
            if force:
                os.unlink(config.detections_path)
            else:
                raise common.LassieError(
                    'detections file already exists: %s' % config.detections_path)

        util.ensuredirs(config.detections_path)

    grid = config.get_grid()
    receivers = config.get_receivers()

    norm_map = gridmod.geometrical_normalization(grid, receivers)

    shift_tables = []
    tshift_maxs = []
    for ifc in config.ifcs:
        shift_tables.append(ifc.shifter.get_table(grid, receivers))
        tshift_maxs.append(shift_tables[-1].max())

    tshift_max = max(tshift_maxs) * 1.0

    tinc = tshift_max * 10

    tpad = max(ifc.get_tpad() for ifc in config.ifcs) + tshift_max

    fsmooth_min = min(ifc.get_fsmooth() for ifc in config.ifcs)

    blacklist = set(tuple(s.split('.')) for s in config.blacklist)

    station_index = dict(
        (rec.codes, i) for (i, rec) in enumerate(receivers)
        if rec.codes not in blacklist)

    p = pile.make_pile(config.data_paths, fileformat='detect')

    ngridpoints = grid.size()

    idetection = 0

    station_weights = {}

68
69
    tmin = override_tmin or config.tmin
    tmax = override_tmax or config.tmax
Sebastian Heimann's avatar
Sebastian Heimann committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    for trs in p.chopper(
            tmin=tmin, tmax=tmax, tinc=tinc, tpad=tpad,
            want_incomplete=False,
            trace_selector=lambda tr: tr.nslc_id[:3] in station_index):

        if not trs:
            continue

        logger.info('processing time window %s - %s' % (
            util.time_to_str(trs[0].wmin),
            util.time_to_str(trs[0].wmax)))

        wmin = trs[0].wmin
        wmax = trs[0].wmax

        frames = None
        pdata = []
        trs_debug = []
        shift_maxs = []
        for iifc, ifc in enumerate(config.ifcs):
            dataset = ifc.preprocess(trs, wmin, wmax, tshift_max)
            if not dataset:
                continue

            nstations_selected = len(dataset)

            nsls_selected, trs_selected = zip(*dataset)

            trs_debug.extend(trs + list(trs_selected))

            deltat_cf = trs_selected[0].deltat

            t0 = (wmin / deltat_cf) * deltat_cf

            istations_selected = num.array(
                [station_index[nsl] for nsl in nsls_selected], dtype=num.int)

            arrays = [tr.ydata.astype(num.float) for tr in trs_selected]

            offsets = num.array(
                [int(round((tr.tmin-t0) / deltat_cf)) for tr in trs_selected],
                dtype=num.int32)

            w = num.array(
                [station_weights.get(nsl, 1.0) for nsl in nsls_selected],
                dtype=num.float)


            weights = num.ones((ngridpoints, nstations_selected))
            weights *= w[num.newaxis, :]
            weights *= ifc.weight

            shift_table = shift_tables[iifc]

            shifts = -num.round(
                shift_table[:, istations_selected] /
                deltat_cf).astype(num.int32)

            pdata.append((list(trs_selected), shift_table, ifc))

            iwmin = int(round((wmin-t0) / deltat_cf))
            iwmax = int(round((wmax-t0) / deltat_cf))

            lengthout = iwmax - iwmin + 1

            shift_maxs.append(num.max(-shifts) * deltat_cf)

            frames, ioff = parstack(
                arrays, offsets, shifts, weights, 0,
                offsetout=iwmin,
                lengthout=lengthout,
                result=frames,
                impl='openmp')

        shift_max = max(shift_maxs)

        if config.sharpness_normalization:
            frame_maxs = frames.max(axis=0)
            frame_means = num.abs(frames).mean(axis=0)
            frames *= (frame_maxs / frame_means)[num.newaxis, :]
            frames *= norm_map[:, num.newaxis]

        frame_maxs = frames.max(axis=0)

        tmin_frames = t0 + ioff * deltat_cf

        tr_stackmax = trace.Trace(
            '', 'SMAX', '', '',
            tmin=tmin_frames,
            deltat=deltat_cf,
            ydata=frame_maxs)

        trs_debug.append(tr_stackmax)

        # trace.snuffle(trs_debug)

        ydata_window = tr_stackmax.chop(wmin, wmax, inplace=False).get_ydata()

168
        logger.info('CF stats: min %g, max %g, median %g' % (
Sebastian Heimann's avatar
Sebastian Heimann committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
            num.min(ydata_window),
            num.max(ydata_window),
            num.median(ydata_window)))

        tpeaks, apeaks = tr_stackmax.peaks(
            config.detector_threshold, shift_max + 1.0/fsmooth_min)

        for (tpeak, apeak) in zip(tpeaks, apeaks):
            if not (wmin <= tpeak and tpeak < wmax):
                continue

            logger.info('detection: %s %g' % (
                util.time_to_str(tpeak),
                apeak))

            iframe = int(round(((tpeak-t0) - ioff*deltat_cf) / deltat_cf))
            frame = frames[:, iframe]
            imax = num.argmax(frame)

            latpeak, lonpeak, xpeak, ypeak, zpeak = grid.index_to_location(imax)

            idetection += 1

            if config.detections_path:
                f = open(config.detections_path, 'a')
                f.write('%06i %s %g %g %g %g %g %g\n' % (
                    idetection,
                    util.time_to_str(tpeak, format='%Y-%m-%d %H:%M:%S.6FRAC'),
                    apeak,
                    latpeak, lonpeak, xpeak, ypeak, zpeak))

                f.close()

            if show_detections:
                fmin = min(ifc.fmin for ifc in config.ifcs)
                fmax = min(ifc.fmax for ifc in config.ifcs)
                plot.plot_detection(
                    grid, receivers, frames, tmin_frames,
                    deltat_cf, imax, iframe, fsmooth_min, xpeak, ypeak, zpeak,
                    tr_stackmax, tpeaks, apeaks, config.detector_threshold,
                    pdata, trs, fmin, fmax, idetection,
                    grid_station_shift_max=shift_max,
                    movie=show_movie)

            if stop_after_first:
                return

        tr_stackmax.chop(wmin, wmax)
        io.save([tr_stackmax], 'stackmax/trace_%(tmin)s.mseed')


__all__ = [
    'scan',
]