core.py 6.79 KB
Newer Older
Sebastian Heimann's avatar
Sebastian Heimann committed
1
2
3
4
import sys
import os
import logging
import os.path as op
5
import shutil
Sebastian Heimann's avatar
Sebastian Heimann committed
6
7
8
9
10
11
12
13
14
15
16
17
18

import numpy as num

from pyrocko import pile, trace, util, io
from pyrocko.parstack import parstack

from lassie import common, plot, grid as gridmod

logger = logging.getLogger('lassie.core')


def scan(
        config,
19
20
        override_tmin=None,
        override_tmax=None,
Sebastian Heimann's avatar
Sebastian Heimann committed
21
22
23
24
25
26
27
28
29
        show_detections=False,
        show_movie=False,
        force=False,
        stop_after_first=False):

    if config.detections_path:
        if op.exists(config.detections_path):
            if force:
                os.unlink(config.detections_path)
30
31
                shutil.rmtree('stackmax')
                os.mkdir('stackmax')
Sebastian Heimann's avatar
Sebastian Heimann committed
32
33
34
35
36
37
38
39
40
41
42
            else:
                raise common.LassieError(
                    'detections file already exists: %s' % config.detections_path)

        util.ensuredirs(config.detections_path)

    grid = config.get_grid()
    receivers = config.get_receivers()

    norm_map = gridmod.geometrical_normalization(grid, receivers)

43
44
    ifcs = config.image_function_contributions

Sebastian Heimann's avatar
Sebastian Heimann committed
45
46
    shift_tables = []
    tshift_maxs = []
47
    for ifc in ifcs:
Sebastian Heimann's avatar
Sebastian Heimann committed
48
49
50
51
52
53
54
        shift_tables.append(ifc.shifter.get_table(grid, receivers))
        tshift_maxs.append(shift_tables[-1].max())

    tshift_max = max(tshift_maxs) * 1.0

    tinc = tshift_max * 10

55
    tpad = max(ifc.get_tpad() for ifc in ifcs) + tshift_max
Sebastian Heimann's avatar
Sebastian Heimann committed
56

57
    fsmooth_min = min(ifc.get_fsmooth() for ifc in ifcs)
Sebastian Heimann's avatar
Sebastian Heimann committed
58
59
60
61
62
63
64

    blacklist = set(tuple(s.split('.')) for s in config.blacklist)

    station_index = dict(
        (rec.codes, i) for (i, rec) in enumerate(receivers)
        if rec.codes not in blacklist)

65
66
67
68
69
    for data_path in config.data_paths:
        if not op.exists(data_path):
            raise common.LassieError(
                'waveform data path does not exist: %s' % data_path)

Sebastian Heimann's avatar
Sebastian Heimann committed
70
    p = pile.make_pile(config.data_paths, fileformat='detect')
71
72
    if p.is_empty():
        raise common.LassieError('no usable waveforms found')
Sebastian Heimann's avatar
Sebastian Heimann committed
73
74
75
76
77
78
79

    ngridpoints = grid.size()

    idetection = 0

    station_weights = {}

80
81
    tmin = override_tmin or config.tmin
    tmax = override_tmax or config.tmax
Sebastian Heimann's avatar
Sebastian Heimann committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    for trs in p.chopper(
            tmin=tmin, tmax=tmax, tinc=tinc, tpad=tpad,
            want_incomplete=False,
            trace_selector=lambda tr: tr.nslc_id[:3] in station_index):

        if not trs:
            continue

        logger.info('processing time window %s - %s' % (
            util.time_to_str(trs[0].wmin),
            util.time_to_str(trs[0].wmax)))

        wmin = trs[0].wmin
        wmax = trs[0].wmax

        frames = None
        pdata = []
        trs_debug = []
        shift_maxs = []
101
        for iifc, ifc in enumerate(ifcs):
Sebastian Heimann's avatar
Sebastian Heimann committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
            dataset = ifc.preprocess(trs, wmin, wmax, tshift_max)
            if not dataset:
                continue

            nstations_selected = len(dataset)

            nsls_selected, trs_selected = zip(*dataset)

            trs_debug.extend(trs + list(trs_selected))

            deltat_cf = trs_selected[0].deltat

            t0 = (wmin / deltat_cf) * deltat_cf

            istations_selected = num.array(
                [station_index[nsl] for nsl in nsls_selected], dtype=num.int)

            arrays = [tr.ydata.astype(num.float) for tr in trs_selected]

            offsets = num.array(
                [int(round((tr.tmin-t0) / deltat_cf)) for tr in trs_selected],
                dtype=num.int32)

            w = num.array(
                [station_weights.get(nsl, 1.0) for nsl in nsls_selected],
                dtype=num.float)


            weights = num.ones((ngridpoints, nstations_selected))
            weights *= w[num.newaxis, :]
            weights *= ifc.weight

            shift_table = shift_tables[iifc]

            shifts = -num.round(
                shift_table[:, istations_selected] /
                deltat_cf).astype(num.int32)

            pdata.append((list(trs_selected), shift_table, ifc))

            iwmin = int(round((wmin-t0) / deltat_cf))
            iwmax = int(round((wmax-t0) / deltat_cf))

            lengthout = iwmax - iwmin + 1

            shift_maxs.append(num.max(-shifts) * deltat_cf)

            frames, ioff = parstack(
                arrays, offsets, shifts, weights, 0,
                offsetout=iwmin,
                lengthout=lengthout,
                result=frames,
                impl='openmp')

        shift_max = max(shift_maxs)

        if config.sharpness_normalization:
            frame_maxs = frames.max(axis=0)
            frame_means = num.abs(frames).mean(axis=0)
            frames *= (frame_maxs / frame_means)[num.newaxis, :]
            frames *= norm_map[:, num.newaxis]

        frame_maxs = frames.max(axis=0)

        tmin_frames = t0 + ioff * deltat_cf

        tr_stackmax = trace.Trace(
            '', 'SMAX', '', '',
            tmin=tmin_frames,
            deltat=deltat_cf,
            ydata=frame_maxs)

        trs_debug.append(tr_stackmax)

        # trace.snuffle(trs_debug)

        ydata_window = tr_stackmax.chop(wmin, wmax, inplace=False).get_ydata()

180
        logger.info('CF stats: min %g, max %g, median %g' % (
Sebastian Heimann's avatar
Sebastian Heimann committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
            num.min(ydata_window),
            num.max(ydata_window),
            num.median(ydata_window)))

        tpeaks, apeaks = tr_stackmax.peaks(
            config.detector_threshold, shift_max + 1.0/fsmooth_min)

        for (tpeak, apeak) in zip(tpeaks, apeaks):
            if not (wmin <= tpeak and tpeak < wmax):
                continue

            logger.info('detection: %s %g' % (
                util.time_to_str(tpeak),
                apeak))

            iframe = int(round(((tpeak-t0) - ioff*deltat_cf) / deltat_cf))
            frame = frames[:, iframe]
            imax = num.argmax(frame)

            latpeak, lonpeak, xpeak, ypeak, zpeak = grid.index_to_location(imax)

            idetection += 1

            if config.detections_path:
                f = open(config.detections_path, 'a')
                f.write('%06i %s %g %g %g %g %g %g\n' % (
                    idetection,
                    util.time_to_str(tpeak, format='%Y-%m-%d %H:%M:%S.6FRAC'),
                    apeak,
                    latpeak, lonpeak, xpeak, ypeak, zpeak))

                f.close()

            if show_detections:
215
216
                fmin = min(ifc.fmin for ifc in ifcs)
                fmax = min(ifc.fmax for ifc in ifcs)
Sebastian Heimann's avatar
Sebastian Heimann committed
217
218
219
220
221
222
223
224
225
226
                plot.plot_detection(
                    grid, receivers, frames, tmin_frames,
                    deltat_cf, imax, iframe, fsmooth_min, xpeak, ypeak, zpeak,
                    tr_stackmax, tpeaks, apeaks, config.detector_threshold,
                    pdata, trs, fmin, fmax, idetection,
                    grid_station_shift_max=shift_max,
                    movie=show_movie)

            if stop_after_first:
                return
Marius's avatar
Marius committed
227
        
Sebastian Heimann's avatar
Sebastian Heimann committed
228
        tr_stackmax.chop(wmin, wmax)
Marius's avatar
Marius committed
229
        io.save([tr_stackmax], 'stackmax/trace_%(tmin_ms)s.mseed')
Sebastian Heimann's avatar
Sebastian Heimann committed
230
231
232
233
234


__all__ = [
    'scan',
]