core.py 7.77 KB
Newer Older
Sebastian Heimann's avatar
Sebastian Heimann committed
1
2
3
4
import sys
import os
import logging
import os.path as op
5
import shutil
Sebastian Heimann's avatar
Sebastian Heimann committed
6
7
8
9
10
11
12
13
14
15
16

import numpy as num

from pyrocko import pile, trace, util, io
from pyrocko.parstack import parstack

from lassie import common, plot, grid as gridmod

logger = logging.getLogger('lassie.core')


17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def check_data_consistency(p, receivers):
    nslc_ids = p.nslc_ids.keys()
    nsl_ids = [nslc_id[:3] for nslc_id in nslc_ids]
    r_ids = [r.codes for r in receivers]

    r_not_in_p = []
    t_not_in_r = []
    for r in receivers:
        if r.codes[:3] not in nsl_ids:
            r_not_in_p.append(r.codes)

    for nsl_id in nsl_ids:
        if nsl_id not in r_ids:
            t_not_in_r.append(nsl_id)

    if len(r_not_in_p) != 0.:
        logger.warn('following receivers have no traces in data set:')
        for nsl_id in r_not_in_p:
            logger.warn(nsl_id)

    if len(t_not_in_r) != 0.:
        logger.warn('following traces have no associated receivers:')
        for nsl_id in t_not_in_r:
            logger.warn(nsl_id)



Sebastian Heimann's avatar
Sebastian Heimann committed
44
45
def scan(
        config,
46
47
        override_tmin=None,
        override_tmax=None,
Sebastian Heimann's avatar
Sebastian Heimann committed
48
49
50
51
52
53
54
55
56
        show_detections=False,
        show_movie=False,
        force=False,
        stop_after_first=False):

    if config.detections_path:
        if op.exists(config.detections_path):
            if force:
                os.unlink(config.detections_path)
57
58
                shutil.rmtree('stackmax')
                os.mkdir('stackmax')
Sebastian Heimann's avatar
Sebastian Heimann committed
59
60
61
62
63
64
65
66
67
68
69
            else:
                raise common.LassieError(
                    'detections file already exists: %s' % config.detections_path)

        util.ensuredirs(config.detections_path)

    grid = config.get_grid()
    receivers = config.get_receivers()

    norm_map = gridmod.geometrical_normalization(grid, receivers)

70
71
    ifcs = config.image_function_contributions

Sebastian Heimann's avatar
Sebastian Heimann committed
72
73
    shift_tables = []
    tshift_maxs = []
74
    for ifc in ifcs:
Sebastian Heimann's avatar
Sebastian Heimann committed
75
76
77
78
79
80
81
        shift_tables.append(ifc.shifter.get_table(grid, receivers))
        tshift_maxs.append(shift_tables[-1].max())

    tshift_max = max(tshift_maxs) * 1.0

    tinc = tshift_max * 10

82
    tpad = max(ifc.get_tpad() for ifc in ifcs) + tshift_max
Sebastian Heimann's avatar
Sebastian Heimann committed
83

84
    fsmooth_min = min(ifc.get_fsmooth() for ifc in ifcs)
Sebastian Heimann's avatar
Sebastian Heimann committed
85
86
87
88
89
90
91

    blacklist = set(tuple(s.split('.')) for s in config.blacklist)

    station_index = dict(
        (rec.codes, i) for (i, rec) in enumerate(receivers)
        if rec.codes not in blacklist)

92
93
94
95
96
    for data_path in config.data_paths:
        if not op.exists(data_path):
            raise common.LassieError(
                'waveform data path does not exist: %s' % data_path)

Sebastian Heimann's avatar
Sebastian Heimann committed
97
    p = pile.make_pile(config.data_paths, fileformat='detect')
98
99
    if p.is_empty():
        raise common.LassieError('no usable waveforms found')
Sebastian Heimann's avatar
Sebastian Heimann committed
100

101
102
    check_data_consistency(p, receivers)

Sebastian Heimann's avatar
Sebastian Heimann committed
103
104
105
106
107
108
    ngridpoints = grid.size()

    idetection = 0

    station_weights = {}

109
110
    tmin = override_tmin or config.tmin
    tmax = override_tmax or config.tmax
Sebastian Heimann's avatar
Sebastian Heimann committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    for trs in p.chopper(
            tmin=tmin, tmax=tmax, tinc=tinc, tpad=tpad,
            want_incomplete=False,
            trace_selector=lambda tr: tr.nslc_id[:3] in station_index):

        if not trs:
            continue

        logger.info('processing time window %s - %s' % (
            util.time_to_str(trs[0].wmin),
            util.time_to_str(trs[0].wmax)))

        wmin = trs[0].wmin
        wmax = trs[0].wmax

        frames = None
        pdata = []
        trs_debug = []
        shift_maxs = []
130
        for iifc, ifc in enumerate(ifcs):
Sebastian Heimann's avatar
Sebastian Heimann committed
131
132
133
134
135
136
137
138
            dataset = ifc.preprocess(trs, wmin, wmax, tshift_max)
            if not dataset:
                continue

            nstations_selected = len(dataset)

            nsls_selected, trs_selected = zip(*dataset)

139
            #trs_debug.extend(trs + list(trs_selected))
Sebastian Heimann's avatar
Sebastian Heimann committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

            deltat_cf = trs_selected[0].deltat

            t0 = (wmin / deltat_cf) * deltat_cf

            istations_selected = num.array(
                [station_index[nsl] for nsl in nsls_selected], dtype=num.int)

            arrays = [tr.ydata.astype(num.float) for tr in trs_selected]

            offsets = num.array(
                [int(round((tr.tmin-t0) / deltat_cf)) for tr in trs_selected],
                dtype=num.int32)

            w = num.array(
                [station_weights.get(nsl, 1.0) for nsl in nsls_selected],
                dtype=num.float)


            weights = num.ones((ngridpoints, nstations_selected))
            weights *= w[num.newaxis, :]
            weights *= ifc.weight

            shift_table = shift_tables[iifc]

            shifts = -num.round(
                shift_table[:, istations_selected] /
                deltat_cf).astype(num.int32)

            pdata.append((list(trs_selected), shift_table, ifc))

            iwmin = int(round((wmin-t0) / deltat_cf))
            iwmax = int(round((wmax-t0) / deltat_cf))

            lengthout = iwmax - iwmin + 1

            shift_maxs.append(num.max(-shifts) * deltat_cf)

            frames, ioff = parstack(
                arrays, offsets, shifts, weights, 0,
                offsetout=iwmin,
                lengthout=lengthout,
                result=frames,
                impl='openmp')

        shift_max = max(shift_maxs)

        if config.sharpness_normalization:
            frame_maxs = frames.max(axis=0)
            frame_means = num.abs(frames).mean(axis=0)
            frames *= (frame_maxs / frame_means)[num.newaxis, :]
            frames *= norm_map[:, num.newaxis]

        frame_maxs = frames.max(axis=0)

        tmin_frames = t0 + ioff * deltat_cf

        tr_stackmax = trace.Trace(
            '', 'SMAX', '', '',
            tmin=tmin_frames,
            deltat=deltat_cf,
            ydata=frame_maxs)

203
        #trs_debug.append(tr_stackmax)
Sebastian Heimann's avatar
Sebastian Heimann committed
204
205
206
207
208

        # trace.snuffle(trs_debug)

        ydata_window = tr_stackmax.chop(wmin, wmax, inplace=False).get_ydata()

209
        logger.info('CF stats: min %g, max %g, median %g' % (
Sebastian Heimann's avatar
Sebastian Heimann committed
210
211
212
213
214
215
216
            num.min(ydata_window),
            num.max(ydata_window),
            num.median(ydata_window)))

        tpeaks, apeaks = tr_stackmax.peaks(
            config.detector_threshold, shift_max + 1.0/fsmooth_min)

217
218
219
220
221
        tr_stackmax_indx = tr_stackmax.copy(data=False)
        imaxs = num.argmax(frames, axis=0)
        tr_stackmax_indx.set_ydata(imaxs.astype(num.int32))
        tr_stackmax_indx.set_location('i')

Sebastian Heimann's avatar
Sebastian Heimann committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        for (tpeak, apeak) in zip(tpeaks, apeaks):
            if not (wmin <= tpeak and tpeak < wmax):
                continue

            logger.info('detection: %s %g' % (
                util.time_to_str(tpeak),
                apeak))

            iframe = int(round(((tpeak-t0) - ioff*deltat_cf) / deltat_cf))
            frame = frames[:, iframe]
            imax = num.argmax(frame)

            latpeak, lonpeak, xpeak, ypeak, zpeak = grid.index_to_location(imax)

            idetection += 1

            if config.detections_path:
                f = open(config.detections_path, 'a')
                f.write('%06i %s %g %g %g %g %g %g\n' % (
                    idetection,
                    util.time_to_str(tpeak, format='%Y-%m-%d %H:%M:%S.6FRAC'),
                    apeak,
                    latpeak, lonpeak, xpeak, ypeak, zpeak))

                f.close()

            if show_detections:
249
250
                fmin = min(ifc.fmin for ifc in ifcs)
                fmax = min(ifc.fmax for ifc in ifcs)
Sebastian Heimann's avatar
Sebastian Heimann committed
251
252
253
254
255
256
257
258
259
260
                plot.plot_detection(
                    grid, receivers, frames, tmin_frames,
                    deltat_cf, imax, iframe, fsmooth_min, xpeak, ypeak, zpeak,
                    tr_stackmax, tpeaks, apeaks, config.detector_threshold,
                    pdata, trs, fmin, fmax, idetection,
                    grid_station_shift_max=shift_max,
                    movie=show_movie)

            if stop_after_first:
                return
261

Sebastian Heimann's avatar
Sebastian Heimann committed
262
        tr_stackmax.chop(wmin, wmax)
263
        io.save([tr_stackmax, tr_stackmax_indx], 'stackmax/trace_%(tmin_ms)s.mseed')
Sebastian Heimann's avatar
Sebastian Heimann committed
264
265
266
267
268


__all__ = [
    'scan',
]