plot.py 44.4 KB
Newer Older
Sebastian Heimann's avatar
Sebastian Heimann committed
1
import math
2
import re
Sebastian Heimann's avatar
Sebastian Heimann committed
3
import random
4
import logging
5
import os
Sebastian Heimann's avatar
Sebastian Heimann committed
6
7
8
import os.path as op
import numpy as num
from scipy import signal
9
from pyrocko import beachball, guts, trace, util, gf
10
from pyrocko import hudson
Sebastian Heimann's avatar
Sebastian Heimann committed
11
12
13
from grond import core
from matplotlib import pyplot as plt
from matplotlib import cm, patches
14
from pyrocko.cake_plot import colors, \
Sebastian Heimann's avatar
Sebastian Heimann committed
15
16
    str_to_mpl_color as scolor, light

17
18
from pyrocko.plot import mpl_init, mpl_papersize, mpl_margins

19
20
logger = logging.getLogger('grond.plot')

Sebastian Heimann's avatar
Sebastian Heimann committed
21
22
23
km = 1000.


24
25
26
27
28
29
30
31
32
33
34
35
36
def amp_spec_max(spec_trs, key):
    amaxs = {}
    for spec_tr in spec_trs:
        amax = num.max(num.abs(spec_tr.ydata))
        k = key(spec_tr)
        if k not in amaxs:
            amaxs[k] = amax
        else:
            amaxs[k] = max(amaxs[k], amax)

    return amaxs


Sebastian Heimann's avatar
Sebastian Heimann committed
37
38
39
40
41
42
43
def ordersort(x):
    isort = num.argsort(x)
    iorder = num.empty(isort.size)
    iorder[isort] = num.arange(isort.size)
    return iorder


Sebastian Heimann's avatar
Sebastian Heimann committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def nextpow2(i):
    return 2**int(math.ceil(math.log(i)/math.log(2.)))


def fixlim(lo, hi):
    if lo == hi:
        return lo - 1.0, hi + 1.0
    else:
        return lo, hi


def str_dist(dist):
    if dist < 10.0:
        return '%g m' % dist
    elif 10. <= dist < 1.*km:
        return '%.0f m' % dist
    elif 1.*km <= dist < 10.*km:
        return '%.1f km' % (dist / km)
    else:
        return '%.0f km' % (dist / km)


def str_duration(t):
Sebastian Heimann's avatar
Sebastian Heimann committed
67
68
69
    s = ''
    if t < 0.:
        s = '-'
Sebastian Heimann's avatar
Sebastian Heimann committed
70

Sebastian Heimann's avatar
Sebastian Heimann committed
71
    t = abs(t)
Sebastian Heimann's avatar
Sebastian Heimann committed
72

Sebastian Heimann's avatar
Sebastian Heimann committed
73
74
    if t < 10.0:
        return s + '%.2g s' % t
Sebastian Heimann's avatar
Sebastian Heimann committed
75
    elif 10.0 <= t < 3600.:
Sebastian Heimann's avatar
Sebastian Heimann committed
76
77
78
79
80
        return s + util.time_to_str(t, format='%M:%S min')
    elif 3600. <= t < 24*3600.:
        return s + util.time_to_str(t, format='%H:%M h')
    else:
        return s + '%.1f d' % (t / (24.*3600.))
Sebastian Heimann's avatar
Sebastian Heimann committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166


def eigh_sorted(mat):
    evals, evecs = num.linalg.eigh(mat)
    iorder = num.argsort(evals)
    return evals[iorder], evecs[:, iorder]


class GrondModel(object):
    def __init__(self, **kwargs):
        self.listeners = []
        self.set_problem(None)

    def add_listener(self, listener):
        self.listeners.append(listener)

    def set_problem(self, problem):

        self.problem = problem
        if problem:
            nparameters = problem.nparameters
            ntargets = problem.ntargets
        else:
            nparameters = 0
            ntargets = 0

        nmodels = 0
        nmodels_capacity = 1024

        self._xs_buffer = num.zeros(
            (nmodels_capacity, nparameters), dtype=num.float)
        self._misfits_buffer = num.zeros(
            (nmodels_capacity, ntargets, 2), dtype=num.float)

        self.xs = self._xs_buffer[:nmodels, :]
        self.misfits = self._misfits_buffer[:nmodels, :, :]

        self.data_changed()

    @property
    def nmodels(self):
        return self.xs.shape[0]

    @property
    def nmodels_capacity(self):
        return self._xs_buffer.shape[0]

    def append(self, xs, misfits):
        assert xs.shape[0] == misfits.shape[0]

        nmodels_add = xs.shape[0]

        nmodels = self.nmodels
        nmodels_new = nmodels + nmodels_add
        nmodels_capacity_new = max(1024, nextpow2(nmodels_new))

        nmodels_capacity = self.nmodels_capacity
        if nmodels_capacity_new > nmodels_capacity:
            xs_buffer = num.zeros(
                (nmodels_capacity_new, self.problem.nparameters),
                dtype=num.float)

            misfits_buffer = num.zeros(
                (nmodels_capacity_new, self.problem.ntargets, 2),
                dtype=num.float)

            xs_buffer[:nmodels, :] = self._xs_buffer[:nmodels]
            misfits_buffer[:nmodels, :] = self._misfits_buffer[:nmodels]
            self._xs_buffer = xs_buffer
            self._misfits_buffer = misfits_buffer

        self._xs_buffer[nmodels:nmodels+nmodels_add, :] = xs
        self._misfits_buffer[nmodels:nmodels+nmodels_add, :, :] = misfits

        nmodels = nmodels_new

        self.xs = self._xs_buffer[:nmodels, :]
        self.misfits = self._misfits_buffer[:nmodels, :, :]

        self.data_changed()

    def data_changed(self):
        for listener in self.listeners:
            listener()


167
def draw_sequence_figures(model, plt, misfit_cutoff=None, sort_by='iteration'):
Sebastian Heimann's avatar
Sebastian Heimann committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    problem = model.problem

    imodels = num.arange(model.nmodels)
    bounds = problem.bounds() + problem.dependant_bounds()

    xref = problem.pack(problem.base_source)

    xs = model.xs

    npar = problem.nparameters
    ndep = problem.ndependants

    gms = problem.global_misfits(model.misfits)
    gms_softclip = num.where(gms > 1.0, 0.2 * num.log10(gms) + 1.0, gms)

    isort = num.argsort(gms)[::-1]

185
186
187
188
189
190
191
    if sort_by == 'iteration':
        imodels = imodels[isort]
    elif sort_by == 'misfit':
        imodels = num.arange(imodels.size)
    else:
        assert False

Sebastian Heimann's avatar
Sebastian Heimann committed
192
193
194
195
196
197
198
199
200
201
202
203
    gms = gms[isort]
    gms_softclip = gms_softclip[isort]
    xs = xs[isort, :]

    iorder = num.empty_like(isort)
    iorder = num.arange(iorder.size)

    if misfit_cutoff is None:
        ibest = num.ones(gms.size, dtype=num.bool)
    else:
        ibest = gms < misfit_cutoff

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def config_axes(axes, nfx, nfy, impl, iplot, nplots):
        if (impl - 1) % nfx != nfx - 1:
            axes.get_yaxis().tick_left()

        if (impl - 1) >= (nfx * (nfy-1)) or iplot >= nplots - nfx:
            axes.set_xlabel('Iteration')
            if not (impl - 1) / nfx == 0:
                axes.get_xaxis().tick_bottom()
        elif (impl - 1) / nfx == 0:
            axes.get_xaxis().tick_top()
            axes.set_xticklabels([])
        else:
            axes.get_xaxis().set_visible(False)

    fontsize = 10.0

Sebastian Heimann's avatar
Sebastian Heimann committed
220
    nfx = 2
221
    nfy = 3
Sebastian Heimann's avatar
Sebastian Heimann committed
222
223
224
    # nfz = (npar + ndep + 1 - 1) / (nfx*nfy) + 1
    cmap = cm.YlOrRd
    cmap = cm.jet
225
    msize = 1.5
Sebastian Heimann's avatar
Sebastian Heimann committed
226
    axes = None
227
    figs = []
Sebastian Heimann's avatar
Sebastian Heimann committed
228
229
230
231
232
233
    fig = None
    alpha = 0.5
    for ipar in xrange(npar):
        impl = ipar % (nfx*nfy) + 1

        if impl == 1:
234
235
236
            fig = plt.figure(figsize=mpl_papersize('a5', 'landscape'))
            labelpos = mpl_margins(fig, nw=nfx, nh=nfy, w=7., h=5., wspace=7.,
                                   hspace=2., units=fontsize)
237
            figs.append(fig)
Sebastian Heimann's avatar
Sebastian Heimann committed
238
239
240

        par = problem.parameters[ipar]

241
242
243
        axes = fig.add_subplot(nfy, nfx, impl)
        labelpos(axes, 2.5, 2.0)

Sebastian Heimann's avatar
Sebastian Heimann committed
244
245
        axes.set_ylabel(par.get_label())
        axes.get_yaxis().set_major_locator(plt.MaxNLocator(4))
246
247

        config_axes(axes, nfx, nfy, impl, ipar, npar+ndep+1)
Sebastian Heimann's avatar
Sebastian Heimann committed
248
249
250
251
252

        axes.set_ylim(*fixlim(*par.scaled(bounds[ipar])))
        axes.set_xlim(0, model.nmodels)

        axes.scatter(
253
254
255
256
            imodels[ibest], par.scaled(xs[ibest, ipar]), s=msize,
            c=iorder[ibest], edgecolors='none', cmap=cmap, alpha=alpha)

        axes.axhline(par.scaled(xref[ipar]), color='black', alpha=0.3)
Sebastian Heimann's avatar
Sebastian Heimann committed
257
258
259
260
261
262

    for idep in xrange(ndep):
        # ifz, ify, ifx = num.unravel_index(ipar, (nfz, nfy, nfx))
        impl = (npar+idep) % (nfx*nfy) + 1

        if impl == 1:
263
264
265
            fig = plt.figure(figsize=mpl_papersize('a5', 'landscape'))
            labelpos = mpl_margins(fig, nw=nfx, nh=nfy, w=7., h=5., wspace=7.,
                                   hspace=2., units=fontsize)
266
            figs.append(fig)
Sebastian Heimann's avatar
Sebastian Heimann committed
267
268
269

        par = problem.dependants[idep]

270
271
272
        axes = fig.add_subplot(nfy, nfx, impl)
        labelpos(axes, 2.5, 2.0)

Sebastian Heimann's avatar
Sebastian Heimann committed
273
274
        axes.set_ylabel(par.get_label())
        axes.get_yaxis().set_major_locator(plt.MaxNLocator(4))
275
276
277

        config_axes(axes, nfx, nfy, impl, npar+idep, npar+ndep+1)

Sebastian Heimann's avatar
Sebastian Heimann committed
278
279
280
281
282
        axes.set_ylim(*fixlim(*par.scaled(bounds[npar+idep])))
        axes.set_xlim(0, model.nmodels)

        ys = problem.make_dependant(xs[ibest, :], par.name)
        axes.scatter(
283
284
285
286
287
            imodels[ibest], par.scaled(ys), s=msize, c=iorder[ibest],
            edgecolors='none', cmap=cmap, alpha=alpha)

        y = problem.make_dependant(xref, par.name)
        axes.axhline(par.scaled(y), color='black', alpha=0.3)
Sebastian Heimann's avatar
Sebastian Heimann committed
288
289
290

    impl = (npar+ndep) % (nfx*nfy) + 1
    if impl == 1:
291
292
293
        fig = plt.figure(figsize=mpl_papersize('a5', 'landscape'))
        labelpos = mpl_margins(fig, nw=nfx, nh=nfy, w=7., h=5., wspace=7.,
                               hspace=2., units=fontsize)
294
        figs.append(fig)
Sebastian Heimann's avatar
Sebastian Heimann committed
295

296
297
298
299
    axes = fig.add_subplot(nfy, nfx, impl)
    labelpos(axes, 2.5, 2.0)

    config_axes(axes, nfx, nfy, impl, npar+ndep, npar+ndep+1)
Sebastian Heimann's avatar
Sebastian Heimann committed
300
301
302
303
304
305
306

    axes.set_ylim(0., 1.5)
    axes.set_yticks([0., 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4])
    axes.set_yticklabels(['0.0', '0.2', '0.4', '0.6', '0.8', '1', '10', '100'])

    axes.scatter(
        imodels[ibest], gms_softclip[ibest], c=iorder[ibest],
307
308
309
310
        s=msize, edgecolors='none', cmap=cmap, alpha=alpha)

    axes.axhspan(1.0, 1.5, color=(0.8, 0.8, 0.8), alpha=0.2)
    axes.axhline(1.0, color=(0.5, 0.5, 0.5), zorder=2)
Sebastian Heimann's avatar
Sebastian Heimann committed
311
312
313
314
315
316

    axes.set_xlim(0, model.nmodels)
    axes.set_xlabel('Iteration')

    axes.set_ylabel('Misfit')

317
    return figs
Sebastian Heimann's avatar
Sebastian Heimann committed
318
319
320


def draw_jointpar_figures(
321
        model, plt, misfit_cutoff=None, ibootstrap=None, color=None,
322
        exclude=None, include=None):
323

324
    color = 'misfit'
Sebastian Heimann's avatar
Sebastian Heimann committed
325
    # exclude = ['duration']
326
    # include = ['magnitude', 'rel_moment_iso', 'rel_moment_clvd', 'depth']
327
328
    neach = 6
    figsize = (8, 8)
Sebastian Heimann's avatar
Sebastian Heimann committed
329
330
    # cmap = cm.YlOrRd
    # cmap = cm.jet
331
    cmap = cm.coolwarm
332
    msize = 1.5
Sebastian Heimann's avatar
Sebastian Heimann committed
333
334
335

    problem = model.problem
    if not problem:
336
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
337
338
339
340

    xs = model.xs

    bounds = problem.bounds() + problem.dependant_bounds()
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
341
342
343
344
345
346
347
348
    for ipar in xrange(problem.ncombined):
        par = problem.combined[ipar]
        lo, hi = bounds[ipar]
        if lo == hi:
            if exclude is None:
                exclude = []

            exclude.append(par.name)
Sebastian Heimann's avatar
Sebastian Heimann committed
349
350
351
352
353
354
355
356
357
358
359
360
361

    xref = problem.pack(problem.base_source)

    if ibootstrap is not None:
        gms = problem.bootstrap_misfits(model.misfits, ibootstrap)
    else:
        gms = problem.global_misfits(model.misfits)

    isort = num.argsort(gms)[::-1]

    gms = gms[isort]
    xs = xs[isort, :]

Sebastian Heimann's avatar
Sebastian Heimann committed
362
    if misfit_cutoff is not None:
Sebastian Heimann's avatar
Sebastian Heimann committed
363
        ibest = gms < misfit_cutoff
Sebastian Heimann's avatar
Sebastian Heimann committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
        gms = gms[ibest]
        xs = xs[ibest]

    nmodels = xs.shape[0]

    if color == 'dist':
        mx = num.mean(xs, axis=0)
        cov = num.cov(xs.T)
        mdists = core.mahalanobis_distance(xs, mx, cov)
        color = ordersort(mdists)

    elif color == 'misfit':
        iorder = num.arange(nmodels)
        color = iorder

    elif color in problem.parameter_names:
        ind = problem.name_to_index(color)
        color = ordersort(problem.extract(xs, ind))
Sebastian Heimann's avatar
Sebastian Heimann committed
382

383
384
385
386
    smap = {}
    iselected = 0
    for ipar in xrange(problem.ncombined):
        par = problem.combined[ipar]
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
387
388
        if exclude and par.name in exclude or \
                include and par.name not in include:
389
            continue
Sebastian Heimann's avatar
Sebastian Heimann committed
390

391
392
393
394
        smap[iselected] = ipar
        iselected += 1

    nselected = iselected
Sebastian Heimann's avatar
Sebastian Heimann committed
395

396
397
398
399
    if nselected < 2:
        logger.warn('cannot draw joinpar figures with less than two '
                    'parameters selected')
        return []
400
401

    nfig = (nselected-2) / neach + 1
Sebastian Heimann's avatar
Sebastian Heimann committed
402
403
404
405
406
407

    figs = []
    for ifig in xrange(nfig):
        figs_row = []
        for jfig in xrange(nfig):
            if ifig >= jfig:
408
                figs_row.append(plt.figure(figsize=figsize))
Sebastian Heimann's avatar
Sebastian Heimann committed
409
410
411
412
413
            else:
                figs_row.append(None)

        figs.append(figs_row)

414
415
    for iselected in xrange(nselected):
        ipar = smap[iselected]
Sebastian Heimann's avatar
Sebastian Heimann committed
416
        ypar = problem.combined[ipar]
417
418
        for jselected in xrange(iselected):
            jpar = smap[jselected]
Sebastian Heimann's avatar
Sebastian Heimann committed
419
420
            xpar = problem.combined[jpar]

421
422
            ixg = (iselected - 1)
            iyg = jselected
Sebastian Heimann's avatar
Sebastian Heimann committed
423
424
425
426
427
428
429
430
431
432
433
434
435

            ix = ixg % neach
            iy = iyg % neach

            ifig = ixg/neach
            jfig = iyg/neach

            aind = (neach, neach, (ix * neach) + iy + 1)

            fig = figs[ifig][jfig]

            axes = fig.add_subplot(*aind)

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
            axes.axvline(0., color=scolor('aluminium3'), lw=0.5)
            axes.axhline(0., color=scolor('aluminium3'), lw=0.5)
            for spine in axes.spines.values():
                spine.set_edgecolor(scolor('aluminium5'))
                spine.set_linewidth(0.5)

            xmin, xmax = fixlim(*xpar.scaled(bounds[jpar]))
            ymin, ymax = fixlim(*ypar.scaled(bounds[ipar]))

            if ix == 0 or jselected + 1 == iselected:
                for (xpos, xoff, x) in [(0.0, 10., xmin), (1.0, -10., xmax)]:
                    axes.annotate(
                        '%.2g%s' % (x, xpar.get_unit_suffix()),
                        xy=(xpos, 1.05),
                        xycoords='axes fraction',
                        xytext=(xoff, 5.),
                        textcoords='offset points',
                        verticalalignment='bottom',
                        horizontalalignment='left',
                        rotation=45.)

            if iy == neach - 1 or jselected + 1 == iselected:
                for (ypos, yoff, y) in [(0., 10., ymin), (1.0, -10., ymax)]:
                    axes.annotate(
                        '%.2g%s' % (y, ypar.get_unit_suffix()),
                        xy=(1.0, ypos),
                        xycoords='axes fraction',
                        xytext=(5., yoff),
                        textcoords='offset points',
                        verticalalignment='bottom',
                        horizontalalignment='left',
                        rotation=45.)

            axes.set_xlim(xmin, xmax)
            axes.set_ylim(ymin, ymax)
Sebastian Heimann's avatar
Sebastian Heimann committed
471
472
473
474

            axes.get_xaxis().set_ticks([])
            axes.get_yaxis().set_ticks([])

475
            if iselected == nselected - 1 or ix == neach - 1:
Sebastian Heimann's avatar
Sebastian Heimann committed
476
                axes.annotate(
477
                    xpar.get_label(with_unit=False),
Sebastian Heimann's avatar
Sebastian Heimann committed
478
479
480
481
482
483
484
485
                    xy=(0.5, -0.05),
                    xycoords='axes fraction',
                    verticalalignment='top',
                    horizontalalignment='right',
                    rotation=45.)

            if iy == 0:
                axes.annotate(
486
                    ypar.get_label(with_unit=False),
Sebastian Heimann's avatar
Sebastian Heimann committed
487
488
                    xy=(-0.05, 0.5),
                    xycoords='axes fraction',
489
490
491
                    verticalalignment='top',
                    horizontalalignment='right',
                    rotation=45.)
Sebastian Heimann's avatar
Sebastian Heimann committed
492

Sebastian Heimann's avatar
Sebastian Heimann committed
493
494
            fx = problem.extract(xs, jpar)
            fy = problem.extract(xs, ipar)
Sebastian Heimann's avatar
Sebastian Heimann committed
495
496
497
498
499

            axes.scatter(
                xpar.scaled(fx),
                ypar.scaled(fy),
                c=color,
500
                s=msize, alpha=0.5, cmap=cmap, edgecolors='none')
Sebastian Heimann's avatar
Sebastian Heimann committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

            cov = num.cov((xpar.scaled(fx), ypar.scaled(fy)))
            evals, evecs = eigh_sorted(cov)
            evals = num.sqrt(evals)
            ell = patches.Ellipse(
                xy=(num.mean(xpar.scaled(fx)), num.mean(ypar.scaled(fy))),
                width=evals[0]*2,
                height=evals[1]*2,
                angle=num.rad2deg(num.arctan2(evecs[1][0], evecs[0][0])))

            ell.set_facecolor('none')
            axes.add_artist(ell)

            fx = problem.extract(xref, jpar)
            fy = problem.extract(xref, ipar)
516
517
518
519
520

            ref_color = scolor('aluminium6')
            ref_color_light = 'none'
            axes.plot(
                xpar.scaled(fx), ypar.scaled(fy), 's',
521
                mew=1.5, ms=5, mfc=ref_color_light, mec=ref_color)
522

523
524
525
526
527
528
    figs_flat = []
    for figs_row in figs:
        figs_flat.extend(fig for fig in figs_row if fig is not None)

    return figs_flat

Sebastian Heimann's avatar
Sebastian Heimann committed
529
530
531
532

def draw_solution_figure(
        model, plt, misfit_cutoff=None, beachball_type='full'):

Sebastian Heimann's avatar
Sebastian Heimann committed
533
534
535
536
537
    fontsize = 10.

    fig = plt.figure(figsize=(6, 2))
    axes = fig.add_subplot(1, 1, 1, aspect=1.0)
    fig.subplots_adjust(left=0., right=1., bottom=0., top=1.)
Sebastian Heimann's avatar
Sebastian Heimann committed
538
539
540

    problem = model.problem
    if not problem:
541
542
        logger.warn('problem not set')
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
543
544
545
546

    xs = model.xs

    if xs.size == 0:
547
548
        logger.warn('empty models vector')
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
549
550
551
552
553
554

    gms = problem.global_misfits(model.misfits)
    isort = num.argsort(gms)
    iorder = num.empty_like(isort)
    iorder[isort] = num.arange(iorder.size)[::-1]

Sebastian Heimann's avatar
Sebastian Heimann committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    mean_source = core.get_mean_source(problem, model.xs)
    best_source = core.get_best_source(problem, model.xs, model.misfits)
    ref_source = problem.base_source

    for xpos, label in [
            (0., 'Full'),
            (2., 'Isotropic'),
            (4., 'Deviatoric'),
            (6., 'CLVD'),
            (8., 'DC')]:

        axes.annotate(
            label,
            xy=(1+xpos, 3),
            xycoords='data',
            xytext=(0., 0.),
            textcoords='offset points',
            ha='center',
            va='center',
            color='black',
            fontsize=fontsize)

    decos = []
    for source in [best_source, mean_source, ref_source]:
        mt = source.pyrocko_moment_tensor()
        deco = mt.standard_decomposition()
        decos.append(deco)

    moment_full_max = max(deco[-1][0] for deco in decos)

    for ypos, label, deco, color_t in [
            (2., 'Ensemble best', decos[0], scolor('aluminium5')),
            (1., 'Ensemble mean', decos[1], scolor('scarletred1')),
            (0., 'Reference', decos[2], scolor('aluminium3'))]:

        [(moment_iso, ratio_iso, m_iso),
         (moment_dc, ratio_dc, m_dc),
         (moment_clvd, ratio_clvd, m_clvd),
         (moment_devi, ratio_devi, m_devi),
         (moment_full, ratio_full, m_full)] = deco

        size0 = moment_full / moment_full_max

        axes.annotate(
            label,
            xy=(-2., ypos),
            xycoords='data',
            xytext=(0., 0.),
            textcoords='offset points',
            ha='left',
            va='center',
            color='black',
            fontsize=fontsize)

        for xpos, mt_part, ratio, ops in [
                (0., m_full, ratio_full, '-'),
                (2., m_iso, ratio_iso, '='),
                (4., m_devi, ratio_devi, '='),
                (6., m_clvd, ratio_clvd, '+'),
                (8., m_dc, ratio_dc, None)]:

616
            if ratio > 1e-4:
617
618
619
620
621
622
623
624
625
626
627
628
                try:
                    beachball.plot_beachball_mpl(
                        mt_part, axes,
                        beachball_type='full',
                        position=(1.+xpos, ypos),
                        size=0.9*size0*math.sqrt(ratio),
                        size_units='data',
                        color_t=color_t,
                        linewidth=1.0)

                except beachball.BeachballError, e:
                    logger.warn(str(e))
Sebastian Heimann's avatar
Sebastian Heimann committed
629

630
631
632
633
634
635
636
637
                    axes.annotate(
                        'ERROR',
                        xy=(1.+xpos, ypos),
                        ha='center',
                        va='center',
                        color='red',
                        fontsize=fontsize)

Sebastian Heimann's avatar
Sebastian Heimann committed
638
639
640
            else:
                axes.annotate(
                    'N/A',
Sebastian Heimann's avatar
Sebastian Heimann committed
641
                    xy=(1.+xpos, ypos),
Sebastian Heimann's avatar
Sebastian Heimann committed
642
643
644
645
646
647
648
649
650
651
652
653
654
                    ha='center',
                    va='center',
                    color='black',
                    fontsize=fontsize)

            if ops is not None:
                axes.annotate(
                    ops,
                    xy=(2. + xpos, ypos),
                    ha='center',
                    va='center',
                    color='black',
                    fontsize=fontsize)
Sebastian Heimann's avatar
Sebastian Heimann committed
655
656

    axes.axison = False
Sebastian Heimann's avatar
Sebastian Heimann committed
657
658
    axes.set_xlim(-2.25, 9.75)
    axes.set_ylim(-0.5, 3.5)
Sebastian Heimann's avatar
Sebastian Heimann committed
659

660
661
    return [fig]

Sebastian Heimann's avatar
Sebastian Heimann committed
662
663
664

def draw_contributions_figure(model, plt):

665
666
667
668
669
    fontsize = 10.

    fig = plt.figure(figsize=mpl_papersize('a5', 'landscape'))
    labelpos = mpl_margins(fig, nw=2, nh=2, w=7., h=5., wspace=2.,
                           hspace=5., units=fontsize)
Sebastian Heimann's avatar
Sebastian Heimann committed
670
671
672

    problem = model.problem
    if not problem:
673
674
        logger.warn('problem not set')
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
675
676
677
678

    xs = model.xs

    if xs.size == 0:
679
680
        logger.warn('empty models vector')
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

    imodels = num.arange(model.nmodels)

    gms = problem.global_misfits(model.misfits)**2

    isort = num.argsort(gms)[::-1]

    gms = gms[isort]

    gms_softclip = num.where(gms > 1.0, 0.1 * num.log10(gms) + 1.0, gms)

    gcms = problem.global_contributions(model.misfits)
    gcms = gcms[isort, :]

    jsort = num.argsort(gcms[-1, :])[::-1]

    # ncols = 4
    # nrows = ((problem.ntargets + 1) - 1) / ncols + 1

    axes = fig.add_subplot(2, 2, 1)
701
702
    labelpos(axes, 2.5, 2.0)

Sebastian Heimann's avatar
Sebastian Heimann committed
703
704
705
706
    axes.set_ylabel('Relative contribution (smoothed)')
    axes.set_ylim(0.0, 1.0)

    axes2 = fig.add_subplot(2, 2, 3, sharex=axes)
707
708
    labelpos(axes2, 2.5, 2.0)

Sebastian Heimann's avatar
Sebastian Heimann committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
    axes2.set_xlabel('Tested model, sorted descending by global misfit value')

    axes2.set_ylabel('Square of misfit')

    axes2.set_ylim(0., 1.5)
    axes2.axhspan(1.0, 1.5, color=(0.8, 0.8, 0.8))
    axes2.set_yticks([0., 0.2, 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5])
    axes2.set_yticklabels(
        ['0.0', '0.2', '0.4', '0.6', '0.8', '1', '10', '100', '1000', '10000',
         '100000'])

    axes2.set_xlim(imodels[0], imodels[-1])

    rel_ms_sum = num.zeros(model.nmodels)
    rel_ms_smooth_sum = num.zeros(model.nmodels)
    ms_smooth_sum = num.zeros(model.nmodels)
    b = num.hanning(100)
    b /= num.sum(b)
    a = [1]
    ii = 0
    for itarget in jsort:
        target = problem.targets[itarget]
        ms = gcms[:, itarget]
        ms = num.where(num.isfinite(ms), ms, 0.0)
        if num.all(ms == 0.0):
            continue

        rel_ms = ms / gms

        rel_ms_smooth = signal.filtfilt(b, a, rel_ms)

        ms_smooth = rel_ms_smooth * gms_softclip

        rel_poly_y = num.concatenate(
            [rel_ms_smooth_sum[::-1], rel_ms_smooth_sum + rel_ms_smooth])
        poly_x = num.concatenate([imodels[::-1], imodels])

746
747
748
749
750
        add_args = {}
        if ii < 20:
            add_args['label'] = '%s (%.2g)' % (
                target.string_id(), num.mean(rel_ms[-1]))

Sebastian Heimann's avatar
Sebastian Heimann committed
751
752
753
754
        axes.fill(
            poly_x, rel_poly_y,
            alpha=0.5,
            color=colors[ii % len(colors)],
755
            **add_args)
Sebastian Heimann's avatar
Sebastian Heimann committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

        poly_y = num.concatenate(
            [ms_smooth_sum[::-1], ms_smooth_sum + ms_smooth])

        axes2.fill(poly_x, poly_y, alpha=0.5, color=colors[ii % len(colors)])

        rel_ms_sum += rel_ms

        # axes.plot(imodels, rel_ms_sum, color='black', alpha=0.1, zorder=-1)

        ms_smooth_sum += ms_smooth
        rel_ms_smooth_sum += rel_ms_smooth
        ii += 1

    axes.legend(
771
        title='Contributions (top twenty)',
Sebastian Heimann's avatar
Sebastian Heimann committed
772
773
        bbox_to_anchor=(1.05, 0.0, 1.0, 1.0),
        loc='upper left',
774
        ncol=1, borderaxespad=0., prop={'size': 9})
Sebastian Heimann's avatar
Sebastian Heimann committed
775
776
777
778

    axes2.plot(imodels, gms_softclip, color='black')
    axes2.axhline(1.0, color=(0.5, 0.5, 0.5))

779
780
    return [fig]

Sebastian Heimann's avatar
Sebastian Heimann committed
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804

def draw_bootstrap_figure(model, plt):

    fig = plt.figure()

    problem = model.problem
    gms = problem.global_misfits(model.misfits)

    imodels = num.arange(model.nmodels)

    axes = fig.add_subplot(1, 1, 1)

    gms_softclip = num.where(gms > 1.0, 0.1 * num.log10(gms) + 1.0, gms)

    ibests = []
    for ibootstrap in xrange(problem.nbootstrap):
        bms = problem.bootstrap_misfits(model.misfits, ibootstrap)
        isort_bms = num.argsort(bms)[::-1]

        ibests.append(isort_bms[-1])

        bms_softclip = num.where(bms > 1.0, 0.1 * num.log10(bms) + 1.0, bms)
        axes.plot(imodels, bms_softclip[isort_bms], color='red', alpha=0.2)

Sebastian Heimann's avatar
Sebastian Heimann committed
805
806
807
808
809
810
811
812
813
814
815
816
817
    isort = num.argsort(gms)[::-1]
    iorder = num.empty(isort.size)
    iorder[isort] = imodels

    axes.plot(iorder[ibests], gms_softclip[ibests], 'x', color='black')

    m = num.median(gms[ibests])
    s = num.std(gms[ibests])

    axes.axhline(m+s, color='black', alpha=0.5)
    axes.axhline(m, color='black')
    axes.axhline(m-s, color='black', alpha=0.5)

Sebastian Heimann's avatar
Sebastian Heimann committed
818
819
    axes.plot(imodels, gms_softclip[isort], color='black')

Sebastian Heimann's avatar
Sebastian Heimann committed
820
821
    axes.set_xlim(imodels[0], imodels[-1])
    axes.set_xlabel('Tested model, sorted descending by global misfit value')
Sebastian Heimann's avatar
Sebastian Heimann committed
822

823
824
    return [fig]

825

Sebastian Heimann's avatar
Sebastian Heimann committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
def gather(l, key, sort=None, filter=None):
    d = {}
    for x in l:
        if filter is not None and not filter(x):
            continue

        k = key(x)
        if k not in d:
            d[k] = []

        d[k].append(x)

    if sort is not None:
        for v in d.itervalues():
            v.sort(key=sort)

    return d


def plot_trace(axes, tr, **kwargs):
    return axes.plot(tr.get_xdata(), tr.get_ydata(), **kwargs)


def plot_taper(axes, t, taper, **kwargs):
    y = num.ones(t.size) * 0.9
    taper(y, t[0], t[1] - t[0])
    y2 = num.concatenate((y, -y[::-1]))
    t2 = num.concatenate((t, t[::-1]))
    axes.fill(t2, y2, **kwargs)


857
def plot_dtrace(axes, tr, space, mi, ma, **kwargs):
Sebastian Heimann's avatar
Sebastian Heimann committed
858
859
    t = tr.get_xdata()
    y = tr.get_ydata()
860
861
    y2 = (num.concatenate((y, num.zeros(y.size))) - mi) / \
        (ma-mi) * space - (1.0 + space)
Sebastian Heimann's avatar
Sebastian Heimann committed
862
    t2 = num.concatenate((t, t[::-1]))
863
    axes.fill(
Sebastian Heimann's avatar
Sebastian Heimann committed
864
865
866
867
        t2, y2,
        clip_on=False,
        **kwargs)

868

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
def plot_spectrum(
        axes, spec_syn, spec_obs, fmin, fmax, space, mi, ma,
        syn_color='red', obs_color='black',
        syn_lw=1.5, obs_lw=1.0, color_vline='gray', fontsize=9.):

    fpad = (fmax - fmin) / 6.

    for spec, color, lw in [
            (spec_syn, syn_color, syn_lw),
            (spec_obs, obs_color, obs_lw)]:

        f = spec.get_xdata()
        mask = num.logical_and(fmin - fpad <= f, f <= fmax + fpad)

        f = f[mask]
        y = num.abs(spec.get_ydata())[mask]

        y2 = (num.concatenate((y, num.zeros(y.size))) - mi) / \
            (ma-mi) * space - (1.0 + space)
        f2 = num.concatenate((f, f[::-1]))
        axes2 = axes.twiny()
        axes2.set_axis_off()

        axes2.set_xlim(fmin - fpad * 5, fmax + fpad * 5)

        axes2.plot(f2, y2, clip_on=False, color=color, lw=lw)
        axes2.fill(f2, y2, alpha=0.1, clip_on=False, color=color)

    axes2.plot([fmin, fmin], [-1.0 - space, -1.0], color=color_vline)
    axes2.plot([fmax, fmax], [-1.0 - space, -1.0], color=color_vline)

    for (text, fx, ha) in [
            ('%.3g Hz' % fmin, fmin, 'right'),
            ('%.3g Hz' % fmax, fmax, 'left')]:

        axes2.annotate(
            text,
            xy=(fx, -1.0),
            xycoords='data',
            xytext=(
                fontsize*0.4 * [-1, 1][ha == 'left'],
                -fontsize*0.2),
            textcoords='offset points',
            ha=ha,
            va='top',
            color=color_vline,
            fontsize=fontsize)

Sebastian Heimann's avatar
Sebastian Heimann committed
917

918
919
920
921
def plot_dtrace_vline(axes, t, space, **kwargs):
    axes.plot([t, t], [-1.0 - space, -1.0], **kwargs)


Sebastian Heimann's avatar
Sebastian Heimann committed
922
def draw_fits_figures(ds, model, plt):
923
924
    fontsize = 8
    fontsize_title = 10
Sebastian Heimann's avatar
Sebastian Heimann committed
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

    problem = model.problem

    for target in problem.targets:
        target.set_dataset(ds)

    target_index = dict(
        (target, i) for (i, target) in enumerate(problem.targets))

    gms = problem.global_misfits(model.misfits)
    isort = num.argsort(gms)
    gms = gms[isort]
    xs = model.xs[isort, :]
    misfits = model.misfits[isort, :]

    xbest = xs[0, :]

    ws = problem.get_target_weights()
    gcms = problem.global_contributions(misfits[:1])[0]

    w_max = num.nanmax(ws)
    gcm_max = num.nanmax(gcms)

    source = problem.unpack(xbest)

    target_to_result = {}
    all_syn_trs = []
952
    all_syn_specs = []
953
    ms, ns, results = problem.evaluate(xbest, result_mode='full')
Sebastian Heimann's avatar
Sebastian Heimann committed
954
955
956

    dtraces = []
    for target, result in zip(problem.targets, results):
957
        if isinstance(result, gf.SeismosizerError):
Sebastian Heimann's avatar
Sebastian Heimann committed
958
959
960
961
962
963
            dtraces.append(None)
            continue

        itarget = target_index[target]
        w = target.get_combined_weight(problem.apply_balancing_weights)

964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
        if target.misfit_config.domain == 'cc_max_norm':
            tref = (result.filtered_obs.tmin + result.filtered_obs.tmax) * 0.5
            for tr_filt, tr_proc, tshift in (
                    (result.filtered_obs,
                     result.processed_obs,
                     0.),
                    (result.filtered_syn,
                     result.processed_syn,
                     result.cc_shift)):

                norm = num.sum(num.abs(tr_proc.ydata)) / tr_proc.data_len()
                tr_filt.ydata /= norm
                tr_proc.ydata /= norm

                tr_filt.shift(tshift)
                tr_proc.shift(tshift)

            ctr = result.cc
            ctr.shift(tref)

            dtrace = ctr

        else:
            for tr in (
                    result.filtered_obs,
                    result.filtered_syn,
                    result.processed_obs,
                    result.processed_syn):
Sebastian Heimann's avatar
Sebastian Heimann committed
992

993
                tr.ydata *= w
Sebastian Heimann's avatar
Sebastian Heimann committed
994

995
996
997
998
999
1000
            for spec in (
                    result.spectrum_obs,
                    result.spectrum_syn):

                if spec is not None:
                    spec.ydata *= w