core.py 57.5 KB
Newer Older
Sebastian Heimann's avatar
Sebastian Heimann committed
1
2
3
4
5
6
7
import math
import os
import sys
import logging
import time
import copy
import shutil
Sebastian Heimann's avatar
Sebastian Heimann committed
8
import glob
Sebastian Heimann's avatar
Sebastian Heimann committed
9
import os.path as op
10
from string import Template
Sebastian Heimann's avatar
Sebastian Heimann committed
11
12
13
14

import numpy as num

from pyrocko.guts import load, Object, String, Float, Int, Bool, List, \
Sebastian Heimann's avatar
Sebastian Heimann committed
15
    StringChoice, Dict, Timestamp
Sebastian Heimann's avatar
Sebastian Heimann committed
16
from pyrocko import orthodrome as od, gf, trace, guts, util, weeding
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
17
from pyrocko import parimap, model, gui_util
18
from pyrocko.guts_array import Array
Sebastian Heimann's avatar
Sebastian Heimann committed
19
20
21
22
23
24
25
26

from grond import dataset

logger = logging.getLogger('grond.core')

guts_prefix = 'grond'


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def float_or_none(x):
    if x is None:
        return x
    else:
        return float(x)


class Trace(Object):
    pass


class TraceSpectrum(Object):
    network = String.T()
    station = String.T()
    location = String.T()
    channel = String.T()
    deltaf = Float.T(default=1.0)
    fmin = Float.T(default=0.0)
    ydata = Array.T(shape=(None,), dtype=num.complex, serialize_as='list')

47
48
49
50
51
52
    def get_ydata(self):
        return self.ydata

    def get_xdata(self):
        return self.fmin + num.arange(self.ydata.size) * self.deltaf

53

Sebastian Heimann's avatar
Sebastian Heimann committed
54
55
56
57
58
59
60
def mahalanobis_distance(xs, mx, cov):
    imask = num.diag(cov) != 0.
    icov = num.linalg.inv(cov[imask, :][:, imask])
    temp = xs[:, imask] - mx[imask]
    return num.sqrt(num.sum(temp * num.dot(icov, temp.T).T, axis=1))


Sebastian Heimann's avatar
Sebastian Heimann committed
61
62
63
64
65
class Parameter(Object):
    name = String.T()
    unit = String.T(optional=True)
    scale_factor = Float.T(default=1., optional=True)
    scale_unit = String.T(optional=True)
66
    label = String.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
67
68
69
70
71
72
73
74
75

    def __init__(self, *args, **kwargs):
        if len(args) >= 1:
            kwargs['name'] = args[0]
        if len(args) >= 2:
            kwargs['unit'] = args[1]

        Object.__init__(self, **kwargs)

76
77
78
79
80
81
    def get_label(self, with_unit=True):
        l = [self.label or self.name]
        if with_unit:
            unit = self.get_unit_label()
            if unit:
                l.append('[%s]' % unit)
Sebastian Heimann's avatar
Sebastian Heimann committed
82
83
84

        return ' '.join(l)

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    def get_value_label(self, value, format='%(value)g%(unit)s'):
        value = self.scaled(value)
        unit = self.get_unit_suffix()
        return format % dict(value=value, unit=unit)

    def get_unit_label(self):
        if self.scale_unit is not None:
            return self.scale_unit
        elif self.unit:
            return self.unit
        else:
            return None

    def get_unit_suffix(self):
        unit = self.get_unit_label()
        if not unit:
            return ''
        else:
            return ' %s' % unit

Sebastian Heimann's avatar
Sebastian Heimann committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    def scaled(self, x):
        if isinstance(x, tuple):
            return tuple(v/self.scale_factor for v in x)
        if isinstance(x, list):
            return list(v/self.scale_factor for v in x)
        else:
            return x/self.scale_factor


class ADict(dict):
    def __getattr__(self, k):
        return self[k]

    def __setattr__(self, k, v):
        self[k] = v


class Problem(Object):
    name = String.T()
    parameters = List.T(Parameter.T())
    dependants = List.T(Parameter.T())
126
    apply_balancing_weights = Bool.T(default=True)
127
    base_source = gf.Source.T()
Sebastian Heimann's avatar
Sebastian Heimann committed
128
129
130
131
132

    def __init__(self, **kwargs):
        Object.__init__(self, **kwargs)
        self._bootstrap_weights = None
        self._target_weights = None
Sebastian Heimann's avatar
Sebastian Heimann committed
133
        self._engine = None
134
        self._group_mask = None
Sebastian Heimann's avatar
Sebastian Heimann committed
135
136
137

    def get_engine(self):
        return self._engine
Sebastian Heimann's avatar
Sebastian Heimann committed
138
139
140
141
142
143
144
145
146
147
148
149
150

    def copy(self):
        o = copy.copy(self)
        o._bootstrap_weights = None
        o._target_weights = None
        return o

    def parameter_dict(self, x):
        return ADict((p.name, v) for (p, v) in zip(self.parameters, x))

    def parameter_array(self, d):
        return num.array([d[p.name] for p in self.parameters], dtype=num.float)

Sebastian Heimann's avatar
Sebastian Heimann committed
151
152
153
154
    @property
    def parameter_names(self):
        return [p.name for p in self.combined]

Sebastian Heimann's avatar
Sebastian Heimann committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def dump_problem_info(self, dirname):
        fn = op.join(dirname, 'problem.yaml')
        util.ensuredirs(fn)
        guts.dump(self, filename=fn)

    def dump_problem_data(self, dirname, x, ms, ns):
        fn = op.join(dirname, 'x')
        with open(fn, 'ab') as f:
            x.astype('<f8').tofile(f)

        fn = op.join(dirname, 'misfits')
        with open(fn, 'ab') as f:
            ms.astype('<f8').tofile(f)
            ns.astype('<f8').tofile(f)

    def name_to_index(self, name):
        pnames = [p.name for p in self.combined]
        return pnames.index(name)

    @property
    def nparameters(self):
        return len(self.parameters)

    @property
    def ntargets(self):
        return len(self.targets)

    @property
    def ndependants(self):
        return len(self.dependants)

    @property
    def ncombined(self):
        return len(self.parameters) + len(self.dependants)

    @property
    def combined(self):
        return self.parameters + self.dependants

    def make_bootstrap_weights(self, nbootstrap):
        ntargets = len(self.targets)
        ws = num.zeros((nbootstrap, ntargets))
        rstate = num.random.RandomState(23)
        for ibootstrap in xrange(nbootstrap):
            ii = rstate.randint(0, ntargets, size=self.ntargets)
            ws[ibootstrap, :] = num.histogram(
                ii, ntargets, (-0.5, ntargets - 0.5))[0]

        return ws

    def get_bootstrap_weights(self, ibootstrap=None):
        if self._bootstrap_weights is None:
            self._bootstrap_weights = self.make_bootstrap_weights(
                self.nbootstrap)

        if ibootstrap is None:
            return self._bootstrap_weights
        else:
            return self._bootstrap_weights[ibootstrap, :]

Sebastian Heimann's avatar
Sebastian Heimann committed
215
216
217
    def set_engine(self, engine):
        self._engine = engine

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def make_group_mask(self):
        super_group_names = set()
        groups = num.zeros(len(self.targets), dtype=num.int)
        ngroups = 0
        for itarget, target in enumerate(self.targets):
            if target.super_group not in super_group_names:
                super_group_names.add(target.super_group)
                ngroups += 1

            groups[itarget] = ngroups - 1

        return groups, ngroups

    def get_group_mask(self):
        if self._group_mask is None:
            self._group_mask = self.make_group_mask()

        return self._group_mask

Sebastian Heimann's avatar
Sebastian Heimann committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

class ProblemConfig(Object):
    name_template = String.T()
    apply_balancing_weights = Bool.T(default=True)


class Forbidden(Exception):
    pass


class DirectoryAlreadyExists(Exception):
    pass


class GrondError(Exception):
    pass


255
256
257
258
259
260
261
262
263
class DomainChoice(StringChoice):
    choices = [
        'time_domain',
        'frequency_domain',
        'envelope',
        'absolute',
        'cc_max_norm']


Sebastian Heimann's avatar
Sebastian Heimann committed
264
265
266
267
268
269
class InnerMisfitConfig(Object):
    fmin = Float.T()
    fmax = Float.T()
    ffactor = Float.T(default=1.5)
    tmin = gf.Timing.T()
    tmax = gf.Timing.T()
Sebastian Heimann's avatar
Sebastian Heimann committed
270
271
    pick_synthetic_traveltime = gf.Timing.T(optional=True)
    pick_phasename = String.T(optional=True)
272
    domain = DomainChoice.T(default='time_domain')
Sebastian Heimann's avatar
Sebastian Heimann committed
273

274
275
276
    def get_full_frequency_range(self):
        return self.fmin / self.ffactor, self.fmax * self.ffactor

Sebastian Heimann's avatar
Sebastian Heimann committed
277
278
279
280
281
282
283
284
285

class TargetAnalysisResult(Object):
    balancing_weight = Float.T()


class NoAnalysisResults(Exception):
    pass


286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
class MisfitResult(gf.Result):
    misfit_value = Float.T()
    misfit_norm = Float.T()
    processed_obs = Trace.T(optional=True)
    processed_syn = Trace.T(optional=True)
    filtered_obs = Trace.T(optional=True)
    filtered_syn = Trace.T(optional=True)
    spectrum_obs = TraceSpectrum.T(optional=True)
    spectrum_syn = TraceSpectrum.T(optional=True)
    taper = trace.Taper.T(optional=True)
    tobs_shift = Float.T(optional=True)
    tsyn_pick = Timestamp.T(optional=True)
    cc_shift = Float.T(optional=True)
    cc = Trace.T(optional=True)


Sebastian Heimann's avatar
Sebastian Heimann committed
302
303
304
305
306
class MisfitTarget(gf.Target):
    misfit_config = InnerMisfitConfig.T()
    flip_norm = Bool.T(default=False)
    manual_weight = Float.T(default=1.0)
    analysis_result = TargetAnalysisResult.T(optional=True)
307
308
    super_group = gf.StringID.T()
    group = gf.StringID.T()
Sebastian Heimann's avatar
Sebastian Heimann committed
309
310
311
312

    def __init__(self, **kwargs):
        gf.Target.__init__(self, **kwargs)
        self._ds = None
313
        self._result_mode = 'sparse'
314
315
316
317

    def string_id(self):
        return '.'.join(x for x in (
            self.super_group, self.group) + self.codes if x)
Sebastian Heimann's avatar
Sebastian Heimann committed
318
319
320
321
322
323
324
325
326
327
328
329

    def get_plain_target(self):
        d = dict(
            (k, getattr(self, k)) for k in gf.Target.T.propnames)
        return gf.Target(**d)

    def get_dataset(self):
        return self._ds

    def set_dataset(self, ds):
        self._ds = ds

330
331
332
    def set_result_mode(self, result_mode):
        self._result_mode = result_mode

Sebastian Heimann's avatar
Sebastian Heimann committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    def get_combined_weight(self, apply_balancing_weights):
        w = self.manual_weight
        if apply_balancing_weights:
            w *= self.get_balancing_weight()

        return w

    def get_balancing_weight(self):
        if not self.analysis_result:
            raise NoAnalysisResults('no balancing weights available')

        return self.analysis_result.balancing_weight

    def get_taper_params(self, engine, source):
        store = engine.get_store(self.store_id)
        config = self.misfit_config
        tmin_fit = source.time + store.t(config.tmin, source, self)
        tmax_fit = source.time + store.t(config.tmax, source, self)
        tfade = 1.0/config.fmin
        return tmin_fit, tmax_fit, tfade

    def post_process(self, engine, source, tr_syn):

        tr_syn = tr_syn.pyrocko_trace()
        nslc = self.codes

        config = self.misfit_config

        tmin_fit, tmax_fit, tfade = self.get_taper_params(engine, source)

Sebastian Heimann's avatar
Sebastian Heimann committed
363
364
365
        ds = self.get_dataset()

        tobs_shift = 0.0
Sebastian Heimann's avatar
Sebastian Heimann committed
366
        tsyn = None
Sebastian Heimann's avatar
Sebastian Heimann committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        if config.pick_synthetic_traveltime and config.pick_phasename:
            store = engine.get_store(self.store_id)
            tsyn = source.time + store.t(
                config.pick_synthetic_traveltime, source, self)

            marker = ds.get_pick(
                source.name,
                self.codes[:3],
                config.pick_phasename)

            if marker:
                tobs = marker.tmin
                tobs_shift = tobs - tsyn

Sebastian Heimann's avatar
Sebastian Heimann committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        freqlimits = (
            config.fmin/config.ffactor,
            config.fmin, config.fmax,
            config.fmax*config.ffactor)

        tinc_obs = 1.0/config.fmin

        tr_syn.extend(
            tmin_fit - tfade * 2.0,
            tmax_fit + tfade * 2.0,
            fillmethod='repeat')

        tr_syn = tr_syn.transfer(
            freqlimits=freqlimits,
            tfade=tfade)

        tr_syn.chop(tmin_fit - 2*tfade, tmax_fit + 2*tfade)

Sebastian Heimann's avatar
Sebastian Heimann committed
399
400
401
402
        tmin_obs = (math.floor(
            (tmin_fit - tfade + tobs_shift) / tinc_obs) - 1.0) * tinc_obs
        tmax_obs = (math.ceil(
            (tmax_fit + tfade + tobs_shift) / tinc_obs) + 1.0) * tinc_obs
Sebastian Heimann's avatar
Sebastian Heimann committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

        try:
            if nslc[-1] == 'R':
                backazimuth = self.azimuth + 180.
            elif nslc[-1] == 'T':
                backazimuth = self.azimuth + 90.
            else:
                backazimuth = None

            tr_obs = ds.get_waveform(
                nslc,
                tmin=tmin_obs,
                tmax=tmax_obs,
                tfade=tfade,
                freqlimits=freqlimits,
                deltat=tr_syn.deltat,
                cache=True,
                backazimuth=backazimuth)

Sebastian Heimann's avatar
Sebastian Heimann committed
422
423
424
425
            if tobs_shift != 0.0:
                tr_obs = tr_obs.copy()
                tr_obs.shift(-tobs_shift)

426
427
            mr = misfit(
                tr_obs, tr_syn,
Sebastian Heimann's avatar
Sebastian Heimann committed
428
429
430
431
                taper=trace.CosTaper(
                    tmin_fit - tfade,
                    tmin_fit,
                    tmax_fit,
432
433
434
                    tmax_fit + tfade),
                domain=config.domain,
                exponent=2,
435
436
                flip=self.flip_norm,
                result_mode=self._result_mode)
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
437

438
439
            mr.tobs_shift = float(tobs_shift)
            mr.tsyn_pick = float_or_none(tsyn)
Sebastian Heimann's avatar
Sebastian Heimann committed
440

441
            return mr
Sebastian Heimann's avatar
Sebastian Heimann committed
442
443
444
445
446
447

        except dataset.NotFound, e:
            logger.debug(str(e))
            raise gf.SeismosizerError('no waveform data, %s' % str(e))


448
449
def misfit(
        tr_obs, tr_syn, taper, domain, exponent, flip, result_mode='sparse'):
Sebastian Heimann's avatar
Sebastian Heimann committed
450

451
452
453
454
455
456
457
458
459
460
461
    '''
    Calculate misfit between observed and synthetic trace.

    :param tr_obs: observed trace as :py:class:`pyrocko.trace.Trace`
    :param tr_syn: synthetic trace as :py:class:`pyrocko.trace.Trace`
    :param taper: taper applied in timedomain as
        :py:class:`pyrocko.trace.Taper`
    :param domain: how to calculate difference, see :py:class:`DomainChoice`
    :param exponent: exponent of Lx type norms
    :param flip: ``bool``, if set to ``True``, normalization factor is
        computed against *tr_syn* rather than *tr_obs*
462
463
    :param result_mode: ``'full'``, include traces and spectra or ``'sparse'``,
        include only misfit and normalization factor in result
464
465
466

    :returns: object of type :py:class:`MisfitResult`
    '''
Sebastian Heimann's avatar
Sebastian Heimann committed
467

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    trace.assert_same_sampling_rate(tr_obs, tr_syn)
    tmin, tmax = taper.time_span()

    tr_proc_obs, trspec_proc_obs = _process(tr_obs, tmin, tmax, taper, domain)
    tr_proc_syn, trspec_proc_syn = _process(tr_syn, tmin, tmax, taper, domain)

    cc_shift = None
    ctr = None
    if domain in ('time_domain', 'envelope', 'absolute'):
        a, b = tr_proc_syn.ydata, tr_proc_obs.ydata
        if flip:
            b, a = a, b

        m, n = trace.Lx_norm(a, b, norm=exponent)

    elif domain == 'cc_max_norm':

        ctr = trace.correlate(
            tr_proc_syn,
            tr_proc_obs,
            mode='same',
            normalization='normal')

        cc_shift, cc_max = ctr.max()
        m = 0.5 - 0.5 * cc_max
        n = 0.5

    elif domain == 'frequency_domain':
        a, b = trspec_proc_syn.ydata, trspec_proc_obs.ydata
        if flip:
            b, a = a, b

        m, n = trace.Lx_norm(num.abs(a), num.abs(b), norm=exponent)

502
503
504
505
506
507
508
509
510
511
512
513
514
    if result_mode == 'full':
        result = MisfitResult(
            misfit_value=m,
            misfit_norm=n,
            processed_obs=tr_proc_obs,
            processed_syn=tr_proc_syn,
            filtered_obs=tr_obs.copy(),
            filtered_syn=tr_syn,
            spectrum_obs=trspec_proc_obs,
            spectrum_syn=trspec_proc_syn,
            taper=taper,
            cc_shift=cc_shift,
            cc=ctr)
515

516
517
518
519
520
521
    elif result_mode == 'sparse':
        result = MisfitResult(
            misfit_value=m,
            misfit_norm=n)
    else:
        assert False
522
523
524
525
526
527
528
529
530

    return result


def _process(tr, tmin, tmax, taper, domain):
    tr_proc = _extend_extract(tr, tmin, tmax)
    tr_proc.taper(taper)

    df = None
531
    trspec_proc = None
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

    if domain == 'envelope':
        tr_proc = tr_proc.envelope(inplace=False)

    elif domain == 'absolute':
        tr_proc.set_ydata(num.abs(tr_proc.get_ydata()))

    elif domain == 'frequency_domain':
        ndata = tr_proc.ydata.size
        nfft = trace.nextpow2(ndata)
        padded = num.zeros(nfft, dtype=num.float)
        padded[:ndata] = tr_proc.ydata
        spectrum = num.fft.rfft(padded)
        df = 1.0 / (tr_proc.deltat * nfft)

547
548
549
550
551
552
553
554
        trspec_proc = TraceSpectrum(
            network=tr_proc.network,
            station=tr_proc.station,
            location=tr_proc.location,
            channel=tr_proc.channel,
            deltaf=df,
            fmin=0.0,
            ydata=spectrum)
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

    return tr_proc, trspec_proc


def _extend_extract(tr, tmin, tmax):
    deltat = tr.deltat
    itmin_frame = int(math.floor(tmin/deltat))
    itmax_frame = int(math.ceil(tmax/deltat))
    nframe = itmax_frame - itmin_frame
    n = tr.data_len()
    a = num.empty(nframe, dtype=num.float)
    itmin_tr = int(round(tr.tmin / deltat))
    itmax_tr = itmin_tr + n
    icut1 = min(max(0, itmin_tr - itmin_frame), nframe)
    icut2 = min(max(0, itmax_tr - itmin_frame), nframe)
    icut1_tr = min(max(0, icut1 + itmin_frame - itmin_tr), n)
    icut2_tr = min(max(0, icut2 + itmin_frame - itmin_tr), n)
    a[:icut1] = tr.ydata[0]
    a[icut1:icut2] = tr.ydata[icut1_tr:icut2_tr]
    a[icut2:] = tr.ydata[-1]
    tr = tr.copy(data=False)
    tr.tmin = tmin
    tr.set_ydata(a)
    return tr
Sebastian Heimann's avatar
Sebastian Heimann committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616


def xjoin(basepath, path):
    if path is None and basepath is not None:
        return basepath
    elif op.isabs(path) or basepath is None:
        return path
    else:
        return op.join(basepath, path)


def xrelpath(path, start):
    if op.isabs(path):
        return path
    else:
        return op.relpath(path, start)


class Path(String):
    pass


class HasPaths(Object):
    path_prefix = Path.T(optional=True)

    def __init__(self, *args, **kwargs):
        Object.__init__(self, *args, **kwargs)
        self._basepath = None
        self._parent_path_prefix = None

    def set_basepath(self, basepath, parent_path_prefix=None):
        self._basepath = basepath
        self._parent_path_prefix = parent_path_prefix
        for (prop, val) in self.T.ipropvals(self):
            if isinstance(val, HasPaths):
                val.set_basepath(
                    basepath, self.path_prefix or self._parent_path_prefix)

Sebastian Heimann's avatar
Sebastian Heimann committed
617
618
619
620
    def get_basepath(self):
        assert self._basepath is not None
        return self._basepath

Sebastian Heimann's avatar
Sebastian Heimann committed
621
622
623
624
625
626
    def change_basepath(self, new_basepath, parent_path_prefix=None):
        assert self._basepath is not None

        self._parent_path_prefix = parent_path_prefix
        if self.path_prefix or not self._parent_path_prefix:

Sebastian Heimann's avatar
Sebastian Heimann committed
627
628
            self.path_prefix = op.normpath(xjoin(xrelpath(
                self._basepath, new_basepath), self.path_prefix))
Sebastian Heimann's avatar
Sebastian Heimann committed
629
630
631
632
633
634
635
636

        for val in self.T.ivals(self):
            if isinstance(val, HasPaths):
                val.change_basepath(
                    new_basepath, self.path_prefix or self._parent_path_prefix)

        self._basepath = new_basepath

637
    def expand_path(self, path, extra=None):
Sebastian Heimann's avatar
Sebastian Heimann committed
638
639
        assert self._basepath is not None

640
641
642
643
        if extra is None:
            def extra(path):
                return path

Sebastian Heimann's avatar
Sebastian Heimann committed
644
645
646
647
648
        path_prefix = self.path_prefix or self._parent_path_prefix

        if path is None:
            return None
        elif isinstance(path, basestring):
649
650
            return extra(
                op.normpath(xjoin(self._basepath, xjoin(path_prefix, path))))
Sebastian Heimann's avatar
Sebastian Heimann committed
651
652
        else:
            return [
653
654
                extra(
                    op.normpath(xjoin(self._basepath, xjoin(path_prefix, p))))
Sebastian Heimann's avatar
Sebastian Heimann committed
655
656
657
                for p in path]


Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
658
659
660
661
662
663
664
665
666
class RandomResponse(trace.FrequencyResponse):

    scale = Float.T(default=0.0)

    def set_random_state(self, rstate):
        self._rstate = rstate

    def evaluate(self, freqs):
        n = freqs.size
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
667
668
        return 1.0 + freqs*(
            self._rstate.normal(scale=self.scale, size=n) +
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
669
670
671
672
673
674
675
            0.0J * self._rstate.normal(scale=self.scale, size=n))


class SyntheticWaveformNotAvailable(Exception):
    pass


Sebastian Heimann's avatar
Sebastian Heimann committed
676
677
class SyntheticTest(Object):
    inject_solution = Bool.T(default=False)
678
    respect_data_availability = Bool.T(default=False)
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
679
680
    add_real_noise = Bool.T(default=False)
    toffset_real_noise = Float.T(default=-3600.)
Sebastian Heimann's avatar
Sebastian Heimann committed
681
682
683
684
    x = Dict.T(String.T(), Float.T())

    def __init__(self, **kwargs):
        Object.__init__(self, **kwargs)
685
        self._problem = None
Sebastian Heimann's avatar
Sebastian Heimann committed
686
687
        self._synthetics = None

688
689
690
    def set_problem(self, problem):
        self._problem = problem
        self._synthetics = None
Sebastian Heimann's avatar
Sebastian Heimann committed
691
692

    def get_problem(self):
693
694
695
        if self._problem is None:
            raise SyntheticWaveformNotAvailable(
                'SyntheticTest.set_problem() has not been called yet')
Sebastian Heimann's avatar
Sebastian Heimann committed
696

697
        return self._problem
Sebastian Heimann's avatar
Sebastian Heimann committed
698
699
700
701
702
703
704
705

    def get_x(self):
        problem = self.get_problem()
        if self.x:
            x = problem.preconstrain(
                problem.parameter_array(self.x))

        else:
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
706
707
708
709
            x = problem.preconstrain(
                problem.pack(
                    problem.base_source))

Sebastian Heimann's avatar
Sebastian Heimann committed
710
711
712
        return x

    def get_synthetics(self):
713
        problem = self.get_problem()
Sebastian Heimann's avatar
Sebastian Heimann committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        if self._synthetics is None:
            x = self.get_x()
            results = problem.forward(x)
            self._synthetics = results

        return self._synthetics

    def get_waveform(self, nslc, tmin, tmax, tfade=0., freqlimits=None):
        synthetics = self.get_synthetics()
        for result in synthetics:
            if result.trace.codes == nslc:
                tr = result.trace.pyrocko_trace()
                tr.extend(tmin - tfade * 2.0, tmax + tfade * 2.0)
                tr = tr.transfer(tfade=tfade, freqlimits=freqlimits)
                tr.chop(tmin, tmax)
729
                return tr
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
730
731

        return None
Sebastian Heimann's avatar
Sebastian Heimann committed
732
733
734
735


class DatasetConfig(HasPaths):

Sebastian Heimann's avatar
Sebastian Heimann committed
736
737
    stations_path = Path.T(optional=True)
    stations_stationxml_paths = List.T(Path.T())
Sebastian Heimann's avatar
Sebastian Heimann committed
738
739
740
741
742
743
744
745
    events_path = Path.T()
    waveform_paths = List.T(Path.T())
    clippings_path = Path.T(optional=True)
    responses_sacpz_path = Path.T(optional=True)
    responses_stationxml_paths = List.T(Path.T())
    station_corrections_path = Path.T(optional=True)
    apply_correction_factors = Bool.T(default=True)
    apply_correction_delays = Bool.T(default=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
746
    picks_paths = List.T(Path.T())
747
748
749
750
    blacklist = List.T(
        String.T(),
        help='stations/components to be excluded according to their STA, '
             'NET.STA, NET.STA.LOC, or NET.STA.LOC.CHA codes.')
Sebastian Heimann's avatar
flake8    
Sebastian Heimann committed
751
752
753
    whitelist = List.T(
        String.T(),
        optional=True,
754
755
756
757
        help='if not None, list of stations/components to included according '
             'to their STA, NET.STA, NET.STA.LOC, or NET.STA.LOC.CHA codes. '
             'Note: ''when whitelisting on channel level, both, the raw and '
             'the processed channel codes have to be listed.')
Sebastian Heimann's avatar
Sebastian Heimann committed
758
759
760
761
    synthetic_test = SyntheticTest.T(optional=True)

    def __init__(self, *args, **kwargs):
        HasPaths.__init__(self, *args, **kwargs)
762
        self._ds = {}
Sebastian Heimann's avatar
Sebastian Heimann committed
763

Sebastian Heimann's avatar
Sebastian Heimann committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
    def get_event_names(self):
        def extra(path):
            return expand_template(path, dict(
                event_name='*'))

        def fp(path):
            return self.expand_path(path, extra=extra)

        events = []
        for fn in glob.glob(fp(self.events_path)):
            events.extend(model.load_events(filename=fn))

        event_names = [ev.name for ev in events]
        return event_names

779
780
    def get_dataset(self, event_name):
        if event_name not in self._ds:
781
782
783
784
785
786
787
            def extra(path):
                return expand_template(path, dict(
                    event_name=event_name))

            def fp(path):
                return self.expand_path(path, extra=extra)

788
            ds = dataset.Dataset(event_name)
Sebastian Heimann's avatar
Sebastian Heimann committed
789
790
791
792
            ds.add_stations(
                pyrocko_stations_filename=fp(self.stations_path),
                stationxml_filenames=fp(self.stations_stationxml_paths))

Sebastian Heimann's avatar
Sebastian Heimann committed
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
            ds.add_events(filename=fp(self.events_path))
            ds.add_waveforms(paths=fp(self.waveform_paths))
            if self.clippings_path:
                ds.add_clippings(markers_filename=fp(self.clippings_path))

            if self.responses_sacpz_path:
                ds.add_responses(
                    sacpz_dirname=fp(self.responses_sacpz_path))

            if self.responses_stationxml_paths:
                ds.add_responses(
                    stationxml_filenames=fp(self.responses_stationxml_paths))

            if self.station_corrections_path:
                ds.add_station_corrections(
                    filename=fp(self.station_corrections_path))

            ds.apply_correction_factors = self.apply_correction_factors
            ds.apply_correction_delays = self.apply_correction_delays

Sebastian Heimann's avatar
Sebastian Heimann committed
813
814
815
816
            for picks_path in self.picks_paths:
                ds.add_picks(
                    filename=fp(picks_path))

Sebastian Heimann's avatar
Sebastian Heimann committed
817
818
819
820
            ds.add_blacklist(self.blacklist)
            if self.whitelist:
                ds.add_whitelist(self.whitelist)

821
822
            ds.set_synthetic_test(copy.deepcopy(self.synthetic_test))
            self._ds[event_name] = ds
Sebastian Heimann's avatar
Sebastian Heimann committed
823

824
        return self._ds[event_name]
Sebastian Heimann's avatar
Sebastian Heimann committed
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848


def weed(origin, targets, limit, neighborhood=3):

    azimuths = num.zeros(len(targets))
    dists = num.zeros(len(targets))
    for i, target in enumerate(targets):
        _, azimuths[i] = target.azibazi_to(origin)
        dists[i] = target.distance_to(origin)

    badnesses = num.ones(len(targets), dtype=float)
    deleted, meandists_kept = weeding.weed(
        azimuths, dists, badnesses,
        nwanted=limit,
        neighborhood=neighborhood)

    targets_weeded = [
        target for (delete, target) in zip(deleted, targets) if not delete]

    return targets_weeded, meandists_kept, deleted


class TargetConfig(Object):

849
850
    super_group = gf.StringID.T(default='', optional=True)
    group = gf.StringID.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
851
852
    distance_min = Float.T(optional=True)
    distance_max = Float.T(optional=True)
853
854
    depth_min = Float.T(optional=True)
    depth_max = Float.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
855
856
857
858
859
860
861
    limit = Int.T(optional=True)
    channels = List.T(String.T())
    inner_misfit_config = InnerMisfitConfig.T()
    interpolation = gf.InterpolationMethod.T()
    store_id = gf.StringID.T()
    weight = Float.T(default=1.0)

862
    def get_targets(self, ds, event, default_group):
Sebastian Heimann's avatar
Sebastian Heimann committed
863
864
865
866
867
868
869
870
871
872
873

        origin = event

        targets = []
        for st in ds.get_stations():
            for cha in self.channels:
                target = MisfitTarget(
                    quantity='displacement',
                    codes=st.nsl() + (cha,),
                    lat=st.lat,
                    lon=st.lon,
874
                    depth=st.depth,
Sebastian Heimann's avatar
Sebastian Heimann committed
875
876
877
878
                    interpolation=self.interpolation,
                    store_id=self.store_id,
                    misfit_config=self.inner_misfit_config,
                    manual_weight=self.weight,
879
880
                    super_group=self.super_group,
                    group=self.group or default_group)
Sebastian Heimann's avatar
Sebastian Heimann committed
881
882
883
884
885
886
887
888
889

                if self.distance_min is not None and \
                        target.distance_to(origin) < self.distance_min:
                    continue

                if self.distance_max is not None and \
                        target.distance_to(origin) > self.distance_max:
                    continue

890
891
892
893
894
895
896
897
                if self.depth_min is not None and \
                        target.depth < self.depth_min:
                    continue

                if self.depth_max is not None and \
                        target.depth > self.depth_max:
                    continue

Sebastian Heimann's avatar
Sebastian Heimann committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
                azi, _ = target.azibazi_to(origin)
                if cha == 'R':
                    target.azimuth = azi - 180.
                    target.dip = 0.
                elif cha == 'T':
                    target.azimuth = azi - 90.
                    target.dip = 0.
                elif cha == 'Z':
                    target.azimuth = 0.
                    target.dip = -90.

                target.set_dataset(ds)
                targets.append(target)

        if self.limit:
            return weed(origin, targets, self.limit)[0]
        else:
            return targets


class AnalyserConfig(Object):
    niter = Int.T(default=1000)


class SamplerDistributionChoice(StringChoice):
    choices = ['multivariate_normal', 'normal']


class SolverConfig(Object):
    niter_uniform = Int.T(default=1000)
Sebastian Heimann's avatar
Sebastian Heimann committed
928
    niter_transition = Int.T(default=0)
Sebastian Heimann's avatar
Sebastian Heimann committed
929
930
931
932
    niter_explorative = Int.T(default=10000)
    niter_non_explorative = Int.T(default=0)
    sampler_distribution = SamplerDistributionChoice.T(
        default='multivariate_normal')
933
    scatter_scale_transition = Float.T(default=2.0)
934
    scatter_scale = Float.T(default=1.0)
Sebastian Heimann's avatar
Sebastian Heimann committed
935
936
937
938

    def get_solver_kwargs(self):
        return dict(
            niter_uniform=self.niter_uniform,
Sebastian Heimann's avatar
Sebastian Heimann committed
939
            niter_transition=self.niter_transition,
Sebastian Heimann's avatar
Sebastian Heimann committed
940
941
            niter_explorative=self.niter_explorative,
            niter_non_explorative=self.niter_non_explorative,
942
            sampler_distribution=self.sampler_distribution,
943
            scatter_scale_transition=self.scatter_scale_transition,
944
            scatter_scale=self.scatter_scale)
Sebastian Heimann's avatar
Sebastian Heimann committed
945
946


Sebastian Heimann's avatar
Sebastian Heimann committed
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
class EngineConfig(HasPaths):
    gf_stores_from_pyrocko_config = Bool.T(default=True)
    gf_store_superdirs = List.T(Path.T())
    gf_store_dirs = List.T(Path.T())

    def __init__(self, *args, **kwargs):
        HasPaths.__init__(self, *args, **kwargs)
        self._engine = None

    def get_engine(self):
        if self._engine is None:
            fp = self.expand_path
            self._engine = gf.LocalEngine(
                use_config=self.gf_stores_from_pyrocko_config,
                store_superdirs=fp(self.gf_store_superdirs),
                store_dirs=fp(self.gf_store_dirs))

        return self._engine


Sebastian Heimann's avatar
Sebastian Heimann committed
967
968
969
970
971
972
973
class Config(HasPaths):
    rundir_template = Path.T()
    dataset_config = DatasetConfig.T()
    target_configs = List.T(TargetConfig.T())
    problem_config = ProblemConfig.T()
    analyser_config = AnalyserConfig.T(default=AnalyserConfig.D())
    solver_config = SolverConfig.T(default=SolverConfig.D())
Sebastian Heimann's avatar
Sebastian Heimann committed
974
    engine_config = EngineConfig.T(default=EngineConfig.D())
Sebastian Heimann's avatar
Sebastian Heimann committed
975
976
977
978

    def __init__(self, *args, **kwargs):
        HasPaths.__init__(self, *args, **kwargs)

Sebastian Heimann's avatar
Sebastian Heimann committed
979
980
981
    def get_event_names(self):
        return self.dataset_config.get_event_names()

982
983
    def get_dataset(self, event_name):
        return self.dataset_config.get_dataset(event_name)
Sebastian Heimann's avatar
Sebastian Heimann committed
984
985

    def get_targets(self, event):
986
        ds = self.get_dataset(event.name)
Sebastian Heimann's avatar
Sebastian Heimann committed
987
988
989
990
991
992
993
994

        targets = []
        for igroup, target_config in enumerate(self.target_configs):
            targets.extend(target_config.get_targets(
                ds, event, 'group_%i' % igroup))

        return targets

995
996
997
998
999
1000
    def setup_modelling_environment(self, problem):
        problem.set_engine(self.engine_config.get_engine())
        ds = self.get_dataset(problem.base_source.name)
        synt = ds.synthetic_test
        if synt:
            synt.set_problem(problem)