core.py 71.9 KB
Newer Older
Sebastian Heimann's avatar
Sebastian Heimann committed
1
2
3
4
5
6
7
import math
import os
import sys
import logging
import time
import copy
import shutil
Sebastian Heimann's avatar
Sebastian Heimann committed
8
import glob
Sebastian Heimann's avatar
Sebastian Heimann committed
9
import os.path as op
10
from string import Template
Sebastian Heimann's avatar
Sebastian Heimann committed
11
12
13
14

import numpy as num

from pyrocko.guts import load, Object, String, Float, Int, Bool, List, \
Sebastian Heimann's avatar
Sebastian Heimann committed
15
    StringChoice, Dict, Timestamp
Sebastian Heimann's avatar
Sebastian Heimann committed
16
from pyrocko import orthodrome as od, gf, trace, guts, util, weeding
17
from pyrocko import parimap, model, marker as pmarker
18
from pyrocko.guts_array import Array
Sebastian Heimann's avatar
Sebastian Heimann committed
19
20
21
22
23
24
25
26

from grond import dataset

logger = logging.getLogger('grond.core')

guts_prefix = 'grond'


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def float_or_none(x):
    if x is None:
        return x
    else:
        return float(x)


class Trace(Object):
    pass


class TraceSpectrum(Object):
    network = String.T()
    station = String.T()
    location = String.T()
    channel = String.T()
    deltaf = Float.T(default=1.0)
    fmin = Float.T(default=0.0)
    ydata = Array.T(shape=(None,), dtype=num.complex, serialize_as='list')

47
48
49
50
51
52
    def get_ydata(self):
        return self.ydata

    def get_xdata(self):
        return self.fmin + num.arange(self.ydata.size) * self.deltaf

53

Sebastian Heimann's avatar
Sebastian Heimann committed
54
55
56
57
58
59
60
def mahalanobis_distance(xs, mx, cov):
    imask = num.diag(cov) != 0.
    icov = num.linalg.inv(cov[imask, :][:, imask])
    temp = xs[:, imask] - mx[imask]
    return num.sqrt(num.sum(temp * num.dot(icov, temp.T).T, axis=1))


Sebastian Heimann's avatar
Sebastian Heimann committed
61
62
63
64
65
class Parameter(Object):
    name = String.T()
    unit = String.T(optional=True)
    scale_factor = Float.T(default=1., optional=True)
    scale_unit = String.T(optional=True)
66
    label = String.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
67
68
69
70
71
72
73
74
75

    def __init__(self, *args, **kwargs):
        if len(args) >= 1:
            kwargs['name'] = args[0]
        if len(args) >= 2:
            kwargs['unit'] = args[1]

        Object.__init__(self, **kwargs)

76
77
78
79
80
81
    def get_label(self, with_unit=True):
        l = [self.label or self.name]
        if with_unit:
            unit = self.get_unit_label()
            if unit:
                l.append('[%s]' % unit)
Sebastian Heimann's avatar
Sebastian Heimann committed
82
83
84

        return ' '.join(l)

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    def get_value_label(self, value, format='%(value)g%(unit)s'):
        value = self.scaled(value)
        unit = self.get_unit_suffix()
        return format % dict(value=value, unit=unit)

    def get_unit_label(self):
        if self.scale_unit is not None:
            return self.scale_unit
        elif self.unit:
            return self.unit
        else:
            return None

    def get_unit_suffix(self):
        unit = self.get_unit_label()
        if not unit:
            return ''
        else:
            return ' %s' % unit

Sebastian Heimann's avatar
Sebastian Heimann committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    def scaled(self, x):
        if isinstance(x, tuple):
            return tuple(v/self.scale_factor for v in x)
        if isinstance(x, list):
            return list(v/self.scale_factor for v in x)
        else:
            return x/self.scale_factor


class ADict(dict):
    def __getattr__(self, k):
        return self[k]

    def __setattr__(self, k, v):
        self[k] = v


class Problem(Object):
    name = String.T()
    parameters = List.T(Parameter.T())
    dependants = List.T(Parameter.T())
126
    apply_balancing_weights = Bool.T(default=True)
127
    base_source = gf.Source.T()
Sebastian Heimann's avatar
Sebastian Heimann committed
128
129
130
131
132

    def __init__(self, **kwargs):
        Object.__init__(self, **kwargs)
        self._bootstrap_weights = None
        self._target_weights = None
Sebastian Heimann's avatar
Sebastian Heimann committed
133
        self._engine = None
134
        self._group_mask = None
Sebastian Heimann's avatar
Sebastian Heimann committed
135
136
137

    def get_engine(self):
        return self._engine
Sebastian Heimann's avatar
Sebastian Heimann committed
138
139
140
141
142
143
144
145
146
147
148
149
150

    def copy(self):
        o = copy.copy(self)
        o._bootstrap_weights = None
        o._target_weights = None
        return o

    def parameter_dict(self, x):
        return ADict((p.name, v) for (p, v) in zip(self.parameters, x))

    def parameter_array(self, d):
        return num.array([d[p.name] for p in self.parameters], dtype=num.float)

Sebastian Heimann's avatar
Sebastian Heimann committed
151
152
153
154
    @property
    def parameter_names(self):
        return [p.name for p in self.combined]

Sebastian Heimann's avatar
Sebastian Heimann committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def dump_problem_info(self, dirname):
        fn = op.join(dirname, 'problem.yaml')
        util.ensuredirs(fn)
        guts.dump(self, filename=fn)

    def dump_problem_data(self, dirname, x, ms, ns):
        fn = op.join(dirname, 'x')
        with open(fn, 'ab') as f:
            x.astype('<f8').tofile(f)

        fn = op.join(dirname, 'misfits')
        with open(fn, 'ab') as f:
            ms.astype('<f8').tofile(f)
            ns.astype('<f8').tofile(f)

    def name_to_index(self, name):
        pnames = [p.name for p in self.combined]
        return pnames.index(name)

    @property
    def nparameters(self):
        return len(self.parameters)

    @property
    def ntargets(self):
        return len(self.targets)

    @property
    def ndependants(self):
        return len(self.dependants)

    @property
    def ncombined(self):
        return len(self.parameters) + len(self.dependants)

    @property
    def combined(self):
        return self.parameters + self.dependants

    def make_bootstrap_weights(self, nbootstrap):
        ntargets = len(self.targets)
        ws = num.zeros((nbootstrap, ntargets))
        rstate = num.random.RandomState(23)
        for ibootstrap in xrange(nbootstrap):
            ii = rstate.randint(0, ntargets, size=self.ntargets)
            ws[ibootstrap, :] = num.histogram(
                ii, ntargets, (-0.5, ntargets - 0.5))[0]

        return ws

    def get_bootstrap_weights(self, ibootstrap=None):
        if self._bootstrap_weights is None:
            self._bootstrap_weights = self.make_bootstrap_weights(
                self.nbootstrap)

        if ibootstrap is None:
            return self._bootstrap_weights
        else:
            return self._bootstrap_weights[ibootstrap, :]

Sebastian Heimann's avatar
Sebastian Heimann committed
215
216
217
    def set_engine(self, engine):
        self._engine = engine

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def make_group_mask(self):
        super_group_names = set()
        groups = num.zeros(len(self.targets), dtype=num.int)
        ngroups = 0
        for itarget, target in enumerate(self.targets):
            if target.super_group not in super_group_names:
                super_group_names.add(target.super_group)
                ngroups += 1

            groups[itarget] = ngroups - 1

        return groups, ngroups

    def get_group_mask(self):
        if self._group_mask is None:
            self._group_mask = self.make_group_mask()

        return self._group_mask

Sebastian Heimann's avatar
Sebastian Heimann committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

class ProblemConfig(Object):
    name_template = String.T()
    apply_balancing_weights = Bool.T(default=True)


class Forbidden(Exception):
    pass


class DirectoryAlreadyExists(Exception):
    pass


class GrondError(Exception):
    pass


255
256
257
258
259
260
261
262
263
class DomainChoice(StringChoice):
    choices = [
        'time_domain',
        'frequency_domain',
        'envelope',
        'absolute',
        'cc_max_norm']


Sebastian Heimann's avatar
Sebastian Heimann committed
264
265
266
267
class InnerMisfitConfig(Object):
    fmin = Float.T()
    fmax = Float.T()
    ffactor = Float.T(default=1.5)
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    tmin = gf.Timing.T(
        help='Start of main time window used for waveform fitting.')
    tmax = gf.Timing.T(
        help='End of main time window used for waveform fitting.')
    tfade = Float.T(
        optional=True,
        help='Decay time of taper prepended and appended to main time window '
             'used for waveform fitting [s].')
    pick_synthetic_traveltime = gf.Timing.T(
        optional=True,
        help='Synthetic phase arrival definition for alignment of observed '
             'and synthetic traces.')
    pick_phasename = String.T(
        optional=True,
        help='Name of picked phase for alignment of observed and synthetic '
             'traces.')
    domain = DomainChoice.T(
        default='time_domain',
        help='Type of data characteristic to be fitted.\n\nAvailable choices '
             'are: %s' % ', '.join("``'%s'``" % s
                                   for s in DomainChoice.choices))
    tautoshift_max = Float.T(
        default=0.0,
        help='If non-zero, allow synthetic and observed traces to be shifted '
             'against each other by up to +/- the given value [s].')
    autoshift_penalty_max = Float.T(
        default=0.0,
        help='If non-zero, a penalty misfit is added for non-zero shift '
             'values.\n\nThe penalty value is computed as '
             '``autoshift_penalty_max * normalization_factor * tautoshift**2 '
             '/ tautoshift_max**2``')
Sebastian Heimann's avatar
Sebastian Heimann committed
299

300
301
302
    def get_full_frequency_range(self):
        return self.fmin / self.ffactor, self.fmax * self.ffactor

Sebastian Heimann's avatar
Sebastian Heimann committed
303
304
305
306
307
308
309
310
311

class TargetAnalysisResult(Object):
    balancing_weight = Float.T()


class NoAnalysisResults(Exception):
    pass


312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
class MisfitResult(gf.Result):
    misfit_value = Float.T()
    misfit_norm = Float.T()
    processed_obs = Trace.T(optional=True)
    processed_syn = Trace.T(optional=True)
    filtered_obs = Trace.T(optional=True)
    filtered_syn = Trace.T(optional=True)
    spectrum_obs = TraceSpectrum.T(optional=True)
    spectrum_syn = TraceSpectrum.T(optional=True)
    taper = trace.Taper.T(optional=True)
    tobs_shift = Float.T(optional=True)
    tsyn_pick = Timestamp.T(optional=True)
    cc_shift = Float.T(optional=True)
    cc = Trace.T(optional=True)


Sebastian Heimann's avatar
Sebastian Heimann committed
328
329
330
331
332
class MisfitTarget(gf.Target):
    misfit_config = InnerMisfitConfig.T()
    flip_norm = Bool.T(default=False)
    manual_weight = Float.T(default=1.0)
    analysis_result = TargetAnalysisResult.T(optional=True)
333
334
    super_group = gf.StringID.T()
    group = gf.StringID.T()
Sebastian Heimann's avatar
Sebastian Heimann committed
335
336
337
338

    def __init__(self, **kwargs):
        gf.Target.__init__(self, **kwargs)
        self._ds = None
339
        self._result_mode = 'sparse'
340
341
342
343

    def string_id(self):
        return '.'.join(x for x in (
            self.super_group, self.group) + self.codes if x)
Sebastian Heimann's avatar
Sebastian Heimann committed
344
345
346
347
348
349
350
351
352
353
354
355

    def get_plain_target(self):
        d = dict(
            (k, getattr(self, k)) for k in gf.Target.T.propnames)
        return gf.Target(**d)

    def get_dataset(self):
        return self._ds

    def set_dataset(self, ds):
        self._ds = ds

356
357
358
    def set_result_mode(self, result_mode):
        self._result_mode = result_mode

Sebastian Heimann's avatar
Sebastian Heimann committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    def get_combined_weight(self, apply_balancing_weights):
        w = self.manual_weight
        if apply_balancing_weights:
            w *= self.get_balancing_weight()

        return w

    def get_balancing_weight(self):
        if not self.analysis_result:
            raise NoAnalysisResults('no balancing weights available')

        return self.analysis_result.balancing_weight

    def get_taper_params(self, engine, source):
        store = engine.get_store(self.store_id)
        config = self.misfit_config
        tmin_fit = source.time + store.t(config.tmin, source, self)
        tmax_fit = source.time + store.t(config.tmax, source, self)
        tfade = 1.0/config.fmin
378
379
380
381
382
383
        if config.tfade is None:
            tfade_taper = tfade
        else:
            tfade_taper = config.tfade

        return tmin_fit, tmax_fit, tfade, tfade_taper
Sebastian Heimann's avatar
Sebastian Heimann committed
384

385
    def get_backazimuth_for_waveform(self):
Sebastian Heimann's avatar
Sebastian Heimann committed
386
        nslc = self.codes
387
388
389
390
391
392
        if nslc[-1] == 'R':
            backazimuth = self.azimuth + 180.
        elif nslc[-1] == 'T':
            backazimuth = self.azimuth + 90.
        else:
            backazimuth = None
Sebastian Heimann's avatar
Sebastian Heimann committed
393

394
395
396
        return backazimuth

    def get_freqlimits(self):
Sebastian Heimann's avatar
Sebastian Heimann committed
397
398
        config = self.misfit_config

399
400
401
402
        return (
            config.fmin/config.ffactor,
            config.fmin, config.fmax,
            config.fmax*config.ffactor)
Sebastian Heimann's avatar
Sebastian Heimann committed
403

404
405
406
407
    def get_pick_shift(self, engine, source):
        config = self.misfit_config
        tobs = None
        tsyn = None
Sebastian Heimann's avatar
Sebastian Heimann committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        ds = self.get_dataset()

        if config.pick_synthetic_traveltime and config.pick_phasename:
            store = engine.get_store(self.store_id)
            tsyn = source.time + store.t(
                config.pick_synthetic_traveltime, source, self)

            marker = ds.get_pick(
                source.name,
                self.codes[:3],
                config.pick_phasename)

            if marker:
                tobs = marker.tmin

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
        return tobs, tsyn

    def get_cutout_timespan(self, tmin, tmax, tfade):
        tinc_obs = 1.0 / self.misfit_config.fmin

        tmin_obs = (math.floor(
            (tmin - tfade) / tinc_obs) - 1.0) * tinc_obs
        tmax_obs = (math.ceil(
            (tmax + tfade) / tinc_obs) + 1.0) * tinc_obs

        return tmin_obs, tmax_obs

    def post_process(self, engine, source, tr_syn):

        tr_syn = tr_syn.pyrocko_trace()
        nslc = self.codes

        config = self.misfit_config

        tmin_fit, tmax_fit, tfade, tfade_taper = \
            self.get_taper_params(engine, source)

        ds = self.get_dataset()
Sebastian Heimann's avatar
Sebastian Heimann committed
446

447
448
449
450
451
        tobs, tsyn = self.get_pick_shift(engine, source)
        if None not in (tobs, tsyn):
            tobs_shift = tobs - tsyn
        else:
            tobs_shift = 0.0
Sebastian Heimann's avatar
Sebastian Heimann committed
452
453
454
455
456
457

        tr_syn.extend(
            tmin_fit - tfade * 2.0,
            tmax_fit + tfade * 2.0,
            fillmethod='repeat')

458
459
        freqlimits = self.get_freqlimits()

Sebastian Heimann's avatar
Sebastian Heimann committed
460
461
462
463
464
465
        tr_syn = tr_syn.transfer(
            freqlimits=freqlimits,
            tfade=tfade)

        tr_syn.chop(tmin_fit - 2*tfade, tmax_fit + 2*tfade)

466
467
        tmin_obs, tmax_obs = self.get_cutout_timespan(
            tmin_fit+tobs_shift, tmax_fit+tobs_shift, tfade)
Sebastian Heimann's avatar
Sebastian Heimann committed
468
469
470
471
472
473
474
475
476
477

        try:
            tr_obs = ds.get_waveform(
                nslc,
                tmin=tmin_obs,
                tmax=tmax_obs,
                tfade=tfade,
                freqlimits=freqlimits,
                deltat=tr_syn.deltat,
                cache=True,
478
                backazimuth=self.get_backazimuth_for_waveform())
Sebastian Heimann's avatar
Sebastian Heimann committed
479

Sebastian Heimann's avatar
Sebastian Heimann committed
480
481
482
483
            if tobs_shift != 0.0:
                tr_obs = tr_obs.copy()
                tr_obs.shift(-tobs_shift)

484
485
            mr = misfit(
                tr_obs, tr_syn,
Sebastian Heimann's avatar
Sebastian Heimann committed
486
                taper=trace.CosTaper(
487
                    tmin_fit - tfade_taper,
Sebastian Heimann's avatar
Sebastian Heimann committed
488
489
                    tmin_fit,
                    tmax_fit,
490
                    tmax_fit + tfade_taper),
491
492
                domain=config.domain,
                exponent=2,
493
                flip=self.flip_norm,
494
495
496
                result_mode=self._result_mode,
                tautoshift_max=config.tautoshift_max,
                autoshift_penalty_max=config.autoshift_penalty_max)
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
497

498
499
            mr.tobs_shift = float(tobs_shift)
            mr.tsyn_pick = float_or_none(tsyn)
Sebastian Heimann's avatar
Sebastian Heimann committed
500

501
            return mr
Sebastian Heimann's avatar
Sebastian Heimann committed
502
503
504
505
506
507

        except dataset.NotFound, e:
            logger.debug(str(e))
            raise gf.SeismosizerError('no waveform data, %s' % str(e))


508
def misfit(
509
510
        tr_obs, tr_syn, taper, domain, exponent, tautoshift_max,
        autoshift_penalty_max, flip, result_mode='sparse'):
Sebastian Heimann's avatar
Sebastian Heimann committed
511

512
513
514
515
516
517
518
519
520
    '''
    Calculate misfit between observed and synthetic trace.

    :param tr_obs: observed trace as :py:class:`pyrocko.trace.Trace`
    :param tr_syn: synthetic trace as :py:class:`pyrocko.trace.Trace`
    :param taper: taper applied in timedomain as
        :py:class:`pyrocko.trace.Taper`
    :param domain: how to calculate difference, see :py:class:`DomainChoice`
    :param exponent: exponent of Lx type norms
521
522
523
524
525
526
    :param tautoshift_max: if non-zero, return lowest misfit when traces are
        allowed to shift against each other by up to +/- ``tautoshift_max``
    :param autoshift_penalty_max: if non-zero, a penalty misfit is added for
        for non-zero shift values. The penalty value is
        ``autoshift_penalty_max * normalization_factor * \
tautoshift**2 / tautoshift_max**2``
527
528
    :param flip: ``bool``, if set to ``True``, normalization factor is
        computed against *tr_syn* rather than *tr_obs*
529
530
    :param result_mode: ``'full'``, include traces and spectra or ``'sparse'``,
        include only misfit and normalization factor in result
531
532
533

    :returns: object of type :py:class:`MisfitResult`
    '''
Sebastian Heimann's avatar
Sebastian Heimann committed
534

535
536
537
538
539
540
541
542
    trace.assert_same_sampling_rate(tr_obs, tr_syn)
    tmin, tmax = taper.time_span()

    tr_proc_obs, trspec_proc_obs = _process(tr_obs, tmin, tmax, taper, domain)
    tr_proc_syn, trspec_proc_syn = _process(tr_syn, tmin, tmax, taper, domain)

    cc_shift = None
    ctr = None
543
    deltat = tr_proc_obs.deltat
544
545
546
547
548
    if domain in ('time_domain', 'envelope', 'absolute'):
        a, b = tr_proc_syn.ydata, tr_proc_obs.ydata
        if flip:
            b, a = a, b

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
        nshift_max = max(0, min(a.size-1,
                                int(math.floor(tautoshift_max / deltat))))

        if nshift_max == 0:
            m, n = trace.Lx_norm(a, b, norm=exponent)
        else:
            mns = []
            for ishift in xrange(-nshift_max, nshift_max+1):
                if ishift < 0:
                    a_cut = a[-ishift:]
                    b_cut = b[:ishift]
                elif ishift == 0:
                    a_cut = a
                    b_cut = b
                elif ishift > 0:
                    a_cut = a[:-ishift]
                    b_cut = b[ishift:]

                mns.append(trace.Lx_norm(a_cut, b_cut, norm=exponent))

            ms, ns = num.array(mns).T

            iarg = num.argmin(ms)
            tshift = (iarg-nshift_max)*deltat

            m, n = ms[iarg], ns[iarg]
            m += autoshift_penalty_max * n * tshift**2 / tautoshift_max**2
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

    elif domain == 'cc_max_norm':

        ctr = trace.correlate(
            tr_proc_syn,
            tr_proc_obs,
            mode='same',
            normalization='normal')

        cc_shift, cc_max = ctr.max()
        m = 0.5 - 0.5 * cc_max
        n = 0.5

    elif domain == 'frequency_domain':
        a, b = trspec_proc_syn.ydata, trspec_proc_obs.ydata
        if flip:
            b, a = a, b

        m, n = trace.Lx_norm(num.abs(a), num.abs(b), norm=exponent)

596
597
598
599
600
601
602
603
604
605
606
607
608
    if result_mode == 'full':
        result = MisfitResult(
            misfit_value=m,
            misfit_norm=n,
            processed_obs=tr_proc_obs,
            processed_syn=tr_proc_syn,
            filtered_obs=tr_obs.copy(),
            filtered_syn=tr_syn,
            spectrum_obs=trspec_proc_obs,
            spectrum_syn=trspec_proc_syn,
            taper=taper,
            cc_shift=cc_shift,
            cc=ctr)
609

610
611
612
613
614
615
    elif result_mode == 'sparse':
        result = MisfitResult(
            misfit_value=m,
            misfit_norm=n)
    else:
        assert False
616
617
618
619
620
621
622
623
624

    return result


def _process(tr, tmin, tmax, taper, domain):
    tr_proc = _extend_extract(tr, tmin, tmax)
    tr_proc.taper(taper)

    df = None
625
    trspec_proc = None
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

    if domain == 'envelope':
        tr_proc = tr_proc.envelope(inplace=False)

    elif domain == 'absolute':
        tr_proc.set_ydata(num.abs(tr_proc.get_ydata()))

    elif domain == 'frequency_domain':
        ndata = tr_proc.ydata.size
        nfft = trace.nextpow2(ndata)
        padded = num.zeros(nfft, dtype=num.float)
        padded[:ndata] = tr_proc.ydata
        spectrum = num.fft.rfft(padded)
        df = 1.0 / (tr_proc.deltat * nfft)

641
642
643
644
645
646
647
648
        trspec_proc = TraceSpectrum(
            network=tr_proc.network,
            station=tr_proc.station,
            location=tr_proc.location,
            channel=tr_proc.channel,
            deltaf=df,
            fmin=0.0,
            ydata=spectrum)
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

    return tr_proc, trspec_proc


def _extend_extract(tr, tmin, tmax):
    deltat = tr.deltat
    itmin_frame = int(math.floor(tmin/deltat))
    itmax_frame = int(math.ceil(tmax/deltat))
    nframe = itmax_frame - itmin_frame
    n = tr.data_len()
    a = num.empty(nframe, dtype=num.float)
    itmin_tr = int(round(tr.tmin / deltat))
    itmax_tr = itmin_tr + n
    icut1 = min(max(0, itmin_tr - itmin_frame), nframe)
    icut2 = min(max(0, itmax_tr - itmin_frame), nframe)
    icut1_tr = min(max(0, icut1 + itmin_frame - itmin_tr), n)
    icut2_tr = min(max(0, icut2 + itmin_frame - itmin_tr), n)
    a[:icut1] = tr.ydata[0]
    a[icut1:icut2] = tr.ydata[icut1_tr:icut2_tr]
    a[icut2:] = tr.ydata[-1]
    tr = tr.copy(data=False)
    tr.tmin = tmin
    tr.set_ydata(a)
    return tr
Sebastian Heimann's avatar
Sebastian Heimann committed
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710


def xjoin(basepath, path):
    if path is None and basepath is not None:
        return basepath
    elif op.isabs(path) or basepath is None:
        return path
    else:
        return op.join(basepath, path)


def xrelpath(path, start):
    if op.isabs(path):
        return path
    else:
        return op.relpath(path, start)


class Path(String):
    pass


class HasPaths(Object):
    path_prefix = Path.T(optional=True)

    def __init__(self, *args, **kwargs):
        Object.__init__(self, *args, **kwargs)
        self._basepath = None
        self._parent_path_prefix = None

    def set_basepath(self, basepath, parent_path_prefix=None):
        self._basepath = basepath
        self._parent_path_prefix = parent_path_prefix
        for (prop, val) in self.T.ipropvals(self):
            if isinstance(val, HasPaths):
                val.set_basepath(
                    basepath, self.path_prefix or self._parent_path_prefix)

Sebastian Heimann's avatar
Sebastian Heimann committed
711
712
713
714
    def get_basepath(self):
        assert self._basepath is not None
        return self._basepath

Sebastian Heimann's avatar
Sebastian Heimann committed
715
716
717
718
719
720
    def change_basepath(self, new_basepath, parent_path_prefix=None):
        assert self._basepath is not None

        self._parent_path_prefix = parent_path_prefix
        if self.path_prefix or not self._parent_path_prefix:

Sebastian Heimann's avatar
Sebastian Heimann committed
721
722
            self.path_prefix = op.normpath(xjoin(xrelpath(
                self._basepath, new_basepath), self.path_prefix))
Sebastian Heimann's avatar
Sebastian Heimann committed
723
724
725
726
727
728
729
730

        for val in self.T.ivals(self):
            if isinstance(val, HasPaths):
                val.change_basepath(
                    new_basepath, self.path_prefix or self._parent_path_prefix)

        self._basepath = new_basepath

731
    def expand_path(self, path, extra=None):
Sebastian Heimann's avatar
Sebastian Heimann committed
732
733
        assert self._basepath is not None

734
735
736
737
        if extra is None:
            def extra(path):
                return path

Sebastian Heimann's avatar
Sebastian Heimann committed
738
739
740
741
742
        path_prefix = self.path_prefix or self._parent_path_prefix

        if path is None:
            return None
        elif isinstance(path, basestring):
743
744
            return extra(
                op.normpath(xjoin(self._basepath, xjoin(path_prefix, path))))
Sebastian Heimann's avatar
Sebastian Heimann committed
745
746
        else:
            return [
747
748
                extra(
                    op.normpath(xjoin(self._basepath, xjoin(path_prefix, p))))
Sebastian Heimann's avatar
Sebastian Heimann committed
749
750
751
                for p in path]


Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
752
753
754
755
756
757
758
759
760
class RandomResponse(trace.FrequencyResponse):

    scale = Float.T(default=0.0)

    def set_random_state(self, rstate):
        self._rstate = rstate

    def evaluate(self, freqs):
        n = freqs.size
761
        return 1.0 + (
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
762
            self._rstate.normal(scale=self.scale, size=n) +
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
763
764
765
766
767
768
769
            0.0J * self._rstate.normal(scale=self.scale, size=n))


class SyntheticWaveformNotAvailable(Exception):
    pass


Sebastian Heimann's avatar
Sebastian Heimann committed
770
771
class SyntheticTest(Object):
    inject_solution = Bool.T(default=False)
772
    respect_data_availability = Bool.T(default=False)
773
774
    real_noise_scale = Float.T(default=0.0)
    white_noise_scale = Float.T(default=0.0)
775
    relative_white_noise_scale = Float.T(default=0.0)
776
    random_response_scale = Float.T(default=0.0)
777
778
    real_noise_toffset = Float.T(default=-3600.)
    random_seed = Int.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
779
780
781
782
    x = Dict.T(String.T(), Float.T())

    def __init__(self, **kwargs):
        Object.__init__(self, **kwargs)
783
        self._problem = None
Sebastian Heimann's avatar
Sebastian Heimann committed
784
785
        self._synthetics = None

786
787
788
    def set_problem(self, problem):
        self._problem = problem
        self._synthetics = None
Sebastian Heimann's avatar
Sebastian Heimann committed
789
790

    def get_problem(self):
791
792
793
        if self._problem is None:
            raise SyntheticWaveformNotAvailable(
                'SyntheticTest.set_problem() has not been called yet')
Sebastian Heimann's avatar
Sebastian Heimann committed
794

795
        return self._problem
Sebastian Heimann's avatar
Sebastian Heimann committed
796
797
798
799
800
801
802
803

    def get_x(self):
        problem = self.get_problem()
        if self.x:
            x = problem.preconstrain(
                problem.parameter_array(self.x))

        else:
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
804
805
806
807
            x = problem.preconstrain(
                problem.pack(
                    problem.base_source))

Sebastian Heimann's avatar
Sebastian Heimann committed
808
809
810
        return x

    def get_synthetics(self):
811
        problem = self.get_problem()
Sebastian Heimann's avatar
Sebastian Heimann committed
812
813
814
        if self._synthetics is None:
            x = self.get_x()
            results = problem.forward(x)
815
816
817
818
            synthetics = {}
            for iresult, result in enumerate(results):
                tr = result.trace.pyrocko_trace()
                tfade = tr.tmax - tr.tmin
819
                tr_orig = tr.copy()
820
                tr.extend(tr.tmin - tfade, tr.tmax + tfade)
821
822
                rstate = num.random.RandomState(
                    (self.random_seed or 0) + iresult)
823
824
825
826
827
828
829
830

                if self.random_response_scale != 0:
                    tf = RandomResponse(scale=self.random_response_scale)
                    tf.set_random_state(rstate)
                    tr = tr.transfer(
                        tfade=tfade,
                        transfer_function=tf)

831
832
833
                if self.white_noise_scale != 0.0:
                    u = rstate.normal(
                        scale=self.white_noise_scale,
834
835
836
837
                        size=tr.data_len())

                    tr.ydata += u

838
839
840
841
842
843
844
845
                if self.relative_white_noise_scale != 0.0:
                    u = rstate.normal(
                        scale=self.relative_white_noise_scale * num.std(
                            tr_orig.ydata),
                        size=tr.data_len())

                    tr.ydata += u

846
847
848
                synthetics[result.trace.codes] = tr

            self._synthetics = synthetics
Sebastian Heimann's avatar
Sebastian Heimann committed
849
850
851
852
853

        return self._synthetics

    def get_waveform(self, nslc, tmin, tmax, tfade=0., freqlimits=None):
        synthetics = self.get_synthetics()
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
854

855
856
857
858
859
860
861
862
863
864
865
866
        if nslc not in synthetics:
            return None

        tr = synthetics[nslc]
        tr.extend(tmin - tfade * 2.0, tmax + tfade * 2.0)

        tr = tr.transfer(
            tfade=tfade,
            freqlimits=freqlimits)

        tr.chop(tmin, tmax)
        return tr
Sebastian Heimann's avatar
Sebastian Heimann committed
867
868
869
870


class DatasetConfig(HasPaths):

Sebastian Heimann's avatar
Sebastian Heimann committed
871
872
    stations_path = Path.T(optional=True)
    stations_stationxml_paths = List.T(Path.T())
Sebastian Heimann's avatar
Sebastian Heimann committed
873
874
875
876
877
878
879
880
    events_path = Path.T()
    waveform_paths = List.T(Path.T())
    clippings_path = Path.T(optional=True)
    responses_sacpz_path = Path.T(optional=True)
    responses_stationxml_paths = List.T(Path.T())
    station_corrections_path = Path.T(optional=True)
    apply_correction_factors = Bool.T(default=True)
    apply_correction_delays = Bool.T(default=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
881
    picks_paths = List.T(Path.T())
882
    blacklist_paths = List.T(Path.T())
883
884
885
886
    blacklist = List.T(
        String.T(),
        help='stations/components to be excluded according to their STA, '
             'NET.STA, NET.STA.LOC, or NET.STA.LOC.CHA codes.')
887
    whitelist_paths = List.T(Path.T())
Sebastian Heimann's avatar
flake8    
Sebastian Heimann committed
888
889
890
    whitelist = List.T(
        String.T(),
        optional=True,
891
892
893
894
        help='if not None, list of stations/components to included according '
             'to their STA, NET.STA, NET.STA.LOC, or NET.STA.LOC.CHA codes. '
             'Note: ''when whitelisting on channel level, both, the raw and '
             'the processed channel codes have to be listed.')
Sebastian Heimann's avatar
Sebastian Heimann committed
895
896
897
898
    synthetic_test = SyntheticTest.T(optional=True)

    def __init__(self, *args, **kwargs):
        HasPaths.__init__(self, *args, **kwargs)
899
        self._ds = {}
Sebastian Heimann's avatar
Sebastian Heimann committed
900

Sebastian Heimann's avatar
Sebastian Heimann committed
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
    def get_event_names(self):
        def extra(path):
            return expand_template(path, dict(
                event_name='*'))

        def fp(path):
            return self.expand_path(path, extra=extra)

        events = []
        for fn in glob.glob(fp(self.events_path)):
            events.extend(model.load_events(filename=fn))

        event_names = [ev.name for ev in events]
        return event_names

916
917
    def get_dataset(self, event_name):
        if event_name not in self._ds:
918
919
920
921
922
923
924
            def extra(path):
                return expand_template(path, dict(
                    event_name=event_name))

            def fp(path):
                return self.expand_path(path, extra=extra)

925
            ds = dataset.Dataset(event_name)
Sebastian Heimann's avatar
Sebastian Heimann committed
926
927
928
929
            ds.add_stations(
                pyrocko_stations_filename=fp(self.stations_path),
                stationxml_filenames=fp(self.stations_stationxml_paths))

Sebastian Heimann's avatar
Sebastian Heimann committed
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
            ds.add_events(filename=fp(self.events_path))
            ds.add_waveforms(paths=fp(self.waveform_paths))
            if self.clippings_path:
                ds.add_clippings(markers_filename=fp(self.clippings_path))

            if self.responses_sacpz_path:
                ds.add_responses(
                    sacpz_dirname=fp(self.responses_sacpz_path))

            if self.responses_stationxml_paths:
                ds.add_responses(
                    stationxml_filenames=fp(self.responses_stationxml_paths))

            if self.station_corrections_path:
                ds.add_station_corrections(
                    filename=fp(self.station_corrections_path))

            ds.apply_correction_factors = self.apply_correction_factors
            ds.apply_correction_delays = self.apply_correction_delays

Sebastian Heimann's avatar
Sebastian Heimann committed
950
951
952
953
            for picks_path in self.picks_paths:
                ds.add_picks(
                    filename=fp(picks_path))

Sebastian Heimann's avatar
Sebastian Heimann committed
954
            ds.add_blacklist(self.blacklist)
955
            ds.add_blacklist(filenames=fp(self.blacklist_paths))
Sebastian Heimann's avatar
Sebastian Heimann committed
956
957
            if self.whitelist:
                ds.add_whitelist(self.whitelist)
958
            if self.whitelist_paths:
959
                ds.add_whitelist(filenames=fp(self.whitelist_paths))
Sebastian Heimann's avatar
Sebastian Heimann committed
960

961
962
            ds.set_synthetic_test(copy.deepcopy(self.synthetic_test))
            self._ds[event_name] = ds
Sebastian Heimann's avatar
Sebastian Heimann committed
963

964
        return self._ds[event_name]
Sebastian Heimann's avatar
Sebastian Heimann committed
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988


def weed(origin, targets, limit, neighborhood=3):

    azimuths = num.zeros(len(targets))
    dists = num.zeros(len(targets))
    for i, target in enumerate(targets):
        _, azimuths[i] = target.azibazi_to(origin)
        dists[i] = target.distance_to(origin)

    badnesses = num.ones(len(targets), dtype=float)
    deleted, meandists_kept = weeding.weed(
        azimuths, dists, badnesses,
        nwanted=limit,
        neighborhood=neighborhood)

    targets_weeded = [
        target for (delete, target) in zip(deleted, targets) if not delete]

    return targets_weeded, meandists_kept, deleted


class TargetConfig(Object):

989
990
    super_group = gf.StringID.T(default='', optional=True)
    group = gf.StringID.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
991
992
    distance_min = Float.T(optional=True)
    distance_max = Float.T(optional=True)
993
994
    distance_3d_min = Float.T(optional=True)
    distance_3d_max = Float.T(optional=True)
995
996
    depth_min = Float.T(optional=True)
    depth_max = Float.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
997
998
999
1000
    limit = Int.T(optional=True)
    channels = List.T(String.T())
    inner_misfit_config = InnerMisfitConfig.T()
    interpolation = gf.InterpolationMethod.T()