core.py 60.2 KB
Newer Older
Sebastian Heimann's avatar
Sebastian Heimann committed
1
2
3
4
5
6
7
import math
import os
import sys
import logging
import time
import copy
import shutil
Sebastian Heimann's avatar
Sebastian Heimann committed
8
import glob
Sebastian Heimann's avatar
Sebastian Heimann committed
9
import os.path as op
10
from string import Template
Sebastian Heimann's avatar
Sebastian Heimann committed
11
12
13
14

import numpy as num

from pyrocko.guts import load, Object, String, Float, Int, Bool, List, \
Sebastian Heimann's avatar
Sebastian Heimann committed
15
    StringChoice, Dict, Timestamp
Sebastian Heimann's avatar
Sebastian Heimann committed
16
from pyrocko import orthodrome as od, gf, trace, guts, util, weeding
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
17
from pyrocko import parimap, model, gui_util
18
from pyrocko.guts_array import Array
Sebastian Heimann's avatar
Sebastian Heimann committed
19
20
21
22
23
24
25
26

from grond import dataset

logger = logging.getLogger('grond.core')

guts_prefix = 'grond'


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def float_or_none(x):
    if x is None:
        return x
    else:
        return float(x)


class Trace(Object):
    pass


class TraceSpectrum(Object):
    network = String.T()
    station = String.T()
    location = String.T()
    channel = String.T()
    deltaf = Float.T(default=1.0)
    fmin = Float.T(default=0.0)
    ydata = Array.T(shape=(None,), dtype=num.complex, serialize_as='list')

47
48
49
50
51
52
    def get_ydata(self):
        return self.ydata

    def get_xdata(self):
        return self.fmin + num.arange(self.ydata.size) * self.deltaf

53

Sebastian Heimann's avatar
Sebastian Heimann committed
54
55
56
57
58
59
60
def mahalanobis_distance(xs, mx, cov):
    imask = num.diag(cov) != 0.
    icov = num.linalg.inv(cov[imask, :][:, imask])
    temp = xs[:, imask] - mx[imask]
    return num.sqrt(num.sum(temp * num.dot(icov, temp.T).T, axis=1))


Sebastian Heimann's avatar
Sebastian Heimann committed
61
62
63
64
65
class Parameter(Object):
    name = String.T()
    unit = String.T(optional=True)
    scale_factor = Float.T(default=1., optional=True)
    scale_unit = String.T(optional=True)
66
    label = String.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
67
68
69
70
71
72
73
74
75

    def __init__(self, *args, **kwargs):
        if len(args) >= 1:
            kwargs['name'] = args[0]
        if len(args) >= 2:
            kwargs['unit'] = args[1]

        Object.__init__(self, **kwargs)

76
77
78
79
80
81
    def get_label(self, with_unit=True):
        l = [self.label or self.name]
        if with_unit:
            unit = self.get_unit_label()
            if unit:
                l.append('[%s]' % unit)
Sebastian Heimann's avatar
Sebastian Heimann committed
82
83
84

        return ' '.join(l)

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    def get_value_label(self, value, format='%(value)g%(unit)s'):
        value = self.scaled(value)
        unit = self.get_unit_suffix()
        return format % dict(value=value, unit=unit)

    def get_unit_label(self):
        if self.scale_unit is not None:
            return self.scale_unit
        elif self.unit:
            return self.unit
        else:
            return None

    def get_unit_suffix(self):
        unit = self.get_unit_label()
        if not unit:
            return ''
        else:
            return ' %s' % unit

Sebastian Heimann's avatar
Sebastian Heimann committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    def scaled(self, x):
        if isinstance(x, tuple):
            return tuple(v/self.scale_factor for v in x)
        if isinstance(x, list):
            return list(v/self.scale_factor for v in x)
        else:
            return x/self.scale_factor


class ADict(dict):
    def __getattr__(self, k):
        return self[k]

    def __setattr__(self, k, v):
        self[k] = v


class Problem(Object):
    name = String.T()
    parameters = List.T(Parameter.T())
    dependants = List.T(Parameter.T())
126
    apply_balancing_weights = Bool.T(default=True)
127
    base_source = gf.Source.T()
Sebastian Heimann's avatar
Sebastian Heimann committed
128
129
130
131
132

    def __init__(self, **kwargs):
        Object.__init__(self, **kwargs)
        self._bootstrap_weights = None
        self._target_weights = None
Sebastian Heimann's avatar
Sebastian Heimann committed
133
        self._engine = None
134
        self._group_mask = None
Sebastian Heimann's avatar
Sebastian Heimann committed
135
136
137

    def get_engine(self):
        return self._engine
Sebastian Heimann's avatar
Sebastian Heimann committed
138
139
140
141
142
143
144
145
146
147
148
149
150

    def copy(self):
        o = copy.copy(self)
        o._bootstrap_weights = None
        o._target_weights = None
        return o

    def parameter_dict(self, x):
        return ADict((p.name, v) for (p, v) in zip(self.parameters, x))

    def parameter_array(self, d):
        return num.array([d[p.name] for p in self.parameters], dtype=num.float)

Sebastian Heimann's avatar
Sebastian Heimann committed
151
152
153
154
    @property
    def parameter_names(self):
        return [p.name for p in self.combined]

Sebastian Heimann's avatar
Sebastian Heimann committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def dump_problem_info(self, dirname):
        fn = op.join(dirname, 'problem.yaml')
        util.ensuredirs(fn)
        guts.dump(self, filename=fn)

    def dump_problem_data(self, dirname, x, ms, ns):
        fn = op.join(dirname, 'x')
        with open(fn, 'ab') as f:
            x.astype('<f8').tofile(f)

        fn = op.join(dirname, 'misfits')
        with open(fn, 'ab') as f:
            ms.astype('<f8').tofile(f)
            ns.astype('<f8').tofile(f)

    def name_to_index(self, name):
        pnames = [p.name for p in self.combined]
        return pnames.index(name)

    @property
    def nparameters(self):
        return len(self.parameters)

    @property
    def ntargets(self):
        return len(self.targets)

    @property
    def ndependants(self):
        return len(self.dependants)

    @property
    def ncombined(self):
        return len(self.parameters) + len(self.dependants)

    @property
    def combined(self):
        return self.parameters + self.dependants

    def make_bootstrap_weights(self, nbootstrap):
        ntargets = len(self.targets)
        ws = num.zeros((nbootstrap, ntargets))
        rstate = num.random.RandomState(23)
        for ibootstrap in xrange(nbootstrap):
            ii = rstate.randint(0, ntargets, size=self.ntargets)
            ws[ibootstrap, :] = num.histogram(
                ii, ntargets, (-0.5, ntargets - 0.5))[0]

        return ws

    def get_bootstrap_weights(self, ibootstrap=None):
        if self._bootstrap_weights is None:
            self._bootstrap_weights = self.make_bootstrap_weights(
                self.nbootstrap)

        if ibootstrap is None:
            return self._bootstrap_weights
        else:
            return self._bootstrap_weights[ibootstrap, :]

Sebastian Heimann's avatar
Sebastian Heimann committed
215
216
217
    def set_engine(self, engine):
        self._engine = engine

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def make_group_mask(self):
        super_group_names = set()
        groups = num.zeros(len(self.targets), dtype=num.int)
        ngroups = 0
        for itarget, target in enumerate(self.targets):
            if target.super_group not in super_group_names:
                super_group_names.add(target.super_group)
                ngroups += 1

            groups[itarget] = ngroups - 1

        return groups, ngroups

    def get_group_mask(self):
        if self._group_mask is None:
            self._group_mask = self.make_group_mask()

        return self._group_mask

Sebastian Heimann's avatar
Sebastian Heimann committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

class ProblemConfig(Object):
    name_template = String.T()
    apply_balancing_weights = Bool.T(default=True)


class Forbidden(Exception):
    pass


class DirectoryAlreadyExists(Exception):
    pass


class GrondError(Exception):
    pass


255
256
257
258
259
260
261
262
263
class DomainChoice(StringChoice):
    choices = [
        'time_domain',
        'frequency_domain',
        'envelope',
        'absolute',
        'cc_max_norm']


Sebastian Heimann's avatar
Sebastian Heimann committed
264
265
266
267
268
269
class InnerMisfitConfig(Object):
    fmin = Float.T()
    fmax = Float.T()
    ffactor = Float.T(default=1.5)
    tmin = gf.Timing.T()
    tmax = gf.Timing.T()
270
    tfade = Float.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
271
272
    pick_synthetic_traveltime = gf.Timing.T(optional=True)
    pick_phasename = String.T(optional=True)
273
    domain = DomainChoice.T(default='time_domain')
Sebastian Heimann's avatar
Sebastian Heimann committed
274

275
276
277
    def get_full_frequency_range(self):
        return self.fmin / self.ffactor, self.fmax * self.ffactor

Sebastian Heimann's avatar
Sebastian Heimann committed
278
279
280
281
282
283
284
285
286

class TargetAnalysisResult(Object):
    balancing_weight = Float.T()


class NoAnalysisResults(Exception):
    pass


287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
class MisfitResult(gf.Result):
    misfit_value = Float.T()
    misfit_norm = Float.T()
    processed_obs = Trace.T(optional=True)
    processed_syn = Trace.T(optional=True)
    filtered_obs = Trace.T(optional=True)
    filtered_syn = Trace.T(optional=True)
    spectrum_obs = TraceSpectrum.T(optional=True)
    spectrum_syn = TraceSpectrum.T(optional=True)
    taper = trace.Taper.T(optional=True)
    tobs_shift = Float.T(optional=True)
    tsyn_pick = Timestamp.T(optional=True)
    cc_shift = Float.T(optional=True)
    cc = Trace.T(optional=True)


Sebastian Heimann's avatar
Sebastian Heimann committed
303
304
305
306
307
class MisfitTarget(gf.Target):
    misfit_config = InnerMisfitConfig.T()
    flip_norm = Bool.T(default=False)
    manual_weight = Float.T(default=1.0)
    analysis_result = TargetAnalysisResult.T(optional=True)
308
309
    super_group = gf.StringID.T()
    group = gf.StringID.T()
Sebastian Heimann's avatar
Sebastian Heimann committed
310
311
312
313

    def __init__(self, **kwargs):
        gf.Target.__init__(self, **kwargs)
        self._ds = None
314
        self._result_mode = 'sparse'
315
316
317
318

    def string_id(self):
        return '.'.join(x for x in (
            self.super_group, self.group) + self.codes if x)
Sebastian Heimann's avatar
Sebastian Heimann committed
319
320
321
322
323
324
325
326
327
328
329
330

    def get_plain_target(self):
        d = dict(
            (k, getattr(self, k)) for k in gf.Target.T.propnames)
        return gf.Target(**d)

    def get_dataset(self):
        return self._ds

    def set_dataset(self, ds):
        self._ds = ds

331
332
333
    def set_result_mode(self, result_mode):
        self._result_mode = result_mode

Sebastian Heimann's avatar
Sebastian Heimann committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    def get_combined_weight(self, apply_balancing_weights):
        w = self.manual_weight
        if apply_balancing_weights:
            w *= self.get_balancing_weight()

        return w

    def get_balancing_weight(self):
        if not self.analysis_result:
            raise NoAnalysisResults('no balancing weights available')

        return self.analysis_result.balancing_weight

    def get_taper_params(self, engine, source):
        store = engine.get_store(self.store_id)
        config = self.misfit_config
        tmin_fit = source.time + store.t(config.tmin, source, self)
        tmax_fit = source.time + store.t(config.tmax, source, self)
        tfade = 1.0/config.fmin
353
354
355
356
357
358
        if config.tfade is None:
            tfade_taper = tfade
        else:
            tfade_taper = config.tfade

        return tmin_fit, tmax_fit, tfade, tfade_taper
Sebastian Heimann's avatar
Sebastian Heimann committed
359
360
361
362
363
364
365
366

    def post_process(self, engine, source, tr_syn):

        tr_syn = tr_syn.pyrocko_trace()
        nslc = self.codes

        config = self.misfit_config

367
368
        tmin_fit, tmax_fit, tfade, tfade_taper = \
            self.get_taper_params(engine, source)
Sebastian Heimann's avatar
Sebastian Heimann committed
369

Sebastian Heimann's avatar
Sebastian Heimann committed
370
371
372
        ds = self.get_dataset()

        tobs_shift = 0.0
Sebastian Heimann's avatar
Sebastian Heimann committed
373
        tsyn = None
Sebastian Heimann's avatar
Sebastian Heimann committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        if config.pick_synthetic_traveltime and config.pick_phasename:
            store = engine.get_store(self.store_id)
            tsyn = source.time + store.t(
                config.pick_synthetic_traveltime, source, self)

            marker = ds.get_pick(
                source.name,
                self.codes[:3],
                config.pick_phasename)

            if marker:
                tobs = marker.tmin
                tobs_shift = tobs - tsyn

Sebastian Heimann's avatar
Sebastian Heimann committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        freqlimits = (
            config.fmin/config.ffactor,
            config.fmin, config.fmax,
            config.fmax*config.ffactor)

        tinc_obs = 1.0/config.fmin

        tr_syn.extend(
            tmin_fit - tfade * 2.0,
            tmax_fit + tfade * 2.0,
            fillmethod='repeat')

        tr_syn = tr_syn.transfer(
            freqlimits=freqlimits,
            tfade=tfade)

        tr_syn.chop(tmin_fit - 2*tfade, tmax_fit + 2*tfade)

Sebastian Heimann's avatar
Sebastian Heimann committed
406
407
408
409
        tmin_obs = (math.floor(
            (tmin_fit - tfade + tobs_shift) / tinc_obs) - 1.0) * tinc_obs
        tmax_obs = (math.ceil(
            (tmax_fit + tfade + tobs_shift) / tinc_obs) + 1.0) * tinc_obs
Sebastian Heimann's avatar
Sebastian Heimann committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

        try:
            if nslc[-1] == 'R':
                backazimuth = self.azimuth + 180.
            elif nslc[-1] == 'T':
                backazimuth = self.azimuth + 90.
            else:
                backazimuth = None

            tr_obs = ds.get_waveform(
                nslc,
                tmin=tmin_obs,
                tmax=tmax_obs,
                tfade=tfade,
                freqlimits=freqlimits,
                deltat=tr_syn.deltat,
                cache=True,
                backazimuth=backazimuth)

Sebastian Heimann's avatar
Sebastian Heimann committed
429
430
431
432
            if tobs_shift != 0.0:
                tr_obs = tr_obs.copy()
                tr_obs.shift(-tobs_shift)

433
434
            mr = misfit(
                tr_obs, tr_syn,
Sebastian Heimann's avatar
Sebastian Heimann committed
435
                taper=trace.CosTaper(
436
                    tmin_fit - tfade_taper,
Sebastian Heimann's avatar
Sebastian Heimann committed
437
438
                    tmin_fit,
                    tmax_fit,
439
                    tmax_fit + tfade_taper),
440
441
                domain=config.domain,
                exponent=2,
442
443
                flip=self.flip_norm,
                result_mode=self._result_mode)
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
444

445
446
            mr.tobs_shift = float(tobs_shift)
            mr.tsyn_pick = float_or_none(tsyn)
Sebastian Heimann's avatar
Sebastian Heimann committed
447

448
            return mr
Sebastian Heimann's avatar
Sebastian Heimann committed
449
450
451
452
453
454

        except dataset.NotFound, e:
            logger.debug(str(e))
            raise gf.SeismosizerError('no waveform data, %s' % str(e))


455
456
def misfit(
        tr_obs, tr_syn, taper, domain, exponent, flip, result_mode='sparse'):
Sebastian Heimann's avatar
Sebastian Heimann committed
457

458
459
460
461
462
463
464
465
466
467
468
    '''
    Calculate misfit between observed and synthetic trace.

    :param tr_obs: observed trace as :py:class:`pyrocko.trace.Trace`
    :param tr_syn: synthetic trace as :py:class:`pyrocko.trace.Trace`
    :param taper: taper applied in timedomain as
        :py:class:`pyrocko.trace.Taper`
    :param domain: how to calculate difference, see :py:class:`DomainChoice`
    :param exponent: exponent of Lx type norms
    :param flip: ``bool``, if set to ``True``, normalization factor is
        computed against *tr_syn* rather than *tr_obs*
469
470
    :param result_mode: ``'full'``, include traces and spectra or ``'sparse'``,
        include only misfit and normalization factor in result
471
472
473

    :returns: object of type :py:class:`MisfitResult`
    '''
Sebastian Heimann's avatar
Sebastian Heimann committed
474

475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    trace.assert_same_sampling_rate(tr_obs, tr_syn)
    tmin, tmax = taper.time_span()

    tr_proc_obs, trspec_proc_obs = _process(tr_obs, tmin, tmax, taper, domain)
    tr_proc_syn, trspec_proc_syn = _process(tr_syn, tmin, tmax, taper, domain)

    cc_shift = None
    ctr = None
    if domain in ('time_domain', 'envelope', 'absolute'):
        a, b = tr_proc_syn.ydata, tr_proc_obs.ydata
        if flip:
            b, a = a, b

        m, n = trace.Lx_norm(a, b, norm=exponent)

    elif domain == 'cc_max_norm':

        ctr = trace.correlate(
            tr_proc_syn,
            tr_proc_obs,
            mode='same',
            normalization='normal')

        cc_shift, cc_max = ctr.max()
        m = 0.5 - 0.5 * cc_max
        n = 0.5

    elif domain == 'frequency_domain':
        a, b = trspec_proc_syn.ydata, trspec_proc_obs.ydata
        if flip:
            b, a = a, b

        m, n = trace.Lx_norm(num.abs(a), num.abs(b), norm=exponent)

509
510
511
512
513
514
515
516
517
518
519
520
521
    if result_mode == 'full':
        result = MisfitResult(
            misfit_value=m,
            misfit_norm=n,
            processed_obs=tr_proc_obs,
            processed_syn=tr_proc_syn,
            filtered_obs=tr_obs.copy(),
            filtered_syn=tr_syn,
            spectrum_obs=trspec_proc_obs,
            spectrum_syn=trspec_proc_syn,
            taper=taper,
            cc_shift=cc_shift,
            cc=ctr)
522

523
524
525
526
527
528
    elif result_mode == 'sparse':
        result = MisfitResult(
            misfit_value=m,
            misfit_norm=n)
    else:
        assert False
529
530
531
532
533
534
535
536
537

    return result


def _process(tr, tmin, tmax, taper, domain):
    tr_proc = _extend_extract(tr, tmin, tmax)
    tr_proc.taper(taper)

    df = None
538
    trspec_proc = None
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

    if domain == 'envelope':
        tr_proc = tr_proc.envelope(inplace=False)

    elif domain == 'absolute':
        tr_proc.set_ydata(num.abs(tr_proc.get_ydata()))

    elif domain == 'frequency_domain':
        ndata = tr_proc.ydata.size
        nfft = trace.nextpow2(ndata)
        padded = num.zeros(nfft, dtype=num.float)
        padded[:ndata] = tr_proc.ydata
        spectrum = num.fft.rfft(padded)
        df = 1.0 / (tr_proc.deltat * nfft)

554
555
556
557
558
559
560
561
        trspec_proc = TraceSpectrum(
            network=tr_proc.network,
            station=tr_proc.station,
            location=tr_proc.location,
            channel=tr_proc.channel,
            deltaf=df,
            fmin=0.0,
            ydata=spectrum)
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

    return tr_proc, trspec_proc


def _extend_extract(tr, tmin, tmax):
    deltat = tr.deltat
    itmin_frame = int(math.floor(tmin/deltat))
    itmax_frame = int(math.ceil(tmax/deltat))
    nframe = itmax_frame - itmin_frame
    n = tr.data_len()
    a = num.empty(nframe, dtype=num.float)
    itmin_tr = int(round(tr.tmin / deltat))
    itmax_tr = itmin_tr + n
    icut1 = min(max(0, itmin_tr - itmin_frame), nframe)
    icut2 = min(max(0, itmax_tr - itmin_frame), nframe)
    icut1_tr = min(max(0, icut1 + itmin_frame - itmin_tr), n)
    icut2_tr = min(max(0, icut2 + itmin_frame - itmin_tr), n)
    a[:icut1] = tr.ydata[0]
    a[icut1:icut2] = tr.ydata[icut1_tr:icut2_tr]
    a[icut2:] = tr.ydata[-1]
    tr = tr.copy(data=False)
    tr.tmin = tmin
    tr.set_ydata(a)
    return tr
Sebastian Heimann's avatar
Sebastian Heimann committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623


def xjoin(basepath, path):
    if path is None and basepath is not None:
        return basepath
    elif op.isabs(path) or basepath is None:
        return path
    else:
        return op.join(basepath, path)


def xrelpath(path, start):
    if op.isabs(path):
        return path
    else:
        return op.relpath(path, start)


class Path(String):
    pass


class HasPaths(Object):
    path_prefix = Path.T(optional=True)

    def __init__(self, *args, **kwargs):
        Object.__init__(self, *args, **kwargs)
        self._basepath = None
        self._parent_path_prefix = None

    def set_basepath(self, basepath, parent_path_prefix=None):
        self._basepath = basepath
        self._parent_path_prefix = parent_path_prefix
        for (prop, val) in self.T.ipropvals(self):
            if isinstance(val, HasPaths):
                val.set_basepath(
                    basepath, self.path_prefix or self._parent_path_prefix)

Sebastian Heimann's avatar
Sebastian Heimann committed
624
625
626
627
    def get_basepath(self):
        assert self._basepath is not None
        return self._basepath

Sebastian Heimann's avatar
Sebastian Heimann committed
628
629
630
631
632
633
    def change_basepath(self, new_basepath, parent_path_prefix=None):
        assert self._basepath is not None

        self._parent_path_prefix = parent_path_prefix
        if self.path_prefix or not self._parent_path_prefix:

Sebastian Heimann's avatar
Sebastian Heimann committed
634
635
            self.path_prefix = op.normpath(xjoin(xrelpath(
                self._basepath, new_basepath), self.path_prefix))
Sebastian Heimann's avatar
Sebastian Heimann committed
636
637
638
639
640
641
642
643

        for val in self.T.ivals(self):
            if isinstance(val, HasPaths):
                val.change_basepath(
                    new_basepath, self.path_prefix or self._parent_path_prefix)

        self._basepath = new_basepath

644
    def expand_path(self, path, extra=None):
Sebastian Heimann's avatar
Sebastian Heimann committed
645
646
        assert self._basepath is not None

647
648
649
650
        if extra is None:
            def extra(path):
                return path

Sebastian Heimann's avatar
Sebastian Heimann committed
651
652
653
654
655
        path_prefix = self.path_prefix or self._parent_path_prefix

        if path is None:
            return None
        elif isinstance(path, basestring):
656
657
            return extra(
                op.normpath(xjoin(self._basepath, xjoin(path_prefix, path))))
Sebastian Heimann's avatar
Sebastian Heimann committed
658
659
        else:
            return [
660
661
                extra(
                    op.normpath(xjoin(self._basepath, xjoin(path_prefix, p))))
Sebastian Heimann's avatar
Sebastian Heimann committed
662
663
664
                for p in path]


Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
665
666
667
668
669
670
671
672
673
class RandomResponse(trace.FrequencyResponse):

    scale = Float.T(default=0.0)

    def set_random_state(self, rstate):
        self._rstate = rstate

    def evaluate(self, freqs):
        n = freqs.size
674
        return 1.0 + (
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
675
            self._rstate.normal(scale=self.scale, size=n) +
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
676
677
678
679
680
681
682
            0.0J * self._rstate.normal(scale=self.scale, size=n))


class SyntheticWaveformNotAvailable(Exception):
    pass


Sebastian Heimann's avatar
Sebastian Heimann committed
683
684
class SyntheticTest(Object):
    inject_solution = Bool.T(default=False)
685
    respect_data_availability = Bool.T(default=False)
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
686
    add_real_noise = Bool.T(default=False)
687
688
    random_seed = Int.T(optional=True)
    random_response_scale = Float.T(default=0.0)
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
689
    toffset_real_noise = Float.T(default=-3600.)
Sebastian Heimann's avatar
Sebastian Heimann committed
690
691
692
693
    x = Dict.T(String.T(), Float.T())

    def __init__(self, **kwargs):
        Object.__init__(self, **kwargs)
694
        self._problem = None
Sebastian Heimann's avatar
Sebastian Heimann committed
695
696
        self._synthetics = None

697
698
699
    def set_problem(self, problem):
        self._problem = problem
        self._synthetics = None
Sebastian Heimann's avatar
Sebastian Heimann committed
700
701

    def get_problem(self):
702
703
704
        if self._problem is None:
            raise SyntheticWaveformNotAvailable(
                'SyntheticTest.set_problem() has not been called yet')
Sebastian Heimann's avatar
Sebastian Heimann committed
705

706
        return self._problem
Sebastian Heimann's avatar
Sebastian Heimann committed
707
708
709
710
711
712
713
714

    def get_x(self):
        problem = self.get_problem()
        if self.x:
            x = problem.preconstrain(
                problem.parameter_array(self.x))

        else:
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
715
716
717
718
            x = problem.preconstrain(
                problem.pack(
                    problem.base_source))

Sebastian Heimann's avatar
Sebastian Heimann committed
719
720
721
        return x

    def get_synthetics(self):
722
        problem = self.get_problem()
Sebastian Heimann's avatar
Sebastian Heimann committed
723
724
725
        if self._synthetics is None:
            x = self.get_x()
            results = problem.forward(x)
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
            synthetics = {}
            for iresult, result in enumerate(results):
                tr = result.trace.pyrocko_trace()
                tfade = tr.tmax - tr.tmin
                tr.extend(tr.tmin - tfade, tr.tmax + tfade)

                if self.random_response_scale != 0:
                    tf = RandomResponse(scale=self.random_response_scale)
                    rstate = num.random.RandomState(iresult)
                    tf.set_random_state(rstate)
                    tr = tr.transfer(
                        tfade=tfade,
                        transfer_function=tf)

                synthetics[result.trace.codes] = tr

            self._synthetics = synthetics
Sebastian Heimann's avatar
Sebastian Heimann committed
743
744
745
746
747

        return self._synthetics

    def get_waveform(self, nslc, tmin, tmax, tfade=0., freqlimits=None):
        synthetics = self.get_synthetics()
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
748

749
750
751
752
753
754
755
756
757
758
759
760
        if nslc not in synthetics:
            return None

        tr = synthetics[nslc]
        tr.extend(tmin - tfade * 2.0, tmax + tfade * 2.0)

        tr = tr.transfer(
            tfade=tfade,
            freqlimits=freqlimits)

        tr.chop(tmin, tmax)
        return tr
Sebastian Heimann's avatar
Sebastian Heimann committed
761
762
763
764


class DatasetConfig(HasPaths):

Sebastian Heimann's avatar
Sebastian Heimann committed
765
766
    stations_path = Path.T(optional=True)
    stations_stationxml_paths = List.T(Path.T())
Sebastian Heimann's avatar
Sebastian Heimann committed
767
768
769
770
771
772
773
774
    events_path = Path.T()
    waveform_paths = List.T(Path.T())
    clippings_path = Path.T(optional=True)
    responses_sacpz_path = Path.T(optional=True)
    responses_stationxml_paths = List.T(Path.T())
    station_corrections_path = Path.T(optional=True)
    apply_correction_factors = Bool.T(default=True)
    apply_correction_delays = Bool.T(default=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
775
    picks_paths = List.T(Path.T())
776
    blacklist_paths = List.T(Path.T())
777
778
779
780
    blacklist = List.T(
        String.T(),
        help='stations/components to be excluded according to their STA, '
             'NET.STA, NET.STA.LOC, or NET.STA.LOC.CHA codes.')
781
    whitelist_paths = List.T(Path.T())
Sebastian Heimann's avatar
flake8    
Sebastian Heimann committed
782
783
784
    whitelist = List.T(
        String.T(),
        optional=True,
785
786
787
788
        help='if not None, list of stations/components to included according '
             'to their STA, NET.STA, NET.STA.LOC, or NET.STA.LOC.CHA codes. '
             'Note: ''when whitelisting on channel level, both, the raw and '
             'the processed channel codes have to be listed.')
Sebastian Heimann's avatar
Sebastian Heimann committed
789
790
791
792
    synthetic_test = SyntheticTest.T(optional=True)

    def __init__(self, *args, **kwargs):
        HasPaths.__init__(self, *args, **kwargs)
793
        self._ds = {}
Sebastian Heimann's avatar
Sebastian Heimann committed
794

Sebastian Heimann's avatar
Sebastian Heimann committed
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
    def get_event_names(self):
        def extra(path):
            return expand_template(path, dict(
                event_name='*'))

        def fp(path):
            return self.expand_path(path, extra=extra)

        events = []
        for fn in glob.glob(fp(self.events_path)):
            events.extend(model.load_events(filename=fn))

        event_names = [ev.name for ev in events]
        return event_names

810
811
    def get_dataset(self, event_name):
        if event_name not in self._ds:
812
813
814
815
816
817
818
            def extra(path):
                return expand_template(path, dict(
                    event_name=event_name))

            def fp(path):
                return self.expand_path(path, extra=extra)

819
            ds = dataset.Dataset(event_name)
Sebastian Heimann's avatar
Sebastian Heimann committed
820
821
822
823
            ds.add_stations(
                pyrocko_stations_filename=fp(self.stations_path),
                stationxml_filenames=fp(self.stations_stationxml_paths))

Sebastian Heimann's avatar
Sebastian Heimann committed
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
            ds.add_events(filename=fp(self.events_path))
            ds.add_waveforms(paths=fp(self.waveform_paths))
            if self.clippings_path:
                ds.add_clippings(markers_filename=fp(self.clippings_path))

            if self.responses_sacpz_path:
                ds.add_responses(
                    sacpz_dirname=fp(self.responses_sacpz_path))

            if self.responses_stationxml_paths:
                ds.add_responses(
                    stationxml_filenames=fp(self.responses_stationxml_paths))

            if self.station_corrections_path:
                ds.add_station_corrections(
                    filename=fp(self.station_corrections_path))

            ds.apply_correction_factors = self.apply_correction_factors
            ds.apply_correction_delays = self.apply_correction_delays

Sebastian Heimann's avatar
Sebastian Heimann committed
844
845
846
847
            for picks_path in self.picks_paths:
                ds.add_picks(
                    filename=fp(picks_path))

Sebastian Heimann's avatar
Sebastian Heimann committed
848
            ds.add_blacklist(self.blacklist)
849
            ds.add_blacklist(filenames=self.blacklist_paths)
Sebastian Heimann's avatar
Sebastian Heimann committed
850
851
            if self.whitelist:
                ds.add_whitelist(self.whitelist)
852
853
            if self.whitelist_paths:
                ds.add_whitelist(filenames=self.whitelist_paths)
Sebastian Heimann's avatar
Sebastian Heimann committed
854

855
856
            ds.set_synthetic_test(copy.deepcopy(self.synthetic_test))
            self._ds[event_name] = ds
Sebastian Heimann's avatar
Sebastian Heimann committed
857

858
        return self._ds[event_name]
Sebastian Heimann's avatar
Sebastian Heimann committed
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882


def weed(origin, targets, limit, neighborhood=3):

    azimuths = num.zeros(len(targets))
    dists = num.zeros(len(targets))
    for i, target in enumerate(targets):
        _, azimuths[i] = target.azibazi_to(origin)
        dists[i] = target.distance_to(origin)

    badnesses = num.ones(len(targets), dtype=float)
    deleted, meandists_kept = weeding.weed(
        azimuths, dists, badnesses,
        nwanted=limit,
        neighborhood=neighborhood)

    targets_weeded = [
        target for (delete, target) in zip(deleted, targets) if not delete]

    return targets_weeded, meandists_kept, deleted


class TargetConfig(Object):

883
884
    super_group = gf.StringID.T(default='', optional=True)
    group = gf.StringID.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
885
886
    distance_min = Float.T(optional=True)
    distance_max = Float.T(optional=True)
887
888
    depth_min = Float.T(optional=True)
    depth_max = Float.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
889
890
891
892
893
894
895
    limit = Int.T(optional=True)
    channels = List.T(String.T())
    inner_misfit_config = InnerMisfitConfig.T()
    interpolation = gf.InterpolationMethod.T()
    store_id = gf.StringID.T()
    weight = Float.T(default=1.0)

896
    def get_targets(self, ds, event, default_group):
Sebastian Heimann's avatar
Sebastian Heimann committed
897
898
899
900
901
902
903
904
905
906
907

        origin = event

        targets = []
        for st in ds.get_stations():
            for cha in self.channels:
                target = MisfitTarget(
                    quantity='displacement',
                    codes=st.nsl() + (cha,),
                    lat=st.lat,
                    lon=st.lon,
908
                    depth=st.depth,
Sebastian Heimann's avatar
Sebastian Heimann committed
909
910
911
912
                    interpolation=self.interpolation,
                    store_id=self.store_id,
                    misfit_config=self.inner_misfit_config,
                    manual_weight=self.weight,
913
914
                    super_group=self.super_group,
                    group=self.group or default_group)
Sebastian Heimann's avatar
Sebastian Heimann committed
915
916
917
918
919
920
921
922
923

                if self.distance_min is not None and \
                        target.distance_to(origin) < self.distance_min:
                    continue

                if self.distance_max is not None and \
                        target.distance_to(origin) > self.distance_max:
                    continue

924
925
926
927
928
929
930
931
                if self.depth_min is not None and \
                        target.depth < self.depth_min:
                    continue

                if self.depth_max is not None and \
                        target.depth > self.depth_max:
                    continue

Sebastian Heimann's avatar
Sebastian Heimann committed
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
                azi, _ = target.azibazi_to(origin)
                if cha == 'R':
                    target.azimuth = azi - 180.
                    target.dip = 0.
                elif cha == 'T':
                    target.azimuth = azi - 90.
                    target.dip = 0.
                elif cha == 'Z':
                    target.azimuth = 0.
                    target.dip = -90.

                target.set_dataset(ds)
                targets.append(target)

        if self.limit:
            return weed(origin, targets, self.limit)[0]
        else:
            return targets


class AnalyserConfig(Object):
    niter = Int.T(default=1000)


class SamplerDistributionChoice(StringChoice):
    choices = ['multivariate_normal', 'normal']


class SolverConfig(Object):
    niter_uniform = Int.T(default=1000)
Sebastian Heimann's avatar
Sebastian Heimann committed
962
    niter_transition = Int.T(default=0)
Sebastian Heimann's avatar
Sebastian Heimann committed
963
964
965
966
    niter_explorative = Int.T(default=10000)
    niter_non_explorative = Int.T(default=0)
    sampler_distribution = SamplerDistributionChoice.T(
        default='multivariate_normal')
967
    scatter_scale_transition = Float.T(default=2.0)
968
    scatter_scale = Float.T(default=1.0)
Sebastian Heimann's avatar
Sebastian Heimann committed
969
970
971
972

    def get_solver_kwargs(self):
        return dict(
            niter_uniform=self.niter_uniform,
Sebastian Heimann's avatar
Sebastian Heimann committed
973
            niter_transition=self.niter_transition,
Sebastian Heimann's avatar
Sebastian Heimann committed
974
975
            niter_explorative=self.niter_explorative,
            niter_non_explorative=self.niter_non_explorative,
976
            sampler_distribution=self.sampler_distribution,
977
            scatter_scale_transition=self.scatter_scale_transition,
978
            scatter_scale=self.scatter_scale)
Sebastian Heimann's avatar
Sebastian Heimann committed
979
980


Sebastian Heimann's avatar
Sebastian Heimann committed
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
class EngineConfig(HasPaths):
    gf_stores_from_pyrocko_config = Bool.T(default=True)
    gf_store_superdirs = List.T(Path.T())
    gf_store_dirs = List.T(Path.T())

    def __init__(self, *args, **kwargs):
        HasPaths.__init__(self, *args, **kwargs)
        self._engine = None

    def get_engine(self):
        if self._engine is None:
            fp = self.expand_path
            self._engine = gf.LocalEngine(
                use_config=self.gf_stores_from_pyrocko_config,
                store_superdirs=fp(self.gf_store_superdirs),
                store_dirs=fp(self.gf_store_dirs))

        return self._engine