plot.py 40.7 KB
Newer Older
Sebastian Heimann's avatar
Sebastian Heimann committed
1
2
import math
import random
3
import logging
Sebastian Heimann's avatar
Sebastian Heimann committed
4
5
6
import os.path as op
import numpy as num
from scipy import signal
Sebastian Heimann's avatar
Sebastian Heimann committed
7
from pyrocko import automap, beachball, guts, trace, util
8
from pyrocko import hudson
Sebastian Heimann's avatar
Sebastian Heimann committed
9
10
11
12
13
14
from grond import core
from matplotlib import pyplot as plt
from matplotlib import cm, patches
from pyrocko.cake_plot import mpl_init, labelspace, colors, \
    str_to_mpl_color as scolor, light

15
16
logger = logging.getLogger('grond.plot')

Sebastian Heimann's avatar
Sebastian Heimann committed
17
18
19
km = 1000.


20
21
22
23
24
25
26
27
28
29
30
31
32
def amp_spec_max(spec_trs, key):
    amaxs = {}
    for spec_tr in spec_trs:
        amax = num.max(num.abs(spec_tr.ydata))
        k = key(spec_tr)
        if k not in amaxs:
            amaxs[k] = amax
        else:
            amaxs[k] = max(amaxs[k], amax)

    return amaxs


Sebastian Heimann's avatar
Sebastian Heimann committed
33
34
35
36
37
38
39
def ordersort(x):
    isort = num.argsort(x)
    iorder = num.empty(isort.size)
    iorder[isort] = num.arange(isort.size)
    return iorder


Sebastian Heimann's avatar
Sebastian Heimann committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def nextpow2(i):
    return 2**int(math.ceil(math.log(i)/math.log(2.)))


def fixlim(lo, hi):
    if lo == hi:
        return lo - 1.0, hi + 1.0
    else:
        return lo, hi


def str_dist(dist):
    if dist < 10.0:
        return '%g m' % dist
    elif 10. <= dist < 1.*km:
        return '%.0f m' % dist
    elif 1.*km <= dist < 10.*km:
        return '%.1f km' % (dist / km)
    else:
        return '%.0f km' % (dist / km)


def str_duration(t):
Sebastian Heimann's avatar
Sebastian Heimann committed
63
64
65
    s = ''
    if t < 0.:
        s = '-'
Sebastian Heimann's avatar
Sebastian Heimann committed
66

Sebastian Heimann's avatar
Sebastian Heimann committed
67
    t = abs(t)
Sebastian Heimann's avatar
Sebastian Heimann committed
68

Sebastian Heimann's avatar
Sebastian Heimann committed
69
70
    if t < 10.0:
        return s + '%.2g s' % t
Sebastian Heimann's avatar
Sebastian Heimann committed
71
    elif 10.0 <= t < 3600.:
Sebastian Heimann's avatar
Sebastian Heimann committed
72
73
74
75
76
        return s + util.time_to_str(t, format='%M:%S min')
    elif 3600. <= t < 24*3600.:
        return s + util.time_to_str(t, format='%H:%M h')
    else:
        return s + '%.1f d' % (t / (24.*3600.))
Sebastian Heimann's avatar
Sebastian Heimann committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323


def eigh_sorted(mat):
    evals, evecs = num.linalg.eigh(mat)
    iorder = num.argsort(evals)
    return evals[iorder], evecs[:, iorder]


def plot(stations, center_lat, center_lon, radius, output_path,
         width=25., height=25.,
         show_station_labels=False):

    station_lats = num.array([s.lat for s in stations])
    station_lons = num.array([s.lon for s in stations])

    map = automap.Map(
        width=width,
        height=height,
        lat=center_lat,
        lon=center_lon,
        radius=radius,
        show_rivers=False,
        show_topo=False,
        illuminate_factor_land=0.35,
        color_dry=(240, 240, 235),
        topo_cpt_wet='white_sea_land',
        topo_cpt_dry='white_sea_land')

    map.gmt.psxy(
        in_columns=(station_lons, station_lats),
        S='t8p',
        G='black',
        *map.jxyr)

    if show_station_labels:
        for s in stations:
            map.add_label(s.lat, s.lon, '%s' % s.station)

    map.save(output_path)


def map_geometry(config, output_path):
    stations = config.get_dataset().get_stations()

    lat0, lon0, radius = core.stations_mean_latlondist(stations)

    radius *= 1.5

    plot(stations, lat0, lon0, radius, output_path,
         show_station_labels=True)


class GrondModel(object):
    def __init__(self, **kwargs):
        self.listeners = []
        self.set_problem(None)

    def add_listener(self, listener):
        self.listeners.append(listener)

    def set_problem(self, problem):

        self.problem = problem
        if problem:
            nparameters = problem.nparameters
            ntargets = problem.ntargets
        else:
            nparameters = 0
            ntargets = 0

        nmodels = 0
        nmodels_capacity = 1024

        self._xs_buffer = num.zeros(
            (nmodels_capacity, nparameters), dtype=num.float)
        self._misfits_buffer = num.zeros(
            (nmodels_capacity, ntargets, 2), dtype=num.float)

        self.xs = self._xs_buffer[:nmodels, :]
        self.misfits = self._misfits_buffer[:nmodels, :, :]

        self.data_changed()

    @property
    def nmodels(self):
        return self.xs.shape[0]

    @property
    def nmodels_capacity(self):
        return self._xs_buffer.shape[0]

    def append(self, xs, misfits):
        assert xs.shape[0] == misfits.shape[0]

        nmodels_add = xs.shape[0]

        nmodels = self.nmodels
        nmodels_new = nmodels + nmodels_add
        nmodels_capacity_new = max(1024, nextpow2(nmodels_new))

        nmodels_capacity = self.nmodels_capacity
        if nmodels_capacity_new > nmodels_capacity:
            xs_buffer = num.zeros(
                (nmodels_capacity_new, self.problem.nparameters),
                dtype=num.float)

            misfits_buffer = num.zeros(
                (nmodels_capacity_new, self.problem.ntargets, 2),
                dtype=num.float)

            xs_buffer[:nmodels, :] = self._xs_buffer[:nmodels]
            misfits_buffer[:nmodels, :] = self._misfits_buffer[:nmodels]
            self._xs_buffer = xs_buffer
            self._misfits_buffer = misfits_buffer

        self._xs_buffer[nmodels:nmodels+nmodels_add, :] = xs
        self._misfits_buffer[nmodels:nmodels+nmodels_add, :, :] = misfits

        nmodels = nmodels_new

        self.xs = self._xs_buffer[:nmodels, :]
        self.misfits = self._misfits_buffer[:nmodels, :, :]

        self.data_changed()

    def data_changed(self):
        for listener in self.listeners:
            listener()


def draw_sequence_figures(model, plt, misfit_cutoff=None):
    problem = model.problem
    if not problem:
        return

    imodels = num.arange(model.nmodels)
    bounds = problem.bounds() + problem.dependant_bounds()

    xref = problem.pack(problem.base_source)

    xs = model.xs

    npar = problem.nparameters
    ndep = problem.ndependants

    gms = problem.global_misfits(model.misfits)
    gms_softclip = num.where(gms > 1.0, 0.2 * num.log10(gms) + 1.0, gms)

    isort = num.argsort(gms)[::-1]

    imodels = imodels[isort]
    gms = gms[isort]
    gms_softclip = gms_softclip[isort]
    xs = xs[isort, :]

    iorder = num.empty_like(isort)
    iorder = num.arange(iorder.size)

    if misfit_cutoff is None:
        ibest = num.ones(gms.size, dtype=num.bool)
    else:
        ibest = gms < misfit_cutoff

    nfx = 2
    nfy = 4
    # nfz = (npar + ndep + 1 - 1) / (nfx*nfy) + 1
    cmap = cm.YlOrRd
    cmap = cm.jet
    axes = None
    fig = None
    alpha = 0.5
    for ipar in xrange(npar):
        impl = ipar % (nfx*nfy) + 1

        if impl == 1:
            fig = plt.figure()

        par = problem.parameters[ipar]

        axes = fig.add_subplot(nfy, nfx, impl, sharex=axes)
        axes.set_ylabel(par.get_label())
        axes.get_yaxis().set_major_locator(plt.MaxNLocator(4))
        if impl < (nfx*nfy-1):
            axes.get_xaxis().set_visible(False)
        else:
            axes.set_xlabel('Iteration')

        axes.set_ylim(*fixlim(*par.scaled(bounds[ipar])))
        axes.set_xlim(0, model.nmodels)
        axes.axhline(par.scaled(xref[ipar]), color='black', alpha=0.3)

        axes.scatter(
            imodels[ibest], par.scaled(xs[ibest, ipar]), s=3, c=iorder[ibest],
            lw=0, cmap=cmap, alpha=alpha)

    for idep in xrange(ndep):
        # ifz, ify, ifx = num.unravel_index(ipar, (nfz, nfy, nfx))
        impl = (npar+idep) % (nfx*nfy) + 1

        if impl == 1:
            fig = plt.figure()

        par = problem.dependants[idep]

        axes = fig.add_subplot(nfy, nfx, impl, sharex=axes)
        axes.set_ylabel(par.get_label())
        axes.get_yaxis().set_major_locator(plt.MaxNLocator(4))
        if impl < (nfx*nfy-1):
            axes.get_xaxis().set_visible(False)
        else:
            axes.set_xlabel('Iteration')
        axes.set_ylim(*fixlim(*par.scaled(bounds[npar+idep])))
        axes.set_xlim(0, model.nmodels)

        y = problem.make_dependant(xref, par.name)
        axes.axhline(par.scaled(y), color='black', alpha=0.3)

        ys = problem.make_dependant(xs[ibest, :], par.name)
        axes.scatter(
            imodels[ibest], par.scaled(ys), s=3, c=iorder[ibest],
            lw=0, cmap=cmap, alpha=alpha)

    impl = (npar+ndep) % (nfx*nfy) + 1
    if impl == 1:
        fig = plt.figure()

    axes = fig.add_subplot(nfy, nfx, impl, sharex=axes)

    axes.set_ylim(0., 1.5)
    axes.axhspan(1.0, 1.5, color=(0.8, 0.8, 0.8), alpha=0.2)
    axes.axhline(1.0, color=(0.5, 0.5, 0.5), zorder=2)
    axes.set_yticks([0., 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4])
    axes.set_yticklabels(['0.0', '0.2', '0.4', '0.6', '0.8', '1', '10', '100'])

    axes.scatter(
        imodels[ibest], gms_softclip[ibest], c=iorder[ibest],
        s=3, lw=0, cmap=cmap, alpha=alpha)

    axes.set_xlim(0, model.nmodels)
    axes.set_xlabel('Iteration')

    axes.set_ylabel('Misfit')

    fig.canvas.draw()


def draw_jointpar_figures(
324
        model, plt, misfit_cutoff=None, ibootstrap=None, color=None,
325
        exclude=None, include=None):
326

327
    color = 'misfit'
Sebastian Heimann's avatar
Sebastian Heimann committed
328
    # exclude = ['duration']
329
    # include = ['magnitude', 'rel_moment_iso', 'rel_moment_clvd', 'depth']
330
331
    neach = 6
    figsize = (8, 8)
Sebastian Heimann's avatar
Sebastian Heimann committed
332
333
    # cmap = cm.YlOrRd
    # cmap = cm.jet
334
    cmap = cm.coolwarm
Sebastian Heimann's avatar
Sebastian Heimann committed
335
336
337
338
339
340
341
342

    problem = model.problem
    if not problem:
        return

    xs = model.xs

    bounds = problem.bounds() + problem.dependant_bounds()
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
343
344
345
346
347
348
349
350
    for ipar in xrange(problem.ncombined):
        par = problem.combined[ipar]
        lo, hi = bounds[ipar]
        if lo == hi:
            if exclude is None:
                exclude = []

            exclude.append(par.name)
Sebastian Heimann's avatar
Sebastian Heimann committed
351
352
353
354
355
356
357
358
359
360
361
362
363

    xref = problem.pack(problem.base_source)

    if ibootstrap is not None:
        gms = problem.bootstrap_misfits(model.misfits, ibootstrap)
    else:
        gms = problem.global_misfits(model.misfits)

    isort = num.argsort(gms)[::-1]

    gms = gms[isort]
    xs = xs[isort, :]

Sebastian Heimann's avatar
Sebastian Heimann committed
364
    if misfit_cutoff is not None:
Sebastian Heimann's avatar
Sebastian Heimann committed
365
        ibest = gms < misfit_cutoff
Sebastian Heimann's avatar
Sebastian Heimann committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        gms = gms[ibest]
        xs = xs[ibest]

    nmodels = xs.shape[0]

    if color == 'dist':
        mx = num.mean(xs, axis=0)
        cov = num.cov(xs.T)
        mdists = core.mahalanobis_distance(xs, mx, cov)
        color = ordersort(mdists)

    elif color == 'misfit':
        iorder = num.arange(nmodels)
        color = iorder

    elif color in problem.parameter_names:
        ind = problem.name_to_index(color)
        color = ordersort(problem.extract(xs, ind))
Sebastian Heimann's avatar
Sebastian Heimann committed
384

385
386
387
388
    smap = {}
    iselected = 0
    for ipar in xrange(problem.ncombined):
        par = problem.combined[ipar]
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
389
390
        if exclude and par.name in exclude or \
                include and par.name not in include:
391
            continue
Sebastian Heimann's avatar
Sebastian Heimann committed
392

393
394
395
396
        smap[iselected] = ipar
        iselected += 1

    nselected = iselected
Sebastian Heimann's avatar
Sebastian Heimann committed
397

398
399
400
401
    if nselected == 0:
        return

    nfig = (nselected-2) / neach + 1
Sebastian Heimann's avatar
Sebastian Heimann committed
402
403
404
405
406
407

    figs = []
    for ifig in xrange(nfig):
        figs_row = []
        for jfig in xrange(nfig):
            if ifig >= jfig:
408
                figs_row.append(plt.figure(figsize=figsize))
Sebastian Heimann's avatar
Sebastian Heimann committed
409
410
411
412
413
            else:
                figs_row.append(None)

        figs.append(figs_row)

414
415
    for iselected in xrange(nselected):
        ipar = smap[iselected]
Sebastian Heimann's avatar
Sebastian Heimann committed
416
        ypar = problem.combined[ipar]
417
418
        for jselected in xrange(iselected):
            jpar = smap[jselected]
Sebastian Heimann's avatar
Sebastian Heimann committed
419
420
            xpar = problem.combined[jpar]

421
422
            ixg = (iselected - 1)
            iyg = jselected
Sebastian Heimann's avatar
Sebastian Heimann committed
423
424
425
426
427
428
429
430
431
432
433
434
435

            ix = ixg % neach
            iy = iyg % neach

            ifig = ixg/neach
            jfig = iyg/neach

            aind = (neach, neach, (ix * neach) + iy + 1)

            fig = figs[ifig][jfig]

            axes = fig.add_subplot(*aind)

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
            axes.axvline(0., color=scolor('aluminium3'), lw=0.5)
            axes.axhline(0., color=scolor('aluminium3'), lw=0.5)
            for spine in axes.spines.values():
                spine.set_edgecolor(scolor('aluminium5'))
                spine.set_linewidth(0.5)

            xmin, xmax = fixlim(*xpar.scaled(bounds[jpar]))
            ymin, ymax = fixlim(*ypar.scaled(bounds[ipar]))

            if ix == 0 or jselected + 1 == iselected:
                for (xpos, xoff, x) in [(0.0, 10., xmin), (1.0, -10., xmax)]:
                    axes.annotate(
                        '%.2g%s' % (x, xpar.get_unit_suffix()),
                        xy=(xpos, 1.05),
                        xycoords='axes fraction',
                        xytext=(xoff, 5.),
                        textcoords='offset points',
                        verticalalignment='bottom',
                        horizontalalignment='left',
                        rotation=45.)

            if iy == neach - 1 or jselected + 1 == iselected:
                for (ypos, yoff, y) in [(0., 10., ymin), (1.0, -10., ymax)]:
                    axes.annotate(
                        '%.2g%s' % (y, ypar.get_unit_suffix()),
                        xy=(1.0, ypos),
                        xycoords='axes fraction',
                        xytext=(5., yoff),
                        textcoords='offset points',
                        verticalalignment='bottom',
                        horizontalalignment='left',
                        rotation=45.)

            axes.set_xlim(xmin, xmax)
            axes.set_ylim(ymin, ymax)
Sebastian Heimann's avatar
Sebastian Heimann committed
471
472
473
474

            axes.get_xaxis().set_ticks([])
            axes.get_yaxis().set_ticks([])

475
            if iselected == nselected - 1 or ix == neach - 1:
Sebastian Heimann's avatar
Sebastian Heimann committed
476
                axes.annotate(
477
                    xpar.get_label(with_unit=False),
Sebastian Heimann's avatar
Sebastian Heimann committed
478
479
480
481
482
483
484
485
                    xy=(0.5, -0.05),
                    xycoords='axes fraction',
                    verticalalignment='top',
                    horizontalalignment='right',
                    rotation=45.)

            if iy == 0:
                axes.annotate(
486
                    ypar.get_label(with_unit=False),
Sebastian Heimann's avatar
Sebastian Heimann committed
487
488
                    xy=(-0.05, 0.5),
                    xycoords='axes fraction',
489
490
491
                    verticalalignment='top',
                    horizontalalignment='right',
                    rotation=45.)
Sebastian Heimann's avatar
Sebastian Heimann committed
492

Sebastian Heimann's avatar
Sebastian Heimann committed
493
494
            fx = problem.extract(xs, jpar)
            fy = problem.extract(xs, ipar)
Sebastian Heimann's avatar
Sebastian Heimann committed
495
496
497
498
499

            axes.scatter(
                xpar.scaled(fx),
                ypar.scaled(fy),
                c=color,
500
                s=3, alpha=0.5, cmap=cmap, edgecolors='none')
Sebastian Heimann's avatar
Sebastian Heimann committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

            cov = num.cov((xpar.scaled(fx), ypar.scaled(fy)))
            evals, evecs = eigh_sorted(cov)
            evals = num.sqrt(evals)
            ell = patches.Ellipse(
                xy=(num.mean(xpar.scaled(fx)), num.mean(ypar.scaled(fy))),
                width=evals[0]*2,
                height=evals[1]*2,
                angle=num.rad2deg(num.arctan2(evecs[1][0], evecs[0][0])))

            ell.set_facecolor('none')
            axes.add_artist(ell)

            fx = problem.extract(xref, jpar)
            fy = problem.extract(xref, ipar)
516
517
518
519
520
521
522

            ref_color = scolor('aluminium6')
            ref_color_light = 'none'
            axes.plot(
                xpar.scaled(fx), ypar.scaled(fy), 's',
                mew=1.5, ms=5, color=ref_color_light, mec=ref_color)

Sebastian Heimann's avatar
Sebastian Heimann committed
523
524
525
526

def draw_solution_figure(
        model, plt, misfit_cutoff=None, beachball_type='full'):

Sebastian Heimann's avatar
Sebastian Heimann committed
527
528
529
530
531
    fontsize = 10.

    fig = plt.figure(figsize=(6, 2))
    axes = fig.add_subplot(1, 1, 1, aspect=1.0)
    fig.subplots_adjust(left=0., right=1., bottom=0., top=1.)
Sebastian Heimann's avatar
Sebastian Heimann committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

    problem = model.problem
    if not problem:
        return

    xs = model.xs

    if xs.size == 0:
        return

    gms = problem.global_misfits(model.misfits)
    isort = num.argsort(gms)
    iorder = num.empty_like(isort)
    iorder[isort] = num.arange(iorder.size)[::-1]

Sebastian Heimann's avatar
Sebastian Heimann committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
    mean_source = core.get_mean_source(problem, model.xs)
    best_source = core.get_best_source(problem, model.xs, model.misfits)
    ref_source = problem.base_source

    for xpos, label in [
            (0., 'Full'),
            (2., 'Isotropic'),
            (4., 'Deviatoric'),
            (6., 'CLVD'),
            (8., 'DC')]:

        axes.annotate(
            label,
            xy=(1+xpos, 3),
            xycoords='data',
            xytext=(0., 0.),
            textcoords='offset points',
            ha='center',
            va='center',
            color='black',
            fontsize=fontsize)

    decos = []
    for source in [best_source, mean_source, ref_source]:
        mt = source.pyrocko_moment_tensor()
        deco = mt.standard_decomposition()
        decos.append(deco)

    moment_full_max = max(deco[-1][0] for deco in decos)

    for ypos, label, deco, color_t in [
            (2., 'Ensemble best', decos[0], scolor('aluminium5')),
            (1., 'Ensemble mean', decos[1], scolor('scarletred1')),
            (0., 'Reference', decos[2], scolor('aluminium3'))]:

        [(moment_iso, ratio_iso, m_iso),
         (moment_dc, ratio_dc, m_dc),
         (moment_clvd, ratio_clvd, m_clvd),
         (moment_devi, ratio_devi, m_devi),
         (moment_full, ratio_full, m_full)] = deco

        size0 = moment_full / moment_full_max

        axes.annotate(
            label,
            xy=(-2., ypos),
            xycoords='data',
            xytext=(0., 0.),
            textcoords='offset points',
            ha='left',
            va='center',
            color='black',
            fontsize=fontsize)

        for xpos, mt_part, ratio, ops in [
                (0., m_full, ratio_full, '-'),
                (2., m_iso, ratio_iso, '='),
                (4., m_devi, ratio_devi, '='),
                (6., m_clvd, ratio_clvd, '+'),
                (8., m_dc, ratio_dc, None)]:

            if ratio != 0.0:
                beachball.plot_beachball_mpl(
                    mt_part, axes,
                    beachball_type='full',
                    position=(1.+xpos, ypos),
                    size=0.9*size0*math.sqrt(ratio),
                    size_units='data',
                    color_t=color_t,
                    linewidth=1.0)
Sebastian Heimann's avatar
Sebastian Heimann committed
617

Sebastian Heimann's avatar
Sebastian Heimann committed
618
619
620
            else:
                axes.annotate(
                    'N/A',
Sebastian Heimann's avatar
Sebastian Heimann committed
621
                    xy=(1.+xpos, ypos),
Sebastian Heimann's avatar
Sebastian Heimann committed
622
623
624
625
626
627
628
629
630
631
632
633
634
                    ha='center',
                    va='center',
                    color='black',
                    fontsize=fontsize)

            if ops is not None:
                axes.annotate(
                    ops,
                    xy=(2. + xpos, ypos),
                    ha='center',
                    va='center',
                    color='black',
                    fontsize=fontsize)
Sebastian Heimann's avatar
Sebastian Heimann committed
635
636

    axes.axison = False
Sebastian Heimann's avatar
Sebastian Heimann committed
637
638
639
    axes.set_xlim(-2.25, 9.75)
    axes.set_ylim(-0.5, 3.5)
    fig.savefig('test.pdf')
Sebastian Heimann's avatar
Sebastian Heimann committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721


def draw_contributions_figure(model, plt):

    fig = plt.figure()

    problem = model.problem
    if not problem:
        return

    xs = model.xs

    if xs.size == 0:
        return

    imodels = num.arange(model.nmodels)

    gms = problem.global_misfits(model.misfits)**2

    isort = num.argsort(gms)[::-1]

    gms = gms[isort]

    gms_softclip = num.where(gms > 1.0, 0.1 * num.log10(gms) + 1.0, gms)

    gcms = problem.global_contributions(model.misfits)
    gcms = gcms[isort, :]

    jsort = num.argsort(gcms[-1, :])[::-1]

    # ncols = 4
    # nrows = ((problem.ntargets + 1) - 1) / ncols + 1

    axes = fig.add_subplot(2, 2, 1)
    labelspace(axes)
    axes.set_ylabel('Relative contribution (smoothed)')
    axes.set_ylim(0.0, 1.0)

    axes2 = fig.add_subplot(2, 2, 3, sharex=axes)
    labelspace(axes2)
    axes2.set_xlabel('Tested model, sorted descending by global misfit value')

    axes2.set_ylabel('Square of misfit')

    axes2.set_ylim(0., 1.5)
    axes2.axhspan(1.0, 1.5, color=(0.8, 0.8, 0.8))
    axes2.set_yticks([0., 0.2, 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5])
    axes2.set_yticklabels(
        ['0.0', '0.2', '0.4', '0.6', '0.8', '1', '10', '100', '1000', '10000',
         '100000'])

    axes2.set_xlim(imodels[0], imodels[-1])

    rel_ms_sum = num.zeros(model.nmodels)
    rel_ms_smooth_sum = num.zeros(model.nmodels)
    ms_smooth_sum = num.zeros(model.nmodels)
    b = num.hanning(100)
    b /= num.sum(b)
    a = [1]
    ii = 0

    for itarget in jsort:
        target = problem.targets[itarget]
        ms = gcms[:, itarget]
        ms = num.where(num.isfinite(ms), ms, 0.0)
        if num.all(ms == 0.0):
            continue

        rel_ms = ms / gms

        rel_ms_smooth = signal.filtfilt(b, a, rel_ms)

        ms_smooth = rel_ms_smooth * gms_softclip

        rel_poly_y = num.concatenate(
            [rel_ms_smooth_sum[::-1], rel_ms_smooth_sum + rel_ms_smooth])
        poly_x = num.concatenate([imodels[::-1], imodels])

        axes.fill(
            poly_x, rel_poly_y,
            alpha=0.5,
            color=colors[ii % len(colors)],
Sebastian Heimann's avatar
Sebastian Heimann committed
722
            label='%s (%.2g)' % (target.string_id(), num.mean(rel_ms[-1])))
Sebastian Heimann's avatar
Sebastian Heimann committed
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766

        poly_y = num.concatenate(
            [ms_smooth_sum[::-1], ms_smooth_sum + ms_smooth])

        axes2.fill(poly_x, poly_y, alpha=0.5, color=colors[ii % len(colors)])

        rel_ms_sum += rel_ms

        # axes.plot(imodels, rel_ms_sum, color='black', alpha=0.1, zorder=-1)

        ms_smooth_sum += ms_smooth
        rel_ms_smooth_sum += rel_ms_smooth
        ii += 1

    axes.legend(
        title='Contributions (large to small at minimal global misfit)',
        bbox_to_anchor=(1.05, 0.0, 1.0, 1.0),
        loc='upper left',
        ncol=2, borderaxespad=0., prop={'size': 12})

    axes2.plot(imodels, gms_softclip, color='black')
    axes2.axhline(1.0, color=(0.5, 0.5, 0.5))
    fig.tight_layout()


def draw_bootstrap_figure(model, plt):

    fig = plt.figure()

    problem = model.problem
    gms = problem.global_misfits(model.misfits)

    imodels = num.arange(model.nmodels)

    axes = fig.add_subplot(1, 1, 1)

    gms_softclip = num.where(gms > 1.0, 0.1 * num.log10(gms) + 1.0, gms)

    ibests = []
    for ibootstrap in xrange(problem.nbootstrap):
        bms = problem.bootstrap_misfits(model.misfits, ibootstrap)
        isort_bms = num.argsort(bms)[::-1]

        ibests.append(isort_bms[-1])
Sebastian Heimann's avatar
Sebastian Heimann committed
767
        print num.argmin(bms), isort_bms[-1]
Sebastian Heimann's avatar
Sebastian Heimann committed
768
769
770
771

        bms_softclip = num.where(bms > 1.0, 0.1 * num.log10(bms) + 1.0, bms)
        axes.plot(imodels, bms_softclip[isort_bms], color='red', alpha=0.2)

Sebastian Heimann's avatar
Sebastian Heimann committed
772
773
774
775
776
777
778
779
780
781
782
783
784
    isort = num.argsort(gms)[::-1]
    iorder = num.empty(isort.size)
    iorder[isort] = imodels

    axes.plot(iorder[ibests], gms_softclip[ibests], 'x', color='black')

    m = num.median(gms[ibests])
    s = num.std(gms[ibests])

    axes.axhline(m+s, color='black', alpha=0.5)
    axes.axhline(m, color='black')
    axes.axhline(m-s, color='black', alpha=0.5)

Sebastian Heimann's avatar
Sebastian Heimann committed
785
786
    axes.plot(imodels, gms_softclip[isort], color='black')

Sebastian Heimann's avatar
Sebastian Heimann committed
787
788
    axes.set_xlim(imodels[0], imodels[-1])
    axes.set_xlabel('Tested model, sorted descending by global misfit value')
Sebastian Heimann's avatar
Sebastian Heimann committed
789

790

Sebastian Heimann's avatar
Sebastian Heimann committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
def gather(l, key, sort=None, filter=None):
    d = {}
    for x in l:
        if filter is not None and not filter(x):
            continue

        k = key(x)
        if k not in d:
            d[k] = []

        d[k].append(x)

    if sort is not None:
        for v in d.itervalues():
            v.sort(key=sort)

    return d


def plot_trace(axes, tr, **kwargs):
    return axes.plot(tr.get_xdata(), tr.get_ydata(), **kwargs)


def plot_taper(axes, t, taper, **kwargs):
    y = num.ones(t.size) * 0.9
    taper(y, t[0], t[1] - t[0])
    y2 = num.concatenate((y, -y[::-1]))
    t2 = num.concatenate((t, t[::-1]))
    axes.fill(t2, y2, **kwargs)


822
def plot_dtrace(axes, tr, space, mi, ma, **kwargs):
Sebastian Heimann's avatar
Sebastian Heimann committed
823
824
    t = tr.get_xdata()
    y = tr.get_ydata()
825
826
    y2 = (num.concatenate((y, num.zeros(y.size))) - mi) / \
        (ma-mi) * space - (1.0 + space)
Sebastian Heimann's avatar
Sebastian Heimann committed
827
    t2 = num.concatenate((t, t[::-1]))
828
    axes.fill(
Sebastian Heimann's avatar
Sebastian Heimann committed
829
830
831
832
        t2, y2,
        clip_on=False,
        **kwargs)

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
def plot_spectrum(
        axes, spec_syn, spec_obs, fmin, fmax, space, mi, ma,
        syn_color='red', obs_color='black',
        syn_lw=1.5, obs_lw=1.0, color_vline='gray', fontsize=9.):

    fpad = (fmax - fmin) / 6.

    for spec, color, lw in [
            (spec_syn, syn_color, syn_lw),
            (spec_obs, obs_color, obs_lw)]:

        f = spec.get_xdata()
        mask = num.logical_and(fmin - fpad <= f, f <= fmax + fpad)

        f = f[mask]
        y = num.abs(spec.get_ydata())[mask]

        y2 = (num.concatenate((y, num.zeros(y.size))) - mi) / \
            (ma-mi) * space - (1.0 + space)
        f2 = num.concatenate((f, f[::-1]))
        axes2 = axes.twiny()
        axes2.set_axis_off()

        axes2.set_xlim(fmin - fpad * 5, fmax + fpad * 5)

        axes2.plot(f2, y2, clip_on=False, color=color, lw=lw)
        axes2.fill(f2, y2, alpha=0.1, clip_on=False, color=color)

    axes2.plot([fmin, fmin], [-1.0 - space, -1.0], color=color_vline)
    axes2.plot([fmax, fmax], [-1.0 - space, -1.0], color=color_vline)


    for (text, fx, ha) in [
            ('%.3g Hz' % fmin, fmin, 'right'),
            ('%.3g Hz' % fmax, fmax, 'left')]:

        axes2.annotate(
            text,
            xy=(fx, -1.0),
            xycoords='data',
            xytext=(
                fontsize*0.4 * [-1, 1][ha == 'left'],
                -fontsize*0.2),
            textcoords='offset points',
            ha=ha,
            va='top',
            color=color_vline,
            fontsize=fontsize)

Sebastian Heimann's avatar
Sebastian Heimann committed
882

883
884
885
886
def plot_dtrace_vline(axes, t, space, **kwargs):
    axes.plot([t, t], [-1.0 - space, -1.0], **kwargs)


Sebastian Heimann's avatar
Sebastian Heimann committed
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
def draw_fits_figures(ds, model, plt):
    fontsize = 10

    problem = model.problem

    for target in problem.targets:
        target.set_dataset(ds)

    target_index = dict(
        (target, i) for (i, target) in enumerate(problem.targets))

    gms = problem.global_misfits(model.misfits)
    isort = num.argsort(gms)
    gms = gms[isort]
    xs = model.xs[isort, :]
    misfits = model.misfits[isort, :]

    xbest = xs[0, :]

    ws = problem.get_target_weights()
    gcms = problem.global_contributions(misfits[:1])[0]

    w_max = num.nanmax(ws)
    gcm_max = num.nanmax(gcms)

    source = problem.unpack(xbest)

    target_to_result = {}
    all_syn_trs = []
916
    all_syn_specs = []
917
    ms, ns, results = problem.evaluate(xbest, result_mode='full')
Sebastian Heimann's avatar
Sebastian Heimann committed
918
919
920
921
922
923
924
925
926
927

    dtraces = []
    for target, result in zip(problem.targets, results):
        if result is None:
            dtraces.append(None)
            continue

        itarget = target_index[target]
        w = target.get_combined_weight(problem.apply_balancing_weights)

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
        if target.misfit_config.domain == 'cc_max_norm':
            tref = (result.filtered_obs.tmin + result.filtered_obs.tmax) * 0.5
            for tr_filt, tr_proc, tshift in (
                    (result.filtered_obs,
                     result.processed_obs,
                     0.),
                    (result.filtered_syn,
                     result.processed_syn,
                     result.cc_shift)):

                norm = num.sum(num.abs(tr_proc.ydata)) / tr_proc.data_len()
                tr_filt.ydata /= norm
                tr_proc.ydata /= norm

                tr_filt.shift(tshift)
                tr_proc.shift(tshift)

            ctr = result.cc
            ctr.shift(tref)

            dtrace = ctr

        else:
            for tr in (
                    result.filtered_obs,
                    result.filtered_syn,
                    result.processed_obs,
                    result.processed_syn):
Sebastian Heimann's avatar
Sebastian Heimann committed
956

957
                tr.ydata *= w
Sebastian Heimann's avatar
Sebastian Heimann committed
958

959
960
961
962
963
964
965
            for spec in (
                    result.spectrum_obs,
                    result.spectrum_syn):

                if spec is not None:
                    spec.ydata *= w

966
967
968
969
970
            dtrace = result.processed_syn.copy()
            dtrace.set_ydata(
                (
                    (result.processed_syn.get_ydata() -
                     result.processed_obs.get_ydata())**2))
Sebastian Heimann's avatar
Sebastian Heimann committed
971
972
973

        target_to_result[target] = result

974
        dtrace.meta = dict(super_group=target.super_group, group=target.group)
Sebastian Heimann's avatar
Sebastian Heimann committed
975
        dtraces.append(dtrace)
976

977
978
979
        result.processed_syn.meta = dict(
            super_group=target.super_group, group=target.group)

Sebastian Heimann's avatar
Sebastian Heimann committed
980
981
        all_syn_trs.append(result.processed_syn)

982
        if result.spectrum_syn:
983
984
985
            result.spectrum_syn.meta = dict(
                super_group=target.super_group, group=target.group)

986
987
            all_syn_specs.append(result.spectrum_syn)

Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
988
989
990
991
    if not all_syn_trs:
        logger.warn('no traces to show')
        return

992
993
994
    skey = lambda tr: (tr.meta['super_group'], tr.meta['group'])

    trace_minmaxs = trace.minmax(all_syn_trs, skey)
Sebastian Heimann's avatar
Sebastian Heimann committed
995

996
    amp_spec_maxs = amp_spec_max(all_syn_specs, skey)
997

998
    dminmaxs = trace.minmax([x for x in dtraces if x is not None], skey)
Sebastian Heimann's avatar
Sebastian Heimann committed
999
1000

    for tr in dtraces: