plot.py 51 KB
Newer Older
Sebastian Heimann's avatar
Sebastian Heimann committed
1
import math
2
import re
Sebastian Heimann's avatar
Sebastian Heimann committed
3
import random
4
import logging
5
import os
Sebastian Heimann's avatar
Sebastian Heimann committed
6
7
8
import os.path as op
import numpy as num
from scipy import signal
9
from pyrocko import beachball, guts, trace, util, gf
10
from pyrocko import hudson
Sebastian Heimann's avatar
Sebastian Heimann committed
11
12
13
from grond import core
from matplotlib import pyplot as plt
from matplotlib import cm, patches
14
from pyrocko.cake_plot import colors, \
Sebastian Heimann's avatar
Sebastian Heimann committed
15
16
    str_to_mpl_color as scolor, light

17
18
from pyrocko.plot import mpl_init, mpl_papersize, mpl_margins

19
20
logger = logging.getLogger('grond.plot')

Sebastian Heimann's avatar
Sebastian Heimann committed
21
22
23
km = 1000.


24
25
26
27
28
29
30
31
32
33
34
35
36
def amp_spec_max(spec_trs, key):
    amaxs = {}
    for spec_tr in spec_trs:
        amax = num.max(num.abs(spec_tr.ydata))
        k = key(spec_tr)
        if k not in amaxs:
            amaxs[k] = amax
        else:
            amaxs[k] = max(amaxs[k], amax)

    return amaxs


Sebastian Heimann's avatar
Sebastian Heimann committed
37
38
39
40
41
42
43
def ordersort(x):
    isort = num.argsort(x)
    iorder = num.empty(isort.size)
    iorder[isort] = num.arange(isort.size)
    return iorder


Sebastian Heimann's avatar
Sebastian Heimann committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def nextpow2(i):
    return 2**int(math.ceil(math.log(i)/math.log(2.)))


def fixlim(lo, hi):
    if lo == hi:
        return lo - 1.0, hi + 1.0
    else:
        return lo, hi


def str_dist(dist):
    if dist < 10.0:
        return '%g m' % dist
    elif 10. <= dist < 1.*km:
        return '%.0f m' % dist
    elif 1.*km <= dist < 10.*km:
        return '%.1f km' % (dist / km)
    else:
        return '%.0f km' % (dist / km)


def str_duration(t):
Sebastian Heimann's avatar
Sebastian Heimann committed
67
68
69
    s = ''
    if t < 0.:
        s = '-'
Sebastian Heimann's avatar
Sebastian Heimann committed
70

Sebastian Heimann's avatar
Sebastian Heimann committed
71
    t = abs(t)
Sebastian Heimann's avatar
Sebastian Heimann committed
72

Sebastian Heimann's avatar
Sebastian Heimann committed
73
74
    if t < 10.0:
        return s + '%.2g s' % t
Sebastian Heimann's avatar
Sebastian Heimann committed
75
    elif 10.0 <= t < 3600.:
Sebastian Heimann's avatar
Sebastian Heimann committed
76
77
78
79
80
        return s + util.time_to_str(t, format='%M:%S min')
    elif 3600. <= t < 24*3600.:
        return s + util.time_to_str(t, format='%H:%M h')
    else:
        return s + '%.1f d' % (t / (24.*3600.))
Sebastian Heimann's avatar
Sebastian Heimann committed
81
82
83
84
85
86
87
88


def eigh_sorted(mat):
    evals, evecs = num.linalg.eigh(mat)
    iorder = num.argsort(evals)
    return evals[iorder], evecs[:, iorder]


89
90
91
92
93
94
95
96
97
def make_norm_trace(a, b, exponent):
    tmin = max(a.tmin, b.tmin)
    tmax = min(a.tmax, b.tmax)
    c = a.chop(tmin, tmax, inplace=False)
    bc = b.chop(tmin, tmax, inplace=False)
    c.set_ydata(num.abs(c.get_ydata() - bc.get_ydata())**exponent)
    return c


Sebastian Heimann's avatar
Sebastian Heimann committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
class GrondModel(object):
    def __init__(self, **kwargs):
        self.listeners = []
        self.set_problem(None)

    def add_listener(self, listener):
        self.listeners.append(listener)

    def set_problem(self, problem):

        self.problem = problem
        if problem:
            nparameters = problem.nparameters
            ntargets = problem.ntargets
        else:
            nparameters = 0
            ntargets = 0

        nmodels = 0
        nmodels_capacity = 1024

        self._xs_buffer = num.zeros(
            (nmodels_capacity, nparameters), dtype=num.float)
        self._misfits_buffer = num.zeros(
            (nmodels_capacity, ntargets, 2), dtype=num.float)

        self.xs = self._xs_buffer[:nmodels, :]
        self.misfits = self._misfits_buffer[:nmodels, :, :]

        self.data_changed()

    @property
    def nmodels(self):
        return self.xs.shape[0]

    @property
    def nmodels_capacity(self):
        return self._xs_buffer.shape[0]

    def append(self, xs, misfits):
        assert xs.shape[0] == misfits.shape[0]

        nmodels_add = xs.shape[0]

        nmodels = self.nmodels
        nmodels_new = nmodels + nmodels_add
        nmodels_capacity_new = max(1024, nextpow2(nmodels_new))

        nmodels_capacity = self.nmodels_capacity
        if nmodels_capacity_new > nmodels_capacity:
            xs_buffer = num.zeros(
                (nmodels_capacity_new, self.problem.nparameters),
                dtype=num.float)

            misfits_buffer = num.zeros(
                (nmodels_capacity_new, self.problem.ntargets, 2),
                dtype=num.float)

            xs_buffer[:nmodels, :] = self._xs_buffer[:nmodels]
            misfits_buffer[:nmodels, :] = self._misfits_buffer[:nmodels]
            self._xs_buffer = xs_buffer
            self._misfits_buffer = misfits_buffer

        self._xs_buffer[nmodels:nmodels+nmodels_add, :] = xs
        self._misfits_buffer[nmodels:nmodels+nmodels_add, :, :] = misfits

        nmodels = nmodels_new

        self.xs = self._xs_buffer[:nmodels, :]
        self.misfits = self._misfits_buffer[:nmodels, :, :]

        self.data_changed()

    def data_changed(self):
        for listener in self.listeners:
            listener()


176
def draw_sequence_figures(model, plt, misfit_cutoff=None, sort_by='iteration'):
Sebastian Heimann's avatar
Sebastian Heimann committed
177
178
179
180
181
    problem = model.problem

    imodels = num.arange(model.nmodels)
    bounds = problem.bounds() + problem.dependant_bounds()

182
    xref = problem.xref()
Sebastian Heimann's avatar
Sebastian Heimann committed
183
184
185
186
187
188
189
190
191
192
193

    xs = model.xs

    npar = problem.nparameters
    ndep = problem.ndependants

    gms = problem.global_misfits(model.misfits)
    gms_softclip = num.where(gms > 1.0, 0.2 * num.log10(gms) + 1.0, gms)

    isort = num.argsort(gms)[::-1]

194
195
196
197
198
199
200
    if sort_by == 'iteration':
        imodels = imodels[isort]
    elif sort_by == 'misfit':
        imodels = num.arange(imodels.size)
    else:
        assert False

Sebastian Heimann's avatar
Sebastian Heimann committed
201
202
203
204
205
206
207
208
209
210
211
212
    gms = gms[isort]
    gms_softclip = gms_softclip[isort]
    xs = xs[isort, :]

    iorder = num.empty_like(isort)
    iorder = num.arange(iorder.size)

    if misfit_cutoff is None:
        ibest = num.ones(gms.size, dtype=num.bool)
    else:
        ibest = gms < misfit_cutoff

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    def config_axes(axes, nfx, nfy, impl, iplot, nplots):
        if (impl - 1) % nfx != nfx - 1:
            axes.get_yaxis().tick_left()

        if (impl - 1) >= (nfx * (nfy-1)) or iplot >= nplots - nfx:
            axes.set_xlabel('Iteration')
            if not (impl - 1) / nfx == 0:
                axes.get_xaxis().tick_bottom()
        elif (impl - 1) / nfx == 0:
            axes.get_xaxis().tick_top()
            axes.set_xticklabels([])
        else:
            axes.get_xaxis().set_visible(False)

    fontsize = 10.0

Sebastian Heimann's avatar
Sebastian Heimann committed
229
    nfx = 2
230
    nfy = 3
Sebastian Heimann's avatar
Sebastian Heimann committed
231
232
233
    # nfz = (npar + ndep + 1 - 1) / (nfx*nfy) + 1
    cmap = cm.YlOrRd
    cmap = cm.jet
234
    msize = 1.5
Sebastian Heimann's avatar
Sebastian Heimann committed
235
    axes = None
236
    figs = []
Sebastian Heimann's avatar
Sebastian Heimann committed
237
238
239
240
241
242
    fig = None
    alpha = 0.5
    for ipar in xrange(npar):
        impl = ipar % (nfx*nfy) + 1

        if impl == 1:
243
244
245
            fig = plt.figure(figsize=mpl_papersize('a5', 'landscape'))
            labelpos = mpl_margins(fig, nw=nfx, nh=nfy, w=7., h=5., wspace=7.,
                                   hspace=2., units=fontsize)
246
            figs.append(fig)
Sebastian Heimann's avatar
Sebastian Heimann committed
247
248
249

        par = problem.parameters[ipar]

250
251
252
        axes = fig.add_subplot(nfy, nfx, impl)
        labelpos(axes, 2.5, 2.0)

Sebastian Heimann's avatar
Sebastian Heimann committed
253
254
        axes.set_ylabel(par.get_label())
        axes.get_yaxis().set_major_locator(plt.MaxNLocator(4))
255
256

        config_axes(axes, nfx, nfy, impl, ipar, npar+ndep+1)
Sebastian Heimann's avatar
Sebastian Heimann committed
257
258
259
260
261

        axes.set_ylim(*fixlim(*par.scaled(bounds[ipar])))
        axes.set_xlim(0, model.nmodels)

        axes.scatter(
262
263
264
265
            imodels[ibest], par.scaled(xs[ibest, ipar]), s=msize,
            c=iorder[ibest], edgecolors='none', cmap=cmap, alpha=alpha)

        axes.axhline(par.scaled(xref[ipar]), color='black', alpha=0.3)
Sebastian Heimann's avatar
Sebastian Heimann committed
266
267
268
269
270
271

    for idep in xrange(ndep):
        # ifz, ify, ifx = num.unravel_index(ipar, (nfz, nfy, nfx))
        impl = (npar+idep) % (nfx*nfy) + 1

        if impl == 1:
272
273
274
            fig = plt.figure(figsize=mpl_papersize('a5', 'landscape'))
            labelpos = mpl_margins(fig, nw=nfx, nh=nfy, w=7., h=5., wspace=7.,
                                   hspace=2., units=fontsize)
275
            figs.append(fig)
Sebastian Heimann's avatar
Sebastian Heimann committed
276
277
278

        par = problem.dependants[idep]

279
280
281
        axes = fig.add_subplot(nfy, nfx, impl)
        labelpos(axes, 2.5, 2.0)

Sebastian Heimann's avatar
Sebastian Heimann committed
282
283
        axes.set_ylabel(par.get_label())
        axes.get_yaxis().set_major_locator(plt.MaxNLocator(4))
284
285
286

        config_axes(axes, nfx, nfy, impl, npar+idep, npar+ndep+1)

Sebastian Heimann's avatar
Sebastian Heimann committed
287
288
289
290
291
        axes.set_ylim(*fixlim(*par.scaled(bounds[npar+idep])))
        axes.set_xlim(0, model.nmodels)

        ys = problem.make_dependant(xs[ibest, :], par.name)
        axes.scatter(
292
293
294
295
296
            imodels[ibest], par.scaled(ys), s=msize, c=iorder[ibest],
            edgecolors='none', cmap=cmap, alpha=alpha)

        y = problem.make_dependant(xref, par.name)
        axes.axhline(par.scaled(y), color='black', alpha=0.3)
Sebastian Heimann's avatar
Sebastian Heimann committed
297
298
299

    impl = (npar+ndep) % (nfx*nfy) + 1
    if impl == 1:
300
301
302
        fig = plt.figure(figsize=mpl_papersize('a5', 'landscape'))
        labelpos = mpl_margins(fig, nw=nfx, nh=nfy, w=7., h=5., wspace=7.,
                               hspace=2., units=fontsize)
303
        figs.append(fig)
Sebastian Heimann's avatar
Sebastian Heimann committed
304

305
306
307
308
    axes = fig.add_subplot(nfy, nfx, impl)
    labelpos(axes, 2.5, 2.0)

    config_axes(axes, nfx, nfy, impl, npar+ndep, npar+ndep+1)
Sebastian Heimann's avatar
Sebastian Heimann committed
309
310
311
312
313
314
315

    axes.set_ylim(0., 1.5)
    axes.set_yticks([0., 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4])
    axes.set_yticklabels(['0.0', '0.2', '0.4', '0.6', '0.8', '1', '10', '100'])

    axes.scatter(
        imodels[ibest], gms_softclip[ibest], c=iorder[ibest],
316
317
318
319
        s=msize, edgecolors='none', cmap=cmap, alpha=alpha)

    axes.axhspan(1.0, 1.5, color=(0.8, 0.8, 0.8), alpha=0.2)
    axes.axhline(1.0, color=(0.5, 0.5, 0.5), zorder=2)
Sebastian Heimann's avatar
Sebastian Heimann committed
320
321
322
323
324
325

    axes.set_xlim(0, model.nmodels)
    axes.set_xlabel('Iteration')

    axes.set_ylabel('Misfit')

326
    return figs
Sebastian Heimann's avatar
Sebastian Heimann committed
327
328
329


def draw_jointpar_figures(
330
        model, plt, misfit_cutoff=None, ibootstrap=None, color=None,
331
        exclude=None, include=None, draw_ellipses=False):
332

333
    color = 'misfit'
Sebastian Heimann's avatar
Sebastian Heimann committed
334
    # exclude = ['duration']
335
    # include = ['magnitude', 'rel_moment_iso', 'rel_moment_clvd', 'depth']
336
337
    neach = 6
    figsize = (8, 8)
Sebastian Heimann's avatar
Sebastian Heimann committed
338
339
    # cmap = cm.YlOrRd
    # cmap = cm.jet
340
    cmap = cm.coolwarm
341
    msize = 1.5
Sebastian Heimann's avatar
Sebastian Heimann committed
342
343
344

    problem = model.problem
    if not problem:
345
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
346
347
348
349

    xs = model.xs

    bounds = problem.bounds() + problem.dependant_bounds()
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
350
351
352
353
354
355
356
357
    for ipar in xrange(problem.ncombined):
        par = problem.combined[ipar]
        lo, hi = bounds[ipar]
        if lo == hi:
            if exclude is None:
                exclude = []

            exclude.append(par.name)
Sebastian Heimann's avatar
Sebastian Heimann committed
358

359
    xref = problem.xref()
Sebastian Heimann's avatar
Sebastian Heimann committed
360
361
362
363
364
365
366
367
368
369
370

    if ibootstrap is not None:
        gms = problem.bootstrap_misfits(model.misfits, ibootstrap)
    else:
        gms = problem.global_misfits(model.misfits)

    isort = num.argsort(gms)[::-1]

    gms = gms[isort]
    xs = xs[isort, :]

Sebastian Heimann's avatar
Sebastian Heimann committed
371
    if misfit_cutoff is not None:
Sebastian Heimann's avatar
Sebastian Heimann committed
372
        ibest = gms < misfit_cutoff
Sebastian Heimann's avatar
Sebastian Heimann committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
        gms = gms[ibest]
        xs = xs[ibest]

    nmodels = xs.shape[0]

    if color == 'dist':
        mx = num.mean(xs, axis=0)
        cov = num.cov(xs.T)
        mdists = core.mahalanobis_distance(xs, mx, cov)
        color = ordersort(mdists)

    elif color == 'misfit':
        iorder = num.arange(nmodels)
        color = iorder

    elif color in problem.parameter_names:
        ind = problem.name_to_index(color)
        color = ordersort(problem.extract(xs, ind))
Sebastian Heimann's avatar
Sebastian Heimann committed
391

392
393
394
395
    smap = {}
    iselected = 0
    for ipar in xrange(problem.ncombined):
        par = problem.combined[ipar]
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
396
397
        if exclude and par.name in exclude or \
                include and par.name not in include:
398
            continue
Sebastian Heimann's avatar
Sebastian Heimann committed
399

400
401
402
403
        smap[iselected] = ipar
        iselected += 1

    nselected = iselected
Sebastian Heimann's avatar
Sebastian Heimann committed
404

405
406
407
408
    if nselected < 2:
        logger.warn('cannot draw joinpar figures with less than two '
                    'parameters selected')
        return []
409
410

    nfig = (nselected-2) / neach + 1
Sebastian Heimann's avatar
Sebastian Heimann committed
411
412
413
414
415
416

    figs = []
    for ifig in xrange(nfig):
        figs_row = []
        for jfig in xrange(nfig):
            if ifig >= jfig:
417
                figs_row.append(plt.figure(figsize=figsize))
Sebastian Heimann's avatar
Sebastian Heimann committed
418
419
420
421
422
            else:
                figs_row.append(None)

        figs.append(figs_row)

423
424
    for iselected in xrange(nselected):
        ipar = smap[iselected]
Sebastian Heimann's avatar
Sebastian Heimann committed
425
        ypar = problem.combined[ipar]
426
427
        for jselected in xrange(iselected):
            jpar = smap[jselected]
Sebastian Heimann's avatar
Sebastian Heimann committed
428
429
            xpar = problem.combined[jpar]

430
431
            ixg = (iselected - 1)
            iyg = jselected
Sebastian Heimann's avatar
Sebastian Heimann committed
432
433
434
435
436
437
438
439
440
441
442
443
444

            ix = ixg % neach
            iy = iyg % neach

            ifig = ixg/neach
            jfig = iyg/neach

            aind = (neach, neach, (ix * neach) + iy + 1)

            fig = figs[ifig][jfig]

            axes = fig.add_subplot(*aind)

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
            axes.axvline(0., color=scolor('aluminium3'), lw=0.5)
            axes.axhline(0., color=scolor('aluminium3'), lw=0.5)
            for spine in axes.spines.values():
                spine.set_edgecolor(scolor('aluminium5'))
                spine.set_linewidth(0.5)

            xmin, xmax = fixlim(*xpar.scaled(bounds[jpar]))
            ymin, ymax = fixlim(*ypar.scaled(bounds[ipar]))

            if ix == 0 or jselected + 1 == iselected:
                for (xpos, xoff, x) in [(0.0, 10., xmin), (1.0, -10., xmax)]:
                    axes.annotate(
                        '%.2g%s' % (x, xpar.get_unit_suffix()),
                        xy=(xpos, 1.05),
                        xycoords='axes fraction',
                        xytext=(xoff, 5.),
                        textcoords='offset points',
                        verticalalignment='bottom',
                        horizontalalignment='left',
                        rotation=45.)

            if iy == neach - 1 or jselected + 1 == iselected:
                for (ypos, yoff, y) in [(0., 10., ymin), (1.0, -10., ymax)]:
                    axes.annotate(
                        '%.2g%s' % (y, ypar.get_unit_suffix()),
                        xy=(1.0, ypos),
                        xycoords='axes fraction',
                        xytext=(5., yoff),
                        textcoords='offset points',
                        verticalalignment='bottom',
                        horizontalalignment='left',
                        rotation=45.)

            axes.set_xlim(xmin, xmax)
            axes.set_ylim(ymin, ymax)
Sebastian Heimann's avatar
Sebastian Heimann committed
480
481
482
483

            axes.get_xaxis().set_ticks([])
            axes.get_yaxis().set_ticks([])

484
            if iselected == nselected - 1 or ix == neach - 1:
Sebastian Heimann's avatar
Sebastian Heimann committed
485
                axes.annotate(
486
                    xpar.get_label(with_unit=False),
Sebastian Heimann's avatar
Sebastian Heimann committed
487
488
489
490
491
492
493
494
                    xy=(0.5, -0.05),
                    xycoords='axes fraction',
                    verticalalignment='top',
                    horizontalalignment='right',
                    rotation=45.)

            if iy == 0:
                axes.annotate(
495
                    ypar.get_label(with_unit=False),
Sebastian Heimann's avatar
Sebastian Heimann committed
496
497
                    xy=(-0.05, 0.5),
                    xycoords='axes fraction',
498
499
500
                    verticalalignment='top',
                    horizontalalignment='right',
                    rotation=45.)
Sebastian Heimann's avatar
Sebastian Heimann committed
501

Sebastian Heimann's avatar
Sebastian Heimann committed
502
503
            fx = problem.extract(xs, jpar)
            fy = problem.extract(xs, ipar)
Sebastian Heimann's avatar
Sebastian Heimann committed
504
505
506
507
508

            axes.scatter(
                xpar.scaled(fx),
                ypar.scaled(fy),
                c=color,
509
                s=msize, alpha=0.5, cmap=cmap, edgecolors='none')
Sebastian Heimann's avatar
Sebastian Heimann committed
510

511
512
513
514
515
516
517
518
519
520
521
522
            if draw_ellipses:
                cov = num.cov((xpar.scaled(fx), ypar.scaled(fy)))
                evals, evecs = eigh_sorted(cov)
                evals = num.sqrt(evals)
                ell = patches.Ellipse(
                    xy=(num.mean(xpar.scaled(fx)), num.mean(ypar.scaled(fy))),
                    width=evals[0]*2,
                    height=evals[1]*2,
                    angle=num.rad2deg(num.arctan2(evecs[1][0], evecs[0][0])))

                ell.set_facecolor('none')
                axes.add_artist(ell)
Sebastian Heimann's avatar
Sebastian Heimann committed
523
524
525

            fx = problem.extract(xref, jpar)
            fy = problem.extract(xref, ipar)
526
527
528
529
530

            ref_color = scolor('aluminium6')
            ref_color_light = 'none'
            axes.plot(
                xpar.scaled(fx), ypar.scaled(fy), 's',
531
                mew=1.5, ms=5, mfc=ref_color_light, mec=ref_color)
532

533
534
535
536
537
538
    figs_flat = []
    for figs_row in figs:
        figs_flat.extend(fig for fig in figs_row if fig is not None)

    return figs_flat

Sebastian Heimann's avatar
Sebastian Heimann committed
539
540
541
542

def draw_solution_figure(
        model, plt, misfit_cutoff=None, beachball_type='full'):

Sebastian Heimann's avatar
Sebastian Heimann committed
543
544
545
546
547
    fontsize = 10.

    fig = plt.figure(figsize=(6, 2))
    axes = fig.add_subplot(1, 1, 1, aspect=1.0)
    fig.subplots_adjust(left=0., right=1., bottom=0., top=1.)
Sebastian Heimann's avatar
Sebastian Heimann committed
548
549
550

    problem = model.problem
    if not problem:
551
552
        logger.warn('problem not set')
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
553
554
555
556

    xs = model.xs

    if xs.size == 0:
557
558
        logger.warn('empty models vector')
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
559
560
561
562
563
564

    gms = problem.global_misfits(model.misfits)
    isort = num.argsort(gms)
    iorder = num.empty_like(isort)
    iorder[isort] = num.arange(iorder.size)[::-1]

Sebastian Heimann's avatar
Sebastian Heimann committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
    mean_source = core.get_mean_source(problem, model.xs)
    best_source = core.get_best_source(problem, model.xs, model.misfits)
    ref_source = problem.base_source

    for xpos, label in [
            (0., 'Full'),
            (2., 'Isotropic'),
            (4., 'Deviatoric'),
            (6., 'CLVD'),
            (8., 'DC')]:

        axes.annotate(
            label,
            xy=(1+xpos, 3),
            xycoords='data',
            xytext=(0., 0.),
            textcoords='offset points',
            ha='center',
            va='center',
            color='black',
            fontsize=fontsize)

    decos = []
    for source in [best_source, mean_source, ref_source]:
        mt = source.pyrocko_moment_tensor()
        deco = mt.standard_decomposition()
        decos.append(deco)

    moment_full_max = max(deco[-1][0] for deco in decos)

    for ypos, label, deco, color_t in [
            (2., 'Ensemble best', decos[0], scolor('aluminium5')),
            (1., 'Ensemble mean', decos[1], scolor('scarletred1')),
            (0., 'Reference', decos[2], scolor('aluminium3'))]:

        [(moment_iso, ratio_iso, m_iso),
         (moment_dc, ratio_dc, m_dc),
         (moment_clvd, ratio_clvd, m_clvd),
         (moment_devi, ratio_devi, m_devi),
         (moment_full, ratio_full, m_full)] = deco

        size0 = moment_full / moment_full_max

        axes.annotate(
            label,
            xy=(-2., ypos),
            xycoords='data',
            xytext=(0., 0.),
            textcoords='offset points',
            ha='left',
            va='center',
            color='black',
            fontsize=fontsize)

        for xpos, mt_part, ratio, ops in [
                (0., m_full, ratio_full, '-'),
                (2., m_iso, ratio_iso, '='),
                (4., m_devi, ratio_devi, '='),
                (6., m_clvd, ratio_clvd, '+'),
                (8., m_dc, ratio_dc, None)]:

626
            if ratio > 1e-4:
627
628
629
630
631
632
633
634
635
636
637
638
                try:
                    beachball.plot_beachball_mpl(
                        mt_part, axes,
                        beachball_type='full',
                        position=(1.+xpos, ypos),
                        size=0.9*size0*math.sqrt(ratio),
                        size_units='data',
                        color_t=color_t,
                        linewidth=1.0)

                except beachball.BeachballError, e:
                    logger.warn(str(e))
Sebastian Heimann's avatar
Sebastian Heimann committed
639

640
641
642
643
644
645
646
647
                    axes.annotate(
                        'ERROR',
                        xy=(1.+xpos, ypos),
                        ha='center',
                        va='center',
                        color='red',
                        fontsize=fontsize)

Sebastian Heimann's avatar
Sebastian Heimann committed
648
649
650
            else:
                axes.annotate(
                    'N/A',
Sebastian Heimann's avatar
Sebastian Heimann committed
651
                    xy=(1.+xpos, ypos),
Sebastian Heimann's avatar
Sebastian Heimann committed
652
653
654
655
656
657
658
659
660
661
662
663
664
                    ha='center',
                    va='center',
                    color='black',
                    fontsize=fontsize)

            if ops is not None:
                axes.annotate(
                    ops,
                    xy=(2. + xpos, ypos),
                    ha='center',
                    va='center',
                    color='black',
                    fontsize=fontsize)
Sebastian Heimann's avatar
Sebastian Heimann committed
665
666

    axes.axison = False
Sebastian Heimann's avatar
Sebastian Heimann committed
667
668
    axes.set_xlim(-2.25, 9.75)
    axes.set_ylim(-0.5, 3.5)
Sebastian Heimann's avatar
Sebastian Heimann committed
669

670
671
    return [fig]

Sebastian Heimann's avatar
Sebastian Heimann committed
672
673
674

def draw_contributions_figure(model, plt):

675
676
677
678
679
    fontsize = 10.

    fig = plt.figure(figsize=mpl_papersize('a5', 'landscape'))
    labelpos = mpl_margins(fig, nw=2, nh=2, w=7., h=5., wspace=2.,
                           hspace=5., units=fontsize)
Sebastian Heimann's avatar
Sebastian Heimann committed
680
681
682

    problem = model.problem
    if not problem:
683
684
        logger.warn('problem not set')
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
685
686
687
688

    xs = model.xs

    if xs.size == 0:
689
690
        logger.warn('empty models vector')
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
691
692
693

    imodels = num.arange(model.nmodels)

Sebastian Heimann's avatar
Sebastian Heimann committed
694
    gms = problem.global_misfits(model.misfits)**problem.norm_exponent
Sebastian Heimann's avatar
Sebastian Heimann committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

    isort = num.argsort(gms)[::-1]

    gms = gms[isort]

    gms_softclip = num.where(gms > 1.0, 0.1 * num.log10(gms) + 1.0, gms)

    gcms = problem.global_contributions(model.misfits)
    gcms = gcms[isort, :]

    jsort = num.argsort(gcms[-1, :])[::-1]

    # ncols = 4
    # nrows = ((problem.ntargets + 1) - 1) / ncols + 1

    axes = fig.add_subplot(2, 2, 1)
711
712
    labelpos(axes, 2.5, 2.0)

Sebastian Heimann's avatar
Sebastian Heimann committed
713
714
715
716
    axes.set_ylabel('Relative contribution (smoothed)')
    axes.set_ylim(0.0, 1.0)

    axes2 = fig.add_subplot(2, 2, 3, sharex=axes)
717
718
    labelpos(axes2, 2.5, 2.0)

Sebastian Heimann's avatar
Sebastian Heimann committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
    axes2.set_xlabel('Tested model, sorted descending by global misfit value')

    axes2.set_ylabel('Square of misfit')

    axes2.set_ylim(0., 1.5)
    axes2.axhspan(1.0, 1.5, color=(0.8, 0.8, 0.8))
    axes2.set_yticks([0., 0.2, 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5])
    axes2.set_yticklabels(
        ['0.0', '0.2', '0.4', '0.6', '0.8', '1', '10', '100', '1000', '10000',
         '100000'])

    axes2.set_xlim(imodels[0], imodels[-1])

    rel_ms_sum = num.zeros(model.nmodels)
    rel_ms_smooth_sum = num.zeros(model.nmodels)
    ms_smooth_sum = num.zeros(model.nmodels)
    b = num.hanning(100)
    b /= num.sum(b)
    a = [1]
    ii = 0
    for itarget in jsort:
        target = problem.targets[itarget]
        ms = gcms[:, itarget]
        ms = num.where(num.isfinite(ms), ms, 0.0)
        if num.all(ms == 0.0):
            continue

        rel_ms = ms / gms

        rel_ms_smooth = signal.filtfilt(b, a, rel_ms)

        ms_smooth = rel_ms_smooth * gms_softclip

        rel_poly_y = num.concatenate(
            [rel_ms_smooth_sum[::-1], rel_ms_smooth_sum + rel_ms_smooth])
        poly_x = num.concatenate([imodels[::-1], imodels])

756
757
758
759
760
        add_args = {}
        if ii < 20:
            add_args['label'] = '%s (%.2g)' % (
                target.string_id(), num.mean(rel_ms[-1]))

Sebastian Heimann's avatar
Sebastian Heimann committed
761
762
763
764
        axes.fill(
            poly_x, rel_poly_y,
            alpha=0.5,
            color=colors[ii % len(colors)],
765
            **add_args)
Sebastian Heimann's avatar
Sebastian Heimann committed
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

        poly_y = num.concatenate(
            [ms_smooth_sum[::-1], ms_smooth_sum + ms_smooth])

        axes2.fill(poly_x, poly_y, alpha=0.5, color=colors[ii % len(colors)])

        rel_ms_sum += rel_ms

        # axes.plot(imodels, rel_ms_sum, color='black', alpha=0.1, zorder=-1)

        ms_smooth_sum += ms_smooth
        rel_ms_smooth_sum += rel_ms_smooth
        ii += 1

    axes.legend(
781
        title='Contributions (top twenty)',
Sebastian Heimann's avatar
Sebastian Heimann committed
782
783
        bbox_to_anchor=(1.05, 0.0, 1.0, 1.0),
        loc='upper left',
784
        ncol=1, borderaxespad=0., prop={'size': 9})
Sebastian Heimann's avatar
Sebastian Heimann committed
785
786
787
788

    axes2.plot(imodels, gms_softclip, color='black')
    axes2.axhline(1.0, color=(0.5, 0.5, 0.5))

789
790
    return [fig]

Sebastian Heimann's avatar
Sebastian Heimann committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

def draw_bootstrap_figure(model, plt):

    fig = plt.figure()

    problem = model.problem
    gms = problem.global_misfits(model.misfits)

    imodels = num.arange(model.nmodels)

    axes = fig.add_subplot(1, 1, 1)

    gms_softclip = num.where(gms > 1.0, 0.1 * num.log10(gms) + 1.0, gms)

    ibests = []
    for ibootstrap in xrange(problem.nbootstrap):
        bms = problem.bootstrap_misfits(model.misfits, ibootstrap)
        isort_bms = num.argsort(bms)[::-1]

        ibests.append(isort_bms[-1])

        bms_softclip = num.where(bms > 1.0, 0.1 * num.log10(bms) + 1.0, bms)
        axes.plot(imodels, bms_softclip[isort_bms], color='red', alpha=0.2)

Sebastian Heimann's avatar
Sebastian Heimann committed
815
816
817
818
819
820
821
822
823
824
825
826
827
    isort = num.argsort(gms)[::-1]
    iorder = num.empty(isort.size)
    iorder[isort] = imodels

    axes.plot(iorder[ibests], gms_softclip[ibests], 'x', color='black')

    m = num.median(gms[ibests])
    s = num.std(gms[ibests])

    axes.axhline(m+s, color='black', alpha=0.5)
    axes.axhline(m, color='black')
    axes.axhline(m-s, color='black', alpha=0.5)

Sebastian Heimann's avatar
Sebastian Heimann committed
828
829
    axes.plot(imodels, gms_softclip[isort], color='black')

Sebastian Heimann's avatar
Sebastian Heimann committed
830
831
    axes.set_xlim(imodels[0], imodels[-1])
    axes.set_xlabel('Tested model, sorted descending by global misfit value')
Sebastian Heimann's avatar
Sebastian Heimann committed
832

833
834
    return [fig]

835

Sebastian Heimann's avatar
Sebastian Heimann committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
def gather(l, key, sort=None, filter=None):
    d = {}
    for x in l:
        if filter is not None and not filter(x):
            continue

        k = key(x)
        if k not in d:
            d[k] = []

        d[k].append(x)

    if sort is not None:
        for v in d.itervalues():
            v.sort(key=sort)

    return d


def plot_trace(axes, tr, **kwargs):
    return axes.plot(tr.get_xdata(), tr.get_ydata(), **kwargs)


def plot_taper(axes, t, taper, **kwargs):
    y = num.ones(t.size) * 0.9
    taper(y, t[0], t[1] - t[0])
    y2 = num.concatenate((y, -y[::-1]))
    t2 = num.concatenate((t, t[::-1]))
    axes.fill(t2, y2, **kwargs)


867
def plot_dtrace(axes, tr, space, mi, ma, **kwargs):
Sebastian Heimann's avatar
Sebastian Heimann committed
868
869
    t = tr.get_xdata()
    y = tr.get_ydata()
870
871
    y2 = (num.concatenate((y, num.zeros(y.size))) - mi) / \
        (ma-mi) * space - (1.0 + space)
Sebastian Heimann's avatar
Sebastian Heimann committed
872
    t2 = num.concatenate((t, t[::-1]))
873
    axes.fill(
Sebastian Heimann's avatar
Sebastian Heimann committed
874
875
876
877
        t2, y2,
        clip_on=False,
        **kwargs)

878

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
def plot_spectrum(
        axes, spec_syn, spec_obs, fmin, fmax, space, mi, ma,
        syn_color='red', obs_color='black',
        syn_lw=1.5, obs_lw=1.0, color_vline='gray', fontsize=9.):

    fpad = (fmax - fmin) / 6.

    for spec, color, lw in [
            (spec_syn, syn_color, syn_lw),
            (spec_obs, obs_color, obs_lw)]:

        f = spec.get_xdata()
        mask = num.logical_and(fmin - fpad <= f, f <= fmax + fpad)

        f = f[mask]
        y = num.abs(spec.get_ydata())[mask]

        y2 = (num.concatenate((y, num.zeros(y.size))) - mi) / \
            (ma-mi) * space - (1.0 + space)
        f2 = num.concatenate((f, f[::-1]))
        axes2 = axes.twiny()
        axes2.set_axis_off()

        axes2.set_xlim(fmin - fpad * 5, fmax + fpad * 5)

        axes2.plot(f2, y2, clip_on=False, color=color, lw=lw)
        axes2.fill(f2, y2, alpha=0.1, clip_on=False, color=color)

    axes2.plot([fmin, fmin], [-1.0 - space, -1.0], color=color_vline)
    axes2.plot([fmax, fmax], [-1.0 - space, -1.0], color=color_vline)

    for (text, fx, ha) in [
            ('%.3g Hz' % fmin, fmin, 'right'),
            ('%.3g Hz' % fmax, fmax, 'left')]:

        axes2.annotate(
            text,
            xy=(fx, -1.0),
            xycoords='data',
            xytext=(
                fontsize*0.4 * [-1, 1][ha == 'left'],
                -fontsize*0.2),
            textcoords='offset points',
            ha=ha,
            va='top',
            color=color_vline,
            fontsize=fontsize)

Sebastian Heimann's avatar
Sebastian Heimann committed
927

928
929
930
931
def plot_dtrace_vline(axes, t, space, **kwargs):
    axes.plot([t, t], [-1.0 - space, -1.0], **kwargs)


Sebastian Heimann's avatar
Sebastian Heimann committed
932
def draw_fits_figures(ds, model, plt):
933
934
    fontsize = 8
    fontsize_title = 10
Sebastian Heimann's avatar
Sebastian Heimann committed
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961

    problem = model.problem

    for target in problem.targets:
        target.set_dataset(ds)

    target_index = dict(
        (target, i) for (i, target) in enumerate(problem.targets))

    gms = problem.global_misfits(model.misfits)
    isort = num.argsort(gms)
    gms = gms[isort]
    xs = model.xs[isort, :]
    misfits = model.misfits[isort, :]

    xbest = xs[0, :]

    ws = problem.get_target_weights()
    gcms = problem.global_contributions(misfits[:1])[0]

    w_max = num.nanmax(ws)
    gcm_max = num.nanmax(gcms)

    source = problem.unpack(xbest)

    target_to_result = {}
    all_syn_trs = []
962
    all_syn_specs = []
963
    ms, ns, results = problem.evaluate(xbest, result_mode='full')
Sebastian Heimann's avatar
Sebastian Heimann committed
964
965
966

    dtraces = []
    for target, result in zip(problem.targets, results):
967
        if isinstance(result, gf.SeismosizerError):
Sebastian Heimann's avatar
Sebastian Heimann committed
968
969
970
971
972
973
            dtraces.append(None)
            continue

        itarget = target_index[target]
        w = target.get_combined_weight(problem.apply_balancing_weights)

974
975
976
977
978
979
980
981
        if target.misfit_config.domain == 'cc_max_norm':
            tref = (result.filtered_obs.tmin + result.filtered_obs.tmax) * 0.5
            for tr_filt, tr_proc, tshift in (
                    (result.filtered_obs,
                     result.processed_obs,
                     0.),
                    (result.filtered_syn,
                     result.processed_syn,
982
                     result.tshift)):
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

                norm = num.sum(num.abs(tr_proc.ydata)) / tr_proc.data_len()
                tr_filt.ydata /= norm
                tr_proc.ydata /= norm

                tr_filt.shift(tshift)
                tr_proc.shift(tshift)

            ctr = result.cc
            ctr.shift(tref)

            dtrace = ctr

        else:
            for tr in (
                    result.filtered_obs,
                    result.filtered_syn,
                    result.processed_obs,