core.py 54.9 KB
Newer Older
Sebastian Heimann's avatar
Sebastian Heimann committed
1
2
3
4
5
6
7
8
9
10
11
12
import math
import os
import sys
import logging
import time
import copy
import shutil
import os.path as op

import numpy as num

from pyrocko.guts import load, Object, String, Float, Int, Bool, List, \
Sebastian Heimann's avatar
Sebastian Heimann committed
13
    StringChoice, Dict, Timestamp
Sebastian Heimann's avatar
Sebastian Heimann committed
14
from pyrocko import orthodrome as od, gf, trace, guts, util, weeding
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
15
from pyrocko import parimap, model, gui_util
16
from pyrocko.guts_array import Array
Sebastian Heimann's avatar
Sebastian Heimann committed
17
18
19
20
21
22
23
24

from grond import dataset

logger = logging.getLogger('grond.core')

guts_prefix = 'grond'


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
def float_or_none(x):
    if x is None:
        return x
    else:
        return float(x)


class Trace(Object):
    pass


class TraceSpectrum(Object):
    network = String.T()
    station = String.T()
    location = String.T()
    channel = String.T()
    deltaf = Float.T(default=1.0)
    fmin = Float.T(default=0.0)
    ydata = Array.T(shape=(None,), dtype=num.complex, serialize_as='list')

45
46
47
48
49
50
    def get_ydata(self):
        return self.ydata

    def get_xdata(self):
        return self.fmin + num.arange(self.ydata.size) * self.deltaf

51

Sebastian Heimann's avatar
Sebastian Heimann committed
52
53
54
55
56
57
58
def mahalanobis_distance(xs, mx, cov):
    imask = num.diag(cov) != 0.
    icov = num.linalg.inv(cov[imask, :][:, imask])
    temp = xs[:, imask] - mx[imask]
    return num.sqrt(num.sum(temp * num.dot(icov, temp.T).T, axis=1))


Sebastian Heimann's avatar
Sebastian Heimann committed
59
60
61
62
63
class Parameter(Object):
    name = String.T()
    unit = String.T(optional=True)
    scale_factor = Float.T(default=1., optional=True)
    scale_unit = String.T(optional=True)
64
    label = String.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
65
66
67
68
69
70
71
72
73

    def __init__(self, *args, **kwargs):
        if len(args) >= 1:
            kwargs['name'] = args[0]
        if len(args) >= 2:
            kwargs['unit'] = args[1]

        Object.__init__(self, **kwargs)

74
75
76
77
78
79
    def get_label(self, with_unit=True):
        l = [self.label or self.name]
        if with_unit:
            unit = self.get_unit_label()
            if unit:
                l.append('[%s]' % unit)
Sebastian Heimann's avatar
Sebastian Heimann committed
80
81
82

        return ' '.join(l)

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    def get_value_label(self, value, format='%(value)g%(unit)s'):
        value = self.scaled(value)
        unit = self.get_unit_suffix()
        return format % dict(value=value, unit=unit)

    def get_unit_label(self):
        if self.scale_unit is not None:
            return self.scale_unit
        elif self.unit:
            return self.unit
        else:
            return None

    def get_unit_suffix(self):
        unit = self.get_unit_label()
        if not unit:
            return ''
        else:
            return ' %s' % unit

Sebastian Heimann's avatar
Sebastian Heimann committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    def scaled(self, x):
        if isinstance(x, tuple):
            return tuple(v/self.scale_factor for v in x)
        if isinstance(x, list):
            return list(v/self.scale_factor for v in x)
        else:
            return x/self.scale_factor


class ADict(dict):
    def __getattr__(self, k):
        return self[k]

    def __setattr__(self, k, v):
        self[k] = v


class Problem(Object):
    name = String.T()
    parameters = List.T(Parameter.T())
    dependants = List.T(Parameter.T())
124
    apply_balancing_weights = Bool.T(default=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
125
126
127
128
129

    def __init__(self, **kwargs):
        Object.__init__(self, **kwargs)
        self._bootstrap_weights = None
        self._target_weights = None
Sebastian Heimann's avatar
Sebastian Heimann committed
130
131
132
133
        self._engine = None

    def get_engine(self):
        return self._engine
Sebastian Heimann's avatar
Sebastian Heimann committed
134
135
136
137
138
139
140
141
142
143
144
145
146

    def copy(self):
        o = copy.copy(self)
        o._bootstrap_weights = None
        o._target_weights = None
        return o

    def parameter_dict(self, x):
        return ADict((p.name, v) for (p, v) in zip(self.parameters, x))

    def parameter_array(self, d):
        return num.array([d[p.name] for p in self.parameters], dtype=num.float)

Sebastian Heimann's avatar
Sebastian Heimann committed
147
148
149
150
    @property
    def parameter_names(self):
        return [p.name for p in self.combined]

Sebastian Heimann's avatar
Sebastian Heimann committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    def dump_problem_info(self, dirname):
        fn = op.join(dirname, 'problem.yaml')
        util.ensuredirs(fn)
        guts.dump(self, filename=fn)

    def dump_problem_data(self, dirname, x, ms, ns):
        fn = op.join(dirname, 'x')
        with open(fn, 'ab') as f:
            x.astype('<f8').tofile(f)

        fn = op.join(dirname, 'misfits')
        with open(fn, 'ab') as f:
            ms.astype('<f8').tofile(f)
            ns.astype('<f8').tofile(f)

    def name_to_index(self, name):
        pnames = [p.name for p in self.combined]
        return pnames.index(name)

    @property
    def nparameters(self):
        return len(self.parameters)

    @property
    def ntargets(self):
        return len(self.targets)

    @property
    def ndependants(self):
        return len(self.dependants)

    @property
    def ncombined(self):
        return len(self.parameters) + len(self.dependants)

    @property
    def combined(self):
        return self.parameters + self.dependants

    def make_bootstrap_weights(self, nbootstrap):
        ntargets = len(self.targets)
        ws = num.zeros((nbootstrap, ntargets))
        rstate = num.random.RandomState(23)
        for ibootstrap in xrange(nbootstrap):
            ii = rstate.randint(0, ntargets, size=self.ntargets)
            ws[ibootstrap, :] = num.histogram(
                ii, ntargets, (-0.5, ntargets - 0.5))[0]

        return ws

    def get_bootstrap_weights(self, ibootstrap=None):
        if self._bootstrap_weights is None:
            self._bootstrap_weights = self.make_bootstrap_weights(
                self.nbootstrap)

        if ibootstrap is None:
            return self._bootstrap_weights
        else:
            return self._bootstrap_weights[ibootstrap, :]

Sebastian Heimann's avatar
Sebastian Heimann committed
211
212
213
    def set_engine(self, engine):
        self._engine = engine

Sebastian Heimann's avatar
Sebastian Heimann committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

class ProblemConfig(Object):
    name_template = String.T()
    apply_balancing_weights = Bool.T(default=True)


class Forbidden(Exception):
    pass


class DirectoryAlreadyExists(Exception):
    pass


class GrondError(Exception):
    pass


232
233
234
235
236
237
238
239
240
class DomainChoice(StringChoice):
    choices = [
        'time_domain',
        'frequency_domain',
        'envelope',
        'absolute',
        'cc_max_norm']


Sebastian Heimann's avatar
Sebastian Heimann committed
241
242
243
244
245
246
class InnerMisfitConfig(Object):
    fmin = Float.T()
    fmax = Float.T()
    ffactor = Float.T(default=1.5)
    tmin = gf.Timing.T()
    tmax = gf.Timing.T()
Sebastian Heimann's avatar
Sebastian Heimann committed
247
248
    pick_synthetic_traveltime = gf.Timing.T(optional=True)
    pick_phasename = String.T(optional=True)
249
    domain = DomainChoice.T(default='time_domain')
Sebastian Heimann's avatar
Sebastian Heimann committed
250

251
252
253
    def get_full_frequency_range(self):
        return self.fmin / self.ffactor, self.fmax * self.ffactor

Sebastian Heimann's avatar
Sebastian Heimann committed
254
255
256
257
258
259
260
261
262

class TargetAnalysisResult(Object):
    balancing_weight = Float.T()


class NoAnalysisResults(Exception):
    pass


263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
class MisfitResult(gf.Result):
    misfit_value = Float.T()
    misfit_norm = Float.T()
    processed_obs = Trace.T(optional=True)
    processed_syn = Trace.T(optional=True)
    filtered_obs = Trace.T(optional=True)
    filtered_syn = Trace.T(optional=True)
    spectrum_obs = TraceSpectrum.T(optional=True)
    spectrum_syn = TraceSpectrum.T(optional=True)
    taper = trace.Taper.T(optional=True)
    tobs_shift = Float.T(optional=True)
    tsyn_pick = Timestamp.T(optional=True)
    cc_shift = Float.T(optional=True)
    cc = Trace.T(optional=True)


Sebastian Heimann's avatar
Sebastian Heimann committed
279
280
281
282
283
class MisfitTarget(gf.Target):
    misfit_config = InnerMisfitConfig.T()
    flip_norm = Bool.T(default=False)
    manual_weight = Float.T(default=1.0)
    analysis_result = TargetAnalysisResult.T(optional=True)
284
285
    super_group = gf.StringID.T()
    group = gf.StringID.T()
Sebastian Heimann's avatar
Sebastian Heimann committed
286
287
288
289

    def __init__(self, **kwargs):
        gf.Target.__init__(self, **kwargs)
        self._ds = None
290
        self._result_mode = 'sparse'
291
292
293
294

    def string_id(self):
        return '.'.join(x for x in (
            self.super_group, self.group) + self.codes if x)
Sebastian Heimann's avatar
Sebastian Heimann committed
295
296
297
298
299
300
301
302
303
304
305
306

    def get_plain_target(self):
        d = dict(
            (k, getattr(self, k)) for k in gf.Target.T.propnames)
        return gf.Target(**d)

    def get_dataset(self):
        return self._ds

    def set_dataset(self, ds):
        self._ds = ds

307
308
309
    def set_result_mode(self, result_mode):
        self._result_mode = result_mode

Sebastian Heimann's avatar
Sebastian Heimann committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    def get_combined_weight(self, apply_balancing_weights):
        w = self.manual_weight
        if apply_balancing_weights:
            w *= self.get_balancing_weight()

        return w

    def get_balancing_weight(self):
        if not self.analysis_result:
            raise NoAnalysisResults('no balancing weights available')

        return self.analysis_result.balancing_weight

    def get_taper_params(self, engine, source):
        store = engine.get_store(self.store_id)
        config = self.misfit_config
        tmin_fit = source.time + store.t(config.tmin, source, self)
        tmax_fit = source.time + store.t(config.tmax, source, self)
        tfade = 1.0/config.fmin
        return tmin_fit, tmax_fit, tfade

    def post_process(self, engine, source, tr_syn):

        tr_syn = tr_syn.pyrocko_trace()
        nslc = self.codes

        config = self.misfit_config

        tmin_fit, tmax_fit, tfade = self.get_taper_params(engine, source)

Sebastian Heimann's avatar
Sebastian Heimann committed
340
341
342
        ds = self.get_dataset()

        tobs_shift = 0.0
Sebastian Heimann's avatar
Sebastian Heimann committed
343
        tsyn = None
Sebastian Heimann's avatar
Sebastian Heimann committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        if config.pick_synthetic_traveltime and config.pick_phasename:
            store = engine.get_store(self.store_id)
            tsyn = source.time + store.t(
                config.pick_synthetic_traveltime, source, self)

            marker = ds.get_pick(
                source.name,
                self.codes[:3],
                config.pick_phasename)

            if marker:
                tobs = marker.tmin
                tobs_shift = tobs - tsyn

Sebastian Heimann's avatar
Sebastian Heimann committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        freqlimits = (
            config.fmin/config.ffactor,
            config.fmin, config.fmax,
            config.fmax*config.ffactor)

        tinc_obs = 1.0/config.fmin

        tr_syn.extend(
            tmin_fit - tfade * 2.0,
            tmax_fit + tfade * 2.0,
            fillmethod='repeat')

        tr_syn = tr_syn.transfer(
            freqlimits=freqlimits,
            tfade=tfade)

        tr_syn.chop(tmin_fit - 2*tfade, tmax_fit + 2*tfade)

Sebastian Heimann's avatar
Sebastian Heimann committed
376
377
378
379
        tmin_obs = (math.floor(
            (tmin_fit - tfade + tobs_shift) / tinc_obs) - 1.0) * tinc_obs
        tmax_obs = (math.ceil(
            (tmax_fit + tfade + tobs_shift) / tinc_obs) + 1.0) * tinc_obs
Sebastian Heimann's avatar
Sebastian Heimann committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

        try:
            if nslc[-1] == 'R':
                backazimuth = self.azimuth + 180.
            elif nslc[-1] == 'T':
                backazimuth = self.azimuth + 90.
            else:
                backazimuth = None

            tr_obs = ds.get_waveform(
                nslc,
                tmin=tmin_obs,
                tmax=tmax_obs,
                tfade=tfade,
                freqlimits=freqlimits,
                deltat=tr_syn.deltat,
                cache=True,
                backazimuth=backazimuth)

Sebastian Heimann's avatar
Sebastian Heimann committed
399
400
401
402
            if tobs_shift != 0.0:
                tr_obs = tr_obs.copy()
                tr_obs.shift(-tobs_shift)

403
404
            mr = misfit(
                tr_obs, tr_syn,
Sebastian Heimann's avatar
Sebastian Heimann committed
405
406
407
408
                taper=trace.CosTaper(
                    tmin_fit - tfade,
                    tmin_fit,
                    tmax_fit,
409
410
411
                    tmax_fit + tfade),
                domain=config.domain,
                exponent=2,
412
413
                flip=self.flip_norm,
                result_mode=self._result_mode)
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
414

415
416
            mr.tobs_shift = float(tobs_shift)
            mr.tsyn_pick = float_or_none(tsyn)
Sebastian Heimann's avatar
Sebastian Heimann committed
417

418
            return mr
Sebastian Heimann's avatar
Sebastian Heimann committed
419
420
421
422
423
424

        except dataset.NotFound, e:
            logger.debug(str(e))
            raise gf.SeismosizerError('no waveform data, %s' % str(e))


425
426
def misfit(
        tr_obs, tr_syn, taper, domain, exponent, flip, result_mode='sparse'):
Sebastian Heimann's avatar
Sebastian Heimann committed
427

428
429
430
431
432
433
434
435
436
437
438
    '''
    Calculate misfit between observed and synthetic trace.

    :param tr_obs: observed trace as :py:class:`pyrocko.trace.Trace`
    :param tr_syn: synthetic trace as :py:class:`pyrocko.trace.Trace`
    :param taper: taper applied in timedomain as
        :py:class:`pyrocko.trace.Taper`
    :param domain: how to calculate difference, see :py:class:`DomainChoice`
    :param exponent: exponent of Lx type norms
    :param flip: ``bool``, if set to ``True``, normalization factor is
        computed against *tr_syn* rather than *tr_obs*
439
440
    :param result_mode: ``'full'``, include traces and spectra or ``'sparse'``,
        include only misfit and normalization factor in result
441
442
443

    :returns: object of type :py:class:`MisfitResult`
    '''
Sebastian Heimann's avatar
Sebastian Heimann committed
444

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    trace.assert_same_sampling_rate(tr_obs, tr_syn)
    tmin, tmax = taper.time_span()

    tr_proc_obs, trspec_proc_obs = _process(tr_obs, tmin, tmax, taper, domain)
    tr_proc_syn, trspec_proc_syn = _process(tr_syn, tmin, tmax, taper, domain)

    cc_shift = None
    ctr = None
    if domain in ('time_domain', 'envelope', 'absolute'):
        a, b = tr_proc_syn.ydata, tr_proc_obs.ydata
        if flip:
            b, a = a, b

        m, n = trace.Lx_norm(a, b, norm=exponent)

    elif domain == 'cc_max_norm':

        ctr = trace.correlate(
            tr_proc_syn,
            tr_proc_obs,
            mode='same',
            normalization='normal')

        cc_shift, cc_max = ctr.max()
        m = 0.5 - 0.5 * cc_max
        n = 0.5

    elif domain == 'frequency_domain':
        a, b = trspec_proc_syn.ydata, trspec_proc_obs.ydata
        if flip:
            b, a = a, b

        m, n = trace.Lx_norm(num.abs(a), num.abs(b), norm=exponent)

479
480
481
482
483
484
485
486
487
488
489
490
491
    if result_mode == 'full':
        result = MisfitResult(
            misfit_value=m,
            misfit_norm=n,
            processed_obs=tr_proc_obs,
            processed_syn=tr_proc_syn,
            filtered_obs=tr_obs.copy(),
            filtered_syn=tr_syn,
            spectrum_obs=trspec_proc_obs,
            spectrum_syn=trspec_proc_syn,
            taper=taper,
            cc_shift=cc_shift,
            cc=ctr)
492

493
494
495
496
497
498
    elif result_mode == 'sparse':
        result = MisfitResult(
            misfit_value=m,
            misfit_norm=n)
    else:
        assert False
499
500
501
502
503
504
505
506
507

    return result


def _process(tr, tmin, tmax, taper, domain):
    tr_proc = _extend_extract(tr, tmin, tmax)
    tr_proc.taper(taper)

    df = None
508
    trspec_proc = None
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

    if domain == 'envelope':
        tr_proc = tr_proc.envelope(inplace=False)

    elif domain == 'absolute':
        tr_proc.set_ydata(num.abs(tr_proc.get_ydata()))

    elif domain == 'frequency_domain':
        ndata = tr_proc.ydata.size
        nfft = trace.nextpow2(ndata)
        padded = num.zeros(nfft, dtype=num.float)
        padded[:ndata] = tr_proc.ydata
        spectrum = num.fft.rfft(padded)
        df = 1.0 / (tr_proc.deltat * nfft)

524
525
526
527
528
529
530
531
        trspec_proc = TraceSpectrum(
            network=tr_proc.network,
            station=tr_proc.station,
            location=tr_proc.location,
            channel=tr_proc.channel,
            deltaf=df,
            fmin=0.0,
            ydata=spectrum)
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

    return tr_proc, trspec_proc


def _extend_extract(tr, tmin, tmax):
    deltat = tr.deltat
    itmin_frame = int(math.floor(tmin/deltat))
    itmax_frame = int(math.ceil(tmax/deltat))
    nframe = itmax_frame - itmin_frame
    n = tr.data_len()
    a = num.empty(nframe, dtype=num.float)
    itmin_tr = int(round(tr.tmin / deltat))
    itmax_tr = itmin_tr + n
    icut1 = min(max(0, itmin_tr - itmin_frame), nframe)
    icut2 = min(max(0, itmax_tr - itmin_frame), nframe)
    icut1_tr = min(max(0, icut1 + itmin_frame - itmin_tr), n)
    icut2_tr = min(max(0, icut2 + itmin_frame - itmin_tr), n)
    a[:icut1] = tr.ydata[0]
    a[icut1:icut2] = tr.ydata[icut1_tr:icut2_tr]
    a[icut2:] = tr.ydata[-1]
    tr = tr.copy(data=False)
    tr.tmin = tmin
    tr.set_ydata(a)
    return tr
Sebastian Heimann's avatar
Sebastian Heimann committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593


def xjoin(basepath, path):
    if path is None and basepath is not None:
        return basepath
    elif op.isabs(path) or basepath is None:
        return path
    else:
        return op.join(basepath, path)


def xrelpath(path, start):
    if op.isabs(path):
        return path
    else:
        return op.relpath(path, start)


class Path(String):
    pass


class HasPaths(Object):
    path_prefix = Path.T(optional=True)

    def __init__(self, *args, **kwargs):
        Object.__init__(self, *args, **kwargs)
        self._basepath = None
        self._parent_path_prefix = None

    def set_basepath(self, basepath, parent_path_prefix=None):
        self._basepath = basepath
        self._parent_path_prefix = parent_path_prefix
        for (prop, val) in self.T.ipropvals(self):
            if isinstance(val, HasPaths):
                val.set_basepath(
                    basepath, self.path_prefix or self._parent_path_prefix)

Sebastian Heimann's avatar
Sebastian Heimann committed
594
595
596
597
    def get_basepath(self):
        assert self._basepath is not None
        return self._basepath

Sebastian Heimann's avatar
Sebastian Heimann committed
598
599
600
601
602
603
    def change_basepath(self, new_basepath, parent_path_prefix=None):
        assert self._basepath is not None

        self._parent_path_prefix = parent_path_prefix
        if self.path_prefix or not self._parent_path_prefix:

Sebastian Heimann's avatar
Sebastian Heimann committed
604
605
            self.path_prefix = op.normpath(xjoin(xrelpath(
                self._basepath, new_basepath), self.path_prefix))
Sebastian Heimann's avatar
Sebastian Heimann committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

        for val in self.T.ivals(self):
            if isinstance(val, HasPaths):
                val.change_basepath(
                    new_basepath, self.path_prefix or self._parent_path_prefix)

        self._basepath = new_basepath

    def expand_path(self, path):
        assert self._basepath is not None

        path_prefix = self.path_prefix or self._parent_path_prefix

        if path is None:
            return None
        elif isinstance(path, basestring):
            return op.normpath(xjoin(self._basepath, xjoin(path_prefix, path)))
        else:
            return [
                op.normpath(xjoin(self._basepath, xjoin(path_prefix, p)))
                for p in path]


Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
629
630
631
632
633
634
635
636
637
class RandomResponse(trace.FrequencyResponse):

    scale = Float.T(default=0.0)

    def set_random_state(self, rstate):
        self._rstate = rstate

    def evaluate(self, freqs):
        n = freqs.size
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
638
639
        return 1.0 + freqs*(
            self._rstate.normal(scale=self.scale, size=n) +
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
640
641
642
643
644
645
646
            0.0J * self._rstate.normal(scale=self.scale, size=n))


class SyntheticWaveformNotAvailable(Exception):
    pass


Sebastian Heimann's avatar
Sebastian Heimann committed
647
648
649
class SyntheticTest(Object):
    random_seed = Int.T(default=0)
    inject_solution = Bool.T(default=False)
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
650
651
652
    ignore_data_availability = Bool.T(default=False)
    add_real_noise = Bool.T(default=False)
    toffset_real_noise = Float.T(default=-3600.)
Sebastian Heimann's avatar
Sebastian Heimann committed
653
654
655
656
657
    x = Dict.T(String.T(), Float.T())

    def __init__(self, **kwargs):
        Object.__init__(self, **kwargs)
        self._synthetics = None
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
658
        self._rstate = num.random.RandomState(self.random_seed)
Sebastian Heimann's avatar
Sebastian Heimann committed
659
660
661
662
663

    def set_config(self, config):
        self._config = config

    def get_problem(self):
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
664
665
        raise Exception('TODO: fixme (event_names)')

Sebastian Heimann's avatar
Sebastian Heimann committed
666
667
        ds = self._config.get_dataset()
        events = ds.get_events()
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
668
        event = events[0]
Sebastian Heimann's avatar
Sebastian Heimann committed
669
670
671
672
673
674
675
676
677
678
        return self._config.get_problem(event)

    def get_x_random(self):
        problem = self.get_problem()
        xbounds = num.array(problem.bounds(), dtype=num.float)
        npar = xbounds.shape[0]

        x = num.zeros(npar, dtype=num.float)
        while True:
            for i in xrange(npar):
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
679
                x[i] = self._rstate.uniform(xbounds[i, 0], xbounds[i, 1])
Sebastian Heimann's avatar
Sebastian Heimann committed
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

            try:
                x = problem.preconstrain(x)
                break

            except Forbidden:
                pass

        return x

    def get_x(self):
        problem = self.get_problem()
        if self.x:
            x = problem.preconstrain(
                problem.parameter_array(self.x))

        else:
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
697
698
699
700
701
702
703
            print problem.base_source
            x = problem.preconstrain(
                problem.pack(
                    problem.base_source))

            print x
            print problem.unpack(x)
Sebastian Heimann's avatar
Sebastian Heimann committed
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

        return x

    def get_synthetics(self):
        if self._synthetics is None:
            problem = self.get_problem()

            x = self.get_x()

            results = problem.forward(x)
            self._synthetics = results

        return self._synthetics

    def get_waveform(self, nslc, tmin, tmax, tfade=0., freqlimits=None):
        synthetics = self.get_synthetics()
        for result in synthetics:
            if result.trace.codes == nslc:
                tr = result.trace.pyrocko_trace()
                tr.extend(tmin - tfade * 2.0, tmax + tfade * 2.0)
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
724
725
726
727
728
                tr2 = tr.copy()

                randomresponse = RandomResponse(scale=10.)
                randomresponse.set_random_state(self._rstate)

Sebastian Heimann's avatar
Sebastian Heimann committed
729
                tr = tr.transfer(tfade=tfade, freqlimits=freqlimits)
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
730
731
732
                tr2 = tr2.transfer(
                    tfade=tfade,
                    freqlimits=freqlimits,
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
733
734
                    transfer_function=randomresponse)

Sebastian Heimann's avatar
Sebastian Heimann committed
735
                tr.chop(tmin, tmax)
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
736
737
738
739
                tr2.chop(tmin, tmax)
                return tr2

        return None
Sebastian Heimann's avatar
Sebastian Heimann committed
740
741
742
743


class DatasetConfig(HasPaths):

Sebastian Heimann's avatar
Sebastian Heimann committed
744
745
    stations_path = Path.T(optional=True)
    stations_stationxml_paths = List.T(Path.T())
Sebastian Heimann's avatar
Sebastian Heimann committed
746
747
748
749
750
751
752
753
    events_path = Path.T()
    waveform_paths = List.T(Path.T())
    clippings_path = Path.T(optional=True)
    responses_sacpz_path = Path.T(optional=True)
    responses_stationxml_paths = List.T(Path.T())
    station_corrections_path = Path.T(optional=True)
    apply_correction_factors = Bool.T(default=True)
    apply_correction_delays = Bool.T(default=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
754
    picks_paths = List.T(Path.T())
755
756
757
758
    blacklist = List.T(
        String.T(),
        help='stations/components to be excluded according to their STA, '
             'NET.STA, NET.STA.LOC, or NET.STA.LOC.CHA codes.')
Sebastian Heimann's avatar
flake8    
Sebastian Heimann committed
759
760
761
    whitelist = List.T(
        String.T(),
        optional=True,
762
763
764
765
        help='if not None, list of stations/components to included according '
             'to their STA, NET.STA, NET.STA.LOC, or NET.STA.LOC.CHA codes. '
             'Note: ''when whitelisting on channel level, both, the raw and '
             'the processed channel codes have to be listed.')
Sebastian Heimann's avatar
Sebastian Heimann committed
766
767
768
769
770
771
772
773
774
775
    synthetic_test = SyntheticTest.T(optional=True)

    def __init__(self, *args, **kwargs):
        HasPaths.__init__(self, *args, **kwargs)
        self._ds = None

    def get_dataset(self):
        if self._ds is None:
            fp = self.expand_path
            ds = dataset.Dataset()
Sebastian Heimann's avatar
Sebastian Heimann committed
776
777
778
779
            ds.add_stations(
                pyrocko_stations_filename=fp(self.stations_path),
                stationxml_filenames=fp(self.stations_stationxml_paths))

Sebastian Heimann's avatar
Sebastian Heimann committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
            ds.add_events(filename=fp(self.events_path))
            ds.add_waveforms(paths=fp(self.waveform_paths))
            if self.clippings_path:
                ds.add_clippings(markers_filename=fp(self.clippings_path))

            if self.responses_sacpz_path:
                ds.add_responses(
                    sacpz_dirname=fp(self.responses_sacpz_path))

            if self.responses_stationxml_paths:
                ds.add_responses(
                    stationxml_filenames=fp(self.responses_stationxml_paths))

            if self.station_corrections_path:
                ds.add_station_corrections(
                    filename=fp(self.station_corrections_path))

            ds.apply_correction_factors = self.apply_correction_factors
            ds.apply_correction_delays = self.apply_correction_delays

Sebastian Heimann's avatar
Sebastian Heimann committed
800
801
802
803
            for picks_path in self.picks_paths:
                ds.add_picks(
                    filename=fp(picks_path))

Sebastian Heimann's avatar
Sebastian Heimann committed
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
            ds.add_blacklist(self.blacklist)
            if self.whitelist:
                ds.add_whitelist(self.whitelist)

            ds.set_synthetic_test(self.synthetic_test)
            self._ds = ds

        return self._ds


def weed(origin, targets, limit, neighborhood=3):

    azimuths = num.zeros(len(targets))
    dists = num.zeros(len(targets))
    for i, target in enumerate(targets):
        _, azimuths[i] = target.azibazi_to(origin)
        dists[i] = target.distance_to(origin)

    badnesses = num.ones(len(targets), dtype=float)
    deleted, meandists_kept = weeding.weed(
        azimuths, dists, badnesses,
        nwanted=limit,
        neighborhood=neighborhood)

    targets_weeded = [
        target for (delete, target) in zip(deleted, targets) if not delete]

    return targets_weeded, meandists_kept, deleted


class TargetConfig(Object):

836
837
    super_group = gf.StringID.T(default='', optional=True)
    group = gf.StringID.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
838
839
    distance_min = Float.T(optional=True)
    distance_max = Float.T(optional=True)
Sebastian Heimann's avatar
Sebastian Heimann committed
840
841
842
843
844
845
846
    limit = Int.T(optional=True)
    channels = List.T(String.T())
    inner_misfit_config = InnerMisfitConfig.T()
    interpolation = gf.InterpolationMethod.T()
    store_id = gf.StringID.T()
    weight = Float.T(default=1.0)

847
    def get_targets(self, ds, event, default_group):
Sebastian Heimann's avatar
Sebastian Heimann committed
848
849
850
851
852
853
854
855
856
857
858

        origin = event

        targets = []
        for st in ds.get_stations():
            for cha in self.channels:
                target = MisfitTarget(
                    quantity='displacement',
                    codes=st.nsl() + (cha,),
                    lat=st.lat,
                    lon=st.lon,
859
                    depth=st.depth,
Sebastian Heimann's avatar
Sebastian Heimann committed
860
861
862
863
                    interpolation=self.interpolation,
                    store_id=self.store_id,
                    misfit_config=self.inner_misfit_config,
                    manual_weight=self.weight,
864
865
                    super_group=self.super_group,
                    group=self.group or default_group)
Sebastian Heimann's avatar
Sebastian Heimann committed
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

                if self.distance_min is not None and \
                        target.distance_to(origin) < self.distance_min:
                    continue

                if self.distance_max is not None and \
                        target.distance_to(origin) > self.distance_max:
                    continue

                azi, _ = target.azibazi_to(origin)
                if cha == 'R':
                    target.azimuth = azi - 180.
                    target.dip = 0.
                elif cha == 'T':
                    target.azimuth = azi - 90.
                    target.dip = 0.
                elif cha == 'Z':
                    target.azimuth = 0.
                    target.dip = -90.

                target.set_dataset(ds)
                targets.append(target)

        if self.limit:
            return weed(origin, targets, self.limit)[0]
        else:
            return targets


class AnalyserConfig(Object):
    niter = Int.T(default=1000)


class SamplerDistributionChoice(StringChoice):
    choices = ['multivariate_normal', 'normal']


class SolverConfig(Object):
    niter_uniform = Int.T(default=1000)
Sebastian Heimann's avatar
Sebastian Heimann committed
905
    niter_transition = Int.T(default=0)
Sebastian Heimann's avatar
Sebastian Heimann committed
906
907
908
909
910
911
912
913
    niter_explorative = Int.T(default=10000)
    niter_non_explorative = Int.T(default=0)
    sampler_distribution = SamplerDistributionChoice.T(
        default='multivariate_normal')

    def get_solver_kwargs(self):
        return dict(
            niter_uniform=self.niter_uniform,
Sebastian Heimann's avatar
Sebastian Heimann committed
914
            niter_transition=self.niter_transition,
Sebastian Heimann's avatar
Sebastian Heimann committed
915
916
917
918
919
            niter_explorative=self.niter_explorative,
            niter_non_explorative=self.niter_non_explorative,
            sampler_distribution=self.sampler_distribution)


Sebastian Heimann's avatar
Sebastian Heimann committed
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
class EngineConfig(HasPaths):
    gf_stores_from_pyrocko_config = Bool.T(default=True)
    gf_store_superdirs = List.T(Path.T())
    gf_store_dirs = List.T(Path.T())

    def __init__(self, *args, **kwargs):
        HasPaths.__init__(self, *args, **kwargs)
        self._engine = None

    def get_engine(self):
        if self._engine is None:
            fp = self.expand_path
            self._engine = gf.LocalEngine(
                use_config=self.gf_stores_from_pyrocko_config,
                store_superdirs=fp(self.gf_store_superdirs),
                store_dirs=fp(self.gf_store_dirs))

        return self._engine


Sebastian Heimann's avatar
Sebastian Heimann committed
940
941
942
943
944
945
946
class Config(HasPaths):
    rundir_template = Path.T()
    dataset_config = DatasetConfig.T()
    target_configs = List.T(TargetConfig.T())
    problem_config = ProblemConfig.T()
    analyser_config = AnalyserConfig.T(default=AnalyserConfig.D())
    solver_config = SolverConfig.T(default=SolverConfig.D())
Sebastian Heimann's avatar
Sebastian Heimann committed
947
    engine_config = EngineConfig.T(default=EngineConfig.D())
Sebastian Heimann's avatar
Sebastian Heimann committed
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970

    def __init__(self, *args, **kwargs):
        HasPaths.__init__(self, *args, **kwargs)

    def get_dataset(self):
        ds = self.dataset_config.get_dataset()
        if ds.synthetic_test:
            ds.synthetic_test.set_config(self)

        return ds

    def get_targets(self, event):
        ds = self.get_dataset()

        targets = []
        for igroup, target_config in enumerate(self.target_configs):
            targets.extend(target_config.get_targets(
                ds, event, 'group_%i' % igroup))

        return targets

    def get_problem(self, event):
        targets = self.get_targets(event)
Sebastian Heimann's avatar
Sebastian Heimann committed
971
972
973
        problem = self.problem_config.get_problem(event, targets)
        problem.set_engine(self.engine_config.get_engine())
        return problem
Sebastian Heimann's avatar
Sebastian Heimann committed
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000


def sarr(a):
    return ' '.join('%15g' % x for x in a)


def load_problem_info_and_data(dirname, subset=None):
    problem = load_problem_info(dirname)
    xs, misfits = load_problem_data(xjoin(dirname, subset), problem)
    return problem, xs, misfits


def load_problem_info(dirname):
    fn = op.join(dirname, 'problem.yaml')
    return guts.load(filename=fn)


def load_problem_data(dirname, problem):
    fn = op.join(dirname, 'x')
    with open(fn, 'r') as f:
        nmodels = os.fstat(f.fileno()).st_size / (problem.nparameters * 8)
        data = num.fromfile(
            f, dtype='<f8',
            count=nmodels*problem.nparameters).astype(num.float)

    nmodels = data.size/problem.nparameters
    xs = data.reshape((nmodels, problem.nparameters))