plot.py 37.7 KB
Newer Older
Sebastian Heimann's avatar
Sebastian Heimann committed
1
2
import math
import random
3
import logging
Sebastian Heimann's avatar
Sebastian Heimann committed
4
5
6
import os.path as op
import numpy as num
from scipy import signal
Sebastian Heimann's avatar
Sebastian Heimann committed
7
from pyrocko import automap, beachball, guts, trace, util
8
from pyrocko import hudson
Sebastian Heimann's avatar
Sebastian Heimann committed
9
10
11
12
13
14
from grond import core
from matplotlib import pyplot as plt
from matplotlib import cm, patches
from pyrocko.cake_plot import mpl_init, labelspace, colors, \
    str_to_mpl_color as scolor, light

15
16
logger = logging.getLogger('grond.plot')

Sebastian Heimann's avatar
Sebastian Heimann committed
17
18
19
km = 1000.


Sebastian Heimann's avatar
Sebastian Heimann committed
20
21
22
23
24
25
26
def ordersort(x):
    isort = num.argsort(x)
    iorder = num.empty(isort.size)
    iorder[isort] = num.arange(isort.size)
    return iorder


Sebastian Heimann's avatar
Sebastian Heimann committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def nextpow2(i):
    return 2**int(math.ceil(math.log(i)/math.log(2.)))


def fixlim(lo, hi):
    if lo == hi:
        return lo - 1.0, hi + 1.0
    else:
        return lo, hi


def str_dist(dist):
    if dist < 10.0:
        return '%g m' % dist
    elif 10. <= dist < 1.*km:
        return '%.0f m' % dist
    elif 1.*km <= dist < 10.*km:
        return '%.1f km' % (dist / km)
    else:
        return '%.0f km' % (dist / km)


def str_duration(t):
Sebastian Heimann's avatar
Sebastian Heimann committed
50
51
52
    s = ''
    if t < 0.:
        s = '-'
Sebastian Heimann's avatar
Sebastian Heimann committed
53

Sebastian Heimann's avatar
Sebastian Heimann committed
54
    t = abs(t)
Sebastian Heimann's avatar
Sebastian Heimann committed
55

Sebastian Heimann's avatar
Sebastian Heimann committed
56
57
    if t < 10.0:
        return s + '%.2g s' % t
Sebastian Heimann's avatar
Sebastian Heimann committed
58
    elif 10.0 <= t < 3600.:
Sebastian Heimann's avatar
Sebastian Heimann committed
59
60
61
62
63
        return s + util.time_to_str(t, format='%M:%S min')
    elif 3600. <= t < 24*3600.:
        return s + util.time_to_str(t, format='%H:%M h')
    else:
        return s + '%.1f d' % (t / (24.*3600.))
Sebastian Heimann's avatar
Sebastian Heimann committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310


def eigh_sorted(mat):
    evals, evecs = num.linalg.eigh(mat)
    iorder = num.argsort(evals)
    return evals[iorder], evecs[:, iorder]


def plot(stations, center_lat, center_lon, radius, output_path,
         width=25., height=25.,
         show_station_labels=False):

    station_lats = num.array([s.lat for s in stations])
    station_lons = num.array([s.lon for s in stations])

    map = automap.Map(
        width=width,
        height=height,
        lat=center_lat,
        lon=center_lon,
        radius=radius,
        show_rivers=False,
        show_topo=False,
        illuminate_factor_land=0.35,
        color_dry=(240, 240, 235),
        topo_cpt_wet='white_sea_land',
        topo_cpt_dry='white_sea_land')

    map.gmt.psxy(
        in_columns=(station_lons, station_lats),
        S='t8p',
        G='black',
        *map.jxyr)

    if show_station_labels:
        for s in stations:
            map.add_label(s.lat, s.lon, '%s' % s.station)

    map.save(output_path)


def map_geometry(config, output_path):
    stations = config.get_dataset().get_stations()

    lat0, lon0, radius = core.stations_mean_latlondist(stations)

    radius *= 1.5

    plot(stations, lat0, lon0, radius, output_path,
         show_station_labels=True)


class GrondModel(object):
    def __init__(self, **kwargs):
        self.listeners = []
        self.set_problem(None)

    def add_listener(self, listener):
        self.listeners.append(listener)

    def set_problem(self, problem):

        self.problem = problem
        if problem:
            nparameters = problem.nparameters
            ntargets = problem.ntargets
        else:
            nparameters = 0
            ntargets = 0

        nmodels = 0
        nmodels_capacity = 1024

        self._xs_buffer = num.zeros(
            (nmodels_capacity, nparameters), dtype=num.float)
        self._misfits_buffer = num.zeros(
            (nmodels_capacity, ntargets, 2), dtype=num.float)

        self.xs = self._xs_buffer[:nmodels, :]
        self.misfits = self._misfits_buffer[:nmodels, :, :]

        self.data_changed()

    @property
    def nmodels(self):
        return self.xs.shape[0]

    @property
    def nmodels_capacity(self):
        return self._xs_buffer.shape[0]

    def append(self, xs, misfits):
        assert xs.shape[0] == misfits.shape[0]

        nmodels_add = xs.shape[0]

        nmodels = self.nmodels
        nmodels_new = nmodels + nmodels_add
        nmodels_capacity_new = max(1024, nextpow2(nmodels_new))

        nmodels_capacity = self.nmodels_capacity
        if nmodels_capacity_new > nmodels_capacity:
            xs_buffer = num.zeros(
                (nmodels_capacity_new, self.problem.nparameters),
                dtype=num.float)

            misfits_buffer = num.zeros(
                (nmodels_capacity_new, self.problem.ntargets, 2),
                dtype=num.float)

            xs_buffer[:nmodels, :] = self._xs_buffer[:nmodels]
            misfits_buffer[:nmodels, :] = self._misfits_buffer[:nmodels]
            self._xs_buffer = xs_buffer
            self._misfits_buffer = misfits_buffer

        self._xs_buffer[nmodels:nmodels+nmodels_add, :] = xs
        self._misfits_buffer[nmodels:nmodels+nmodels_add, :, :] = misfits

        nmodels = nmodels_new

        self.xs = self._xs_buffer[:nmodels, :]
        self.misfits = self._misfits_buffer[:nmodels, :, :]

        self.data_changed()

    def data_changed(self):
        for listener in self.listeners:
            listener()


def draw_sequence_figures(model, plt, misfit_cutoff=None):
    problem = model.problem
    if not problem:
        return

    imodels = num.arange(model.nmodels)
    bounds = problem.bounds() + problem.dependant_bounds()

    xref = problem.pack(problem.base_source)

    xs = model.xs

    npar = problem.nparameters
    ndep = problem.ndependants

    gms = problem.global_misfits(model.misfits)
    gms_softclip = num.where(gms > 1.0, 0.2 * num.log10(gms) + 1.0, gms)

    isort = num.argsort(gms)[::-1]

    imodels = imodels[isort]
    gms = gms[isort]
    gms_softclip = gms_softclip[isort]
    xs = xs[isort, :]

    iorder = num.empty_like(isort)
    iorder = num.arange(iorder.size)

    if misfit_cutoff is None:
        ibest = num.ones(gms.size, dtype=num.bool)
    else:
        ibest = gms < misfit_cutoff

    nfx = 2
    nfy = 4
    # nfz = (npar + ndep + 1 - 1) / (nfx*nfy) + 1
    cmap = cm.YlOrRd
    cmap = cm.jet
    axes = None
    fig = None
    alpha = 0.5
    for ipar in xrange(npar):
        impl = ipar % (nfx*nfy) + 1

        if impl == 1:
            fig = plt.figure()

        par = problem.parameters[ipar]

        axes = fig.add_subplot(nfy, nfx, impl, sharex=axes)
        axes.set_ylabel(par.get_label())
        axes.get_yaxis().set_major_locator(plt.MaxNLocator(4))
        if impl < (nfx*nfy-1):
            axes.get_xaxis().set_visible(False)
        else:
            axes.set_xlabel('Iteration')

        axes.set_ylim(*fixlim(*par.scaled(bounds[ipar])))
        axes.set_xlim(0, model.nmodels)
        axes.axhline(par.scaled(xref[ipar]), color='black', alpha=0.3)

        axes.scatter(
            imodels[ibest], par.scaled(xs[ibest, ipar]), s=3, c=iorder[ibest],
            lw=0, cmap=cmap, alpha=alpha)

    for idep in xrange(ndep):
        # ifz, ify, ifx = num.unravel_index(ipar, (nfz, nfy, nfx))
        impl = (npar+idep) % (nfx*nfy) + 1

        if impl == 1:
            fig = plt.figure()

        par = problem.dependants[idep]

        axes = fig.add_subplot(nfy, nfx, impl, sharex=axes)
        axes.set_ylabel(par.get_label())
        axes.get_yaxis().set_major_locator(plt.MaxNLocator(4))
        if impl < (nfx*nfy-1):
            axes.get_xaxis().set_visible(False)
        else:
            axes.set_xlabel('Iteration')
        axes.set_ylim(*fixlim(*par.scaled(bounds[npar+idep])))
        axes.set_xlim(0, model.nmodels)

        y = problem.make_dependant(xref, par.name)
        axes.axhline(par.scaled(y), color='black', alpha=0.3)

        ys = problem.make_dependant(xs[ibest, :], par.name)
        axes.scatter(
            imodels[ibest], par.scaled(ys), s=3, c=iorder[ibest],
            lw=0, cmap=cmap, alpha=alpha)

    impl = (npar+ndep) % (nfx*nfy) + 1
    if impl == 1:
        fig = plt.figure()

    axes = fig.add_subplot(nfy, nfx, impl, sharex=axes)

    axes.set_ylim(0., 1.5)
    axes.axhspan(1.0, 1.5, color=(0.8, 0.8, 0.8), alpha=0.2)
    axes.axhline(1.0, color=(0.5, 0.5, 0.5), zorder=2)
    axes.set_yticks([0., 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4])
    axes.set_yticklabels(['0.0', '0.2', '0.4', '0.6', '0.8', '1', '10', '100'])

    axes.scatter(
        imodels[ibest], gms_softclip[ibest], c=iorder[ibest],
        s=3, lw=0, cmap=cmap, alpha=alpha)

    axes.set_xlim(0, model.nmodels)
    axes.set_xlabel('Iteration')

    axes.set_ylabel('Misfit')

    fig.canvas.draw()


def draw_jointpar_figures(
311
        model, plt, misfit_cutoff=None, ibootstrap=None, color=None,
312
        exclude=None, include=None):
313

314
    color = 'misfit'
Sebastian Heimann's avatar
Sebastian Heimann committed
315
    # exclude = ['duration']
316
    # include = ['magnitude', 'rel_moment_iso', 'rel_moment_clvd', 'depth']
317
318
    neach = 6
    figsize = (8, 8)
Sebastian Heimann's avatar
Sebastian Heimann committed
319
320
    # cmap = cm.YlOrRd
    # cmap = cm.jet
321
    cmap = cm.coolwarm
Sebastian Heimann's avatar
Sebastian Heimann committed
322
323
324
325
326
327
328
329

    problem = model.problem
    if not problem:
        return

    xs = model.xs

    bounds = problem.bounds() + problem.dependant_bounds()
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
330
331
332
333
334
335
336
337
    for ipar in xrange(problem.ncombined):
        par = problem.combined[ipar]
        lo, hi = bounds[ipar]
        if lo == hi:
            if exclude is None:
                exclude = []

            exclude.append(par.name)
Sebastian Heimann's avatar
Sebastian Heimann committed
338
339
340
341
342
343
344
345
346
347
348
349
350

    xref = problem.pack(problem.base_source)

    if ibootstrap is not None:
        gms = problem.bootstrap_misfits(model.misfits, ibootstrap)
    else:
        gms = problem.global_misfits(model.misfits)

    isort = num.argsort(gms)[::-1]

    gms = gms[isort]
    xs = xs[isort, :]

Sebastian Heimann's avatar
Sebastian Heimann committed
351
    if misfit_cutoff is not None:
Sebastian Heimann's avatar
Sebastian Heimann committed
352
        ibest = gms < misfit_cutoff
Sebastian Heimann's avatar
Sebastian Heimann committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
        gms = gms[ibest]
        xs = xs[ibest]

    nmodels = xs.shape[0]

    if color == 'dist':
        mx = num.mean(xs, axis=0)
        cov = num.cov(xs.T)
        mdists = core.mahalanobis_distance(xs, mx, cov)
        color = ordersort(mdists)

    elif color == 'misfit':
        iorder = num.arange(nmodels)
        color = iorder

    elif color in problem.parameter_names:
        ind = problem.name_to_index(color)
        color = ordersort(problem.extract(xs, ind))
Sebastian Heimann's avatar
Sebastian Heimann committed
371

372
373
374
375
    smap = {}
    iselected = 0
    for ipar in xrange(problem.ncombined):
        par = problem.combined[ipar]
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
376
377
        if exclude and par.name in exclude or \
                include and par.name not in include:
378
            continue
Sebastian Heimann's avatar
Sebastian Heimann committed
379

380
381
382
383
        smap[iselected] = ipar
        iselected += 1

    nselected = iselected
Sebastian Heimann's avatar
Sebastian Heimann committed
384

385
386
387
388
    if nselected == 0:
        return

    nfig = (nselected-2) / neach + 1
Sebastian Heimann's avatar
Sebastian Heimann committed
389
390
391
392
393
394

    figs = []
    for ifig in xrange(nfig):
        figs_row = []
        for jfig in xrange(nfig):
            if ifig >= jfig:
395
                figs_row.append(plt.figure(figsize=figsize))
Sebastian Heimann's avatar
Sebastian Heimann committed
396
397
398
399
400
            else:
                figs_row.append(None)

        figs.append(figs_row)

401
402
    for iselected in xrange(nselected):
        ipar = smap[iselected]
Sebastian Heimann's avatar
Sebastian Heimann committed
403
        ypar = problem.combined[ipar]
404
405
        for jselected in xrange(iselected):
            jpar = smap[jselected]
Sebastian Heimann's avatar
Sebastian Heimann committed
406
407
            xpar = problem.combined[jpar]

408
409
            ixg = (iselected - 1)
            iyg = jselected
Sebastian Heimann's avatar
Sebastian Heimann committed
410
411
412
413
414
415
416
417
418
419
420
421
422

            ix = ixg % neach
            iy = iyg % neach

            ifig = ixg/neach
            jfig = iyg/neach

            aind = (neach, neach, (ix * neach) + iy + 1)

            fig = figs[ifig][jfig]

            axes = fig.add_subplot(*aind)

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
            axes.axvline(0., color=scolor('aluminium3'), lw=0.5)
            axes.axhline(0., color=scolor('aluminium3'), lw=0.5)
            for spine in axes.spines.values():
                spine.set_edgecolor(scolor('aluminium5'))
                spine.set_linewidth(0.5)

            xmin, xmax = fixlim(*xpar.scaled(bounds[jpar]))
            ymin, ymax = fixlim(*ypar.scaled(bounds[ipar]))

            if ix == 0 or jselected + 1 == iselected:
                for (xpos, xoff, x) in [(0.0, 10., xmin), (1.0, -10., xmax)]:
                    axes.annotate(
                        '%.2g%s' % (x, xpar.get_unit_suffix()),
                        xy=(xpos, 1.05),
                        xycoords='axes fraction',
                        xytext=(xoff, 5.),
                        textcoords='offset points',
                        verticalalignment='bottom',
                        horizontalalignment='left',
                        rotation=45.)

            if iy == neach - 1 or jselected + 1 == iselected:
                for (ypos, yoff, y) in [(0., 10., ymin), (1.0, -10., ymax)]:
                    axes.annotate(
                        '%.2g%s' % (y, ypar.get_unit_suffix()),
                        xy=(1.0, ypos),
                        xycoords='axes fraction',
                        xytext=(5., yoff),
                        textcoords='offset points',
                        verticalalignment='bottom',
                        horizontalalignment='left',
                        rotation=45.)

            axes.set_xlim(xmin, xmax)
            axes.set_ylim(ymin, ymax)
Sebastian Heimann's avatar
Sebastian Heimann committed
458
459
460
461

            axes.get_xaxis().set_ticks([])
            axes.get_yaxis().set_ticks([])

462
            if iselected == nselected - 1 or ix == neach - 1:
Sebastian Heimann's avatar
Sebastian Heimann committed
463
                axes.annotate(
464
                    xpar.get_label(with_unit=False),
Sebastian Heimann's avatar
Sebastian Heimann committed
465
466
467
468
469
470
471
472
                    xy=(0.5, -0.05),
                    xycoords='axes fraction',
                    verticalalignment='top',
                    horizontalalignment='right',
                    rotation=45.)

            if iy == 0:
                axes.annotate(
473
                    ypar.get_label(with_unit=False),
Sebastian Heimann's avatar
Sebastian Heimann committed
474
475
                    xy=(-0.05, 0.5),
                    xycoords='axes fraction',
476
477
478
                    verticalalignment='top',
                    horizontalalignment='right',
                    rotation=45.)
Sebastian Heimann's avatar
Sebastian Heimann committed
479

Sebastian Heimann's avatar
Sebastian Heimann committed
480
481
            fx = problem.extract(xs, jpar)
            fy = problem.extract(xs, ipar)
Sebastian Heimann's avatar
Sebastian Heimann committed
482
483
484
485
486

            axes.scatter(
                xpar.scaled(fx),
                ypar.scaled(fy),
                c=color,
487
                s=3, alpha=0.5, cmap=cmap, edgecolors='none')
Sebastian Heimann's avatar
Sebastian Heimann committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

            cov = num.cov((xpar.scaled(fx), ypar.scaled(fy)))
            evals, evecs = eigh_sorted(cov)
            evals = num.sqrt(evals)
            ell = patches.Ellipse(
                xy=(num.mean(xpar.scaled(fx)), num.mean(ypar.scaled(fy))),
                width=evals[0]*2,
                height=evals[1]*2,
                angle=num.rad2deg(num.arctan2(evecs[1][0], evecs[0][0])))

            ell.set_facecolor('none')
            axes.add_artist(ell)

            fx = problem.extract(xref, jpar)
            fy = problem.extract(xref, ipar)
503
504
505
506
507
508
509

            ref_color = scolor('aluminium6')
            ref_color_light = 'none'
            axes.plot(
                xpar.scaled(fx), ypar.scaled(fy), 's',
                mew=1.5, ms=5, color=ref_color_light, mec=ref_color)

Sebastian Heimann's avatar
Sebastian Heimann committed
510
511
512
513

def draw_solution_figure(
        model, plt, misfit_cutoff=None, beachball_type='full'):

Sebastian Heimann's avatar
Sebastian Heimann committed
514
515
516
517
518
    fontsize = 10.

    fig = plt.figure(figsize=(6, 2))
    axes = fig.add_subplot(1, 1, 1, aspect=1.0)
    fig.subplots_adjust(left=0., right=1., bottom=0., top=1.)
Sebastian Heimann's avatar
Sebastian Heimann committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

    problem = model.problem
    if not problem:
        return

    xs = model.xs

    if xs.size == 0:
        return

    gms = problem.global_misfits(model.misfits)
    isort = num.argsort(gms)
    iorder = num.empty_like(isort)
    iorder[isort] = num.arange(iorder.size)[::-1]

Sebastian Heimann's avatar
Sebastian Heimann committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
    mean_source = core.get_mean_source(problem, model.xs)
    best_source = core.get_best_source(problem, model.xs, model.misfits)
    ref_source = problem.base_source

    for xpos, label in [
            (0., 'Full'),
            (2., 'Isotropic'),
            (4., 'Deviatoric'),
            (6., 'CLVD'),
            (8., 'DC')]:

        axes.annotate(
            label,
            xy=(1+xpos, 3),
            xycoords='data',
            xytext=(0., 0.),
            textcoords='offset points',
            ha='center',
            va='center',
            color='black',
            fontsize=fontsize)

    decos = []
    for source in [best_source, mean_source, ref_source]:
        mt = source.pyrocko_moment_tensor()
        deco = mt.standard_decomposition()
        decos.append(deco)

    moment_full_max = max(deco[-1][0] for deco in decos)

    for ypos, label, deco, color_t in [
            (2., 'Ensemble best', decos[0], scolor('aluminium5')),
            (1., 'Ensemble mean', decos[1], scolor('scarletred1')),
            (0., 'Reference', decos[2], scolor('aluminium3'))]:

        [(moment_iso, ratio_iso, m_iso),
         (moment_dc, ratio_dc, m_dc),
         (moment_clvd, ratio_clvd, m_clvd),
         (moment_devi, ratio_devi, m_devi),
         (moment_full, ratio_full, m_full)] = deco

        size0 = moment_full / moment_full_max

        axes.annotate(
            label,
            xy=(-2., ypos),
            xycoords='data',
            xytext=(0., 0.),
            textcoords='offset points',
            ha='left',
            va='center',
            color='black',
            fontsize=fontsize)

        for xpos, mt_part, ratio, ops in [
                (0., m_full, ratio_full, '-'),
                (2., m_iso, ratio_iso, '='),
                (4., m_devi, ratio_devi, '='),
                (6., m_clvd, ratio_clvd, '+'),
                (8., m_dc, ratio_dc, None)]:

            if ratio != 0.0:
                beachball.plot_beachball_mpl(
                    mt_part, axes,
                    beachball_type='full',
                    position=(1.+xpos, ypos),
                    size=0.9*size0*math.sqrt(ratio),
                    size_units='data',
                    color_t=color_t,
                    linewidth=1.0)
Sebastian Heimann's avatar
Sebastian Heimann committed
604

Sebastian Heimann's avatar
Sebastian Heimann committed
605
606
607
            else:
                axes.annotate(
                    'N/A',
Sebastian Heimann's avatar
Sebastian Heimann committed
608
                    xy=(1.+xpos, ypos),
Sebastian Heimann's avatar
Sebastian Heimann committed
609
610
611
612
613
614
615
616
617
618
619
620
621
                    ha='center',
                    va='center',
                    color='black',
                    fontsize=fontsize)

            if ops is not None:
                axes.annotate(
                    ops,
                    xy=(2. + xpos, ypos),
                    ha='center',
                    va='center',
                    color='black',
                    fontsize=fontsize)
Sebastian Heimann's avatar
Sebastian Heimann committed
622
623

    axes.axison = False
Sebastian Heimann's avatar
Sebastian Heimann committed
624
625
626
    axes.set_xlim(-2.25, 9.75)
    axes.set_ylim(-0.5, 3.5)
    fig.savefig('test.pdf')
Sebastian Heimann's avatar
Sebastian Heimann committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708


def draw_contributions_figure(model, plt):

    fig = plt.figure()

    problem = model.problem
    if not problem:
        return

    xs = model.xs

    if xs.size == 0:
        return

    imodels = num.arange(model.nmodels)

    gms = problem.global_misfits(model.misfits)**2

    isort = num.argsort(gms)[::-1]

    gms = gms[isort]

    gms_softclip = num.where(gms > 1.0, 0.1 * num.log10(gms) + 1.0, gms)

    gcms = problem.global_contributions(model.misfits)
    gcms = gcms[isort, :]

    jsort = num.argsort(gcms[-1, :])[::-1]

    # ncols = 4
    # nrows = ((problem.ntargets + 1) - 1) / ncols + 1

    axes = fig.add_subplot(2, 2, 1)
    labelspace(axes)
    axes.set_ylabel('Relative contribution (smoothed)')
    axes.set_ylim(0.0, 1.0)

    axes2 = fig.add_subplot(2, 2, 3, sharex=axes)
    labelspace(axes2)
    axes2.set_xlabel('Tested model, sorted descending by global misfit value')

    axes2.set_ylabel('Square of misfit')

    axes2.set_ylim(0., 1.5)
    axes2.axhspan(1.0, 1.5, color=(0.8, 0.8, 0.8))
    axes2.set_yticks([0., 0.2, 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5])
    axes2.set_yticklabels(
        ['0.0', '0.2', '0.4', '0.6', '0.8', '1', '10', '100', '1000', '10000',
         '100000'])

    axes2.set_xlim(imodels[0], imodels[-1])

    rel_ms_sum = num.zeros(model.nmodels)
    rel_ms_smooth_sum = num.zeros(model.nmodels)
    ms_smooth_sum = num.zeros(model.nmodels)
    b = num.hanning(100)
    b /= num.sum(b)
    a = [1]
    ii = 0

    for itarget in jsort:
        target = problem.targets[itarget]
        ms = gcms[:, itarget]
        ms = num.where(num.isfinite(ms), ms, 0.0)
        if num.all(ms == 0.0):
            continue

        rel_ms = ms / gms

        rel_ms_smooth = signal.filtfilt(b, a, rel_ms)

        ms_smooth = rel_ms_smooth * gms_softclip

        rel_poly_y = num.concatenate(
            [rel_ms_smooth_sum[::-1], rel_ms_smooth_sum + rel_ms_smooth])
        poly_x = num.concatenate([imodels[::-1], imodels])

        axes.fill(
            poly_x, rel_poly_y,
            alpha=0.5,
            color=colors[ii % len(colors)],
Sebastian Heimann's avatar
Sebastian Heimann committed
709
            label='%s (%.2g)' % (target.string_id(), num.mean(rel_ms[-1])))
Sebastian Heimann's avatar
Sebastian Heimann committed
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

        poly_y = num.concatenate(
            [ms_smooth_sum[::-1], ms_smooth_sum + ms_smooth])

        axes2.fill(poly_x, poly_y, alpha=0.5, color=colors[ii % len(colors)])

        rel_ms_sum += rel_ms

        # axes.plot(imodels, rel_ms_sum, color='black', alpha=0.1, zorder=-1)

        ms_smooth_sum += ms_smooth
        rel_ms_smooth_sum += rel_ms_smooth
        ii += 1

    axes.legend(
        title='Contributions (large to small at minimal global misfit)',
        bbox_to_anchor=(1.05, 0.0, 1.0, 1.0),
        loc='upper left',
        ncol=2, borderaxespad=0., prop={'size': 12})

    axes2.plot(imodels, gms_softclip, color='black')
    axes2.axhline(1.0, color=(0.5, 0.5, 0.5))
    fig.tight_layout()


def draw_bootstrap_figure(model, plt):

    fig = plt.figure()

    problem = model.problem
    gms = problem.global_misfits(model.misfits)

    imodels = num.arange(model.nmodels)

    axes = fig.add_subplot(1, 1, 1)

    gms_softclip = num.where(gms > 1.0, 0.1 * num.log10(gms) + 1.0, gms)

    ibests = []
    for ibootstrap in xrange(problem.nbootstrap):
        bms = problem.bootstrap_misfits(model.misfits, ibootstrap)
        isort_bms = num.argsort(bms)[::-1]

        ibests.append(isort_bms[-1])
Sebastian Heimann's avatar
Sebastian Heimann committed
754
        print num.argmin(bms), isort_bms[-1]
Sebastian Heimann's avatar
Sebastian Heimann committed
755
756
757
758

        bms_softclip = num.where(bms > 1.0, 0.1 * num.log10(bms) + 1.0, bms)
        axes.plot(imodels, bms_softclip[isort_bms], color='red', alpha=0.2)

Sebastian Heimann's avatar
Sebastian Heimann committed
759
760
761
762
763
764
765
766
767
768
769
770
771
    isort = num.argsort(gms)[::-1]
    iorder = num.empty(isort.size)
    iorder[isort] = imodels

    axes.plot(iorder[ibests], gms_softclip[ibests], 'x', color='black')

    m = num.median(gms[ibests])
    s = num.std(gms[ibests])

    axes.axhline(m+s, color='black', alpha=0.5)
    axes.axhline(m, color='black')
    axes.axhline(m-s, color='black', alpha=0.5)

Sebastian Heimann's avatar
Sebastian Heimann committed
772
773
    axes.plot(imodels, gms_softclip[isort], color='black')

Sebastian Heimann's avatar
Sebastian Heimann committed
774
775
    axes.set_xlim(imodels[0], imodels[-1])
    axes.set_xlabel('Tested model, sorted descending by global misfit value')
Sebastian Heimann's avatar
Sebastian Heimann committed
776

777

Sebastian Heimann's avatar
Sebastian Heimann committed
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
def gather(l, key, sort=None, filter=None):
    d = {}
    for x in l:
        if filter is not None and not filter(x):
            continue

        k = key(x)
        if k not in d:
            d[k] = []

        d[k].append(x)

    if sort is not None:
        for v in d.itervalues():
            v.sort(key=sort)

    return d


def plot_trace(axes, tr, **kwargs):
    return axes.plot(tr.get_xdata(), tr.get_ydata(), **kwargs)


def plot_taper(axes, t, taper, **kwargs):
    y = num.ones(t.size) * 0.9
    taper(y, t[0], t[1] - t[0])
    y2 = num.concatenate((y, -y[::-1]))
    t2 = num.concatenate((t, t[::-1]))
    axes.fill(t2, y2, **kwargs)


809
def plot_dtrace(axes, tr, space, mi, ma, **kwargs):
Sebastian Heimann's avatar
Sebastian Heimann committed
810
811
    t = tr.get_xdata()
    y = tr.get_ydata()
812
813
    y2 = (num.concatenate((y, num.zeros(y.size))) - mi) / \
        (ma-mi) * space - (1.0 + space)
Sebastian Heimann's avatar
Sebastian Heimann committed
814
    t2 = num.concatenate((t, t[::-1]))
815
    axes.fill(
Sebastian Heimann's avatar
Sebastian Heimann committed
816
817
818
819
820
        t2, y2,
        clip_on=False,
        **kwargs)


821
822
823
824
def plot_dtrace_vline(axes, t, space, **kwargs):
    axes.plot([t, t], [-1.0 - space, -1.0], **kwargs)


Sebastian Heimann's avatar
Sebastian Heimann committed
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
def draw_fits_figures(ds, model, plt):
    fontsize = 10

    problem = model.problem

    for target in problem.targets:
        target.set_dataset(ds)

    target_index = dict(
        (target, i) for (i, target) in enumerate(problem.targets))

    gms = problem.global_misfits(model.misfits)
    isort = num.argsort(gms)
    gms = gms[isort]
    xs = model.xs[isort, :]
    misfits = model.misfits[isort, :]

    xbest = xs[0, :]

    ws = problem.get_target_weights()
    gcms = problem.global_contributions(misfits[:1])[0]

    w_max = num.nanmax(ws)
    gcm_max = num.nanmax(gcms)

    source = problem.unpack(xbest)

    target_to_result = {}
    all_syn_trs = []
854
    ms, ns, results = problem.evaluate(xbest, result_mode='full')
Sebastian Heimann's avatar
Sebastian Heimann committed
855
856
857
858
859
860
861
862
863
864

    dtraces = []
    for target, result in zip(problem.targets, results):
        if result is None:
            dtraces.append(None)
            continue

        itarget = target_index[target]
        w = target.get_combined_weight(problem.apply_balancing_weights)

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
        if target.misfit_config.domain == 'cc_max_norm':
            tref = (result.filtered_obs.tmin + result.filtered_obs.tmax) * 0.5
            for tr_filt, tr_proc, tshift in (
                    (result.filtered_obs,
                     result.processed_obs,
                     0.),
                    (result.filtered_syn,
                     result.processed_syn,
                     result.cc_shift)):

                norm = num.sum(num.abs(tr_proc.ydata)) / tr_proc.data_len()
                tr_filt.ydata /= norm
                tr_proc.ydata /= norm

                tr_filt.shift(tshift)
                tr_proc.shift(tshift)

            ctr = result.cc
            ctr.shift(tref)

            dtrace = ctr

        else:
            for tr in (
                    result.filtered_obs,
                    result.filtered_syn,
                    result.processed_obs,
                    result.processed_syn):
Sebastian Heimann's avatar
Sebastian Heimann committed
893

894
                tr.ydata *= w
Sebastian Heimann's avatar
Sebastian Heimann committed
895

896
897
898
899
900
            dtrace = result.processed_syn.copy()
            dtrace.set_ydata(
                (
                    (result.processed_syn.get_ydata() -
                     result.processed_obs.get_ydata())**2))
Sebastian Heimann's avatar
Sebastian Heimann committed
901
902
903

        target_to_result[target] = result

904
        dtrace.meta = dict(super_group=target.super_group)
Sebastian Heimann's avatar
Sebastian Heimann committed
905
        dtraces.append(dtrace)
906
907

        result.processed_syn.meta = dict(super_group=target.super_group)
Sebastian Heimann's avatar
Sebastian Heimann committed
908
909
        all_syn_trs.append(result.processed_syn)

Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
910
911
912
913
    if not all_syn_trs:
        logger.warn('no traces to show')
        return

914
915
916
    aminmaxs = trace.minmax(
        all_syn_trs,
        lambda tr: tr.meta['super_group'])
Sebastian Heimann's avatar
Sebastian Heimann committed
917

918
919
920
    dminmaxs = trace.minmax(
        [x for x in dtraces if x is not None],
        lambda tr: tr.meta['super_group'])
Sebastian Heimann's avatar
Sebastian Heimann committed
921
922
923

    for tr in dtraces:
        if tr:
924
925
            dmin, dmax = dminmaxs[tr.meta['super_group']]
            tr.ydata /= max(abs(dmin), abs(dmax))
Sebastian Heimann's avatar
Sebastian Heimann committed
926
927

    cg_to_targets = gather(
928
929
930
        problem.targets,
        lambda t: (t.super_group, t.group, t.codes[3]),
        filter=lambda t: t in target_to_result)
Sebastian Heimann's avatar
Sebastian Heimann committed
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

    cgs = sorted(cg_to_targets.keys())

    for cg in cgs:
        targets = cg_to_targets[cg]
        nframes = len(targets)

        nx = int(math.ceil(math.sqrt(nframes)))
        ny = (nframes-1)/nx+1

        nxmax = 4
        nymax = 4

        nxx = (nx-1) / nxmax + 1
        nyy = (ny-1) / nymax + 1

        # nz = nxx * nyy

        xs = num.arange(nx) / ((max(2, nx) - 1.0) / 2.)
        ys = num.arange(ny) / ((max(2, ny) - 1.0) / 2.)

        xs -= num.mean(xs)
        ys -= num.mean(ys)

        fxs = num.tile(xs, ny)
        fys = num.repeat(ys, nx)

        data = []

        for target in targets:
            azi = source.azibazi_to(target)[0]
            dist = source.distance_to(target)
            x = dist*num.sin(num.deg2rad(azi))
            y = dist*num.cos(num.deg2rad(azi))
            data.append((x, y, dist))

        gxs, gys, dists = num.array(data, dtype=num.float).T

        iorder = num.argsort(dists)

        gxs = gxs[iorder]
        gys = gys[iorder]
        targets_sorted = [targets[ii] for ii in iorder]

        gxs -= num.mean(gxs)
        gys -= num.mean(gys)

        gmax = max(num.max(num.abs(gys)), num.max(num.abs(gxs)))
        if gmax == 0.:
            gmax = 1.

        gxs /= gmax
        gys /= gmax

        dists = num.sqrt(
            (fxs[num.newaxis, :] - gxs[:, num.newaxis])**2 +
            (fys[num.newaxis, :] - gys[:, num.newaxis])**2)

        distmax = num.max(dists)

        availmask = num.ones(dists.shape[1], dtype=num.bool)
        frame_to_target = {}
        for itarget, target in enumerate(targets_sorted):
            iframe = num.argmin(
                num.where(availmask, dists[itarget], distmax + 1.))
            availmask[iframe] = False
            iy, ix = num.unravel_index(iframe, (ny, nx))
            frame_to_target[iy, ix] = target

        figures = {}