plot.py 42.7 KB
Newer Older
Sebastian Heimann's avatar
Sebastian Heimann committed
1
2
import math
import random
3
import logging
Sebastian Heimann's avatar
Sebastian Heimann committed
4
5
6
import os.path as op
import numpy as num
from scipy import signal
Sebastian Heimann's avatar
Sebastian Heimann committed
7
from pyrocko import automap, beachball, guts, trace, util
8
from pyrocko import hudson
Sebastian Heimann's avatar
Sebastian Heimann committed
9
10
11
12
13
14
from grond import core
from matplotlib import pyplot as plt
from matplotlib import cm, patches
from pyrocko.cake_plot import mpl_init, labelspace, colors, \
    str_to_mpl_color as scolor, light

15
16
logger = logging.getLogger('grond.plot')

Sebastian Heimann's avatar
Sebastian Heimann committed
17
18
19
km = 1000.


20
21
22
23
24
25
26
27
28
29
30
31
32
def amp_spec_max(spec_trs, key):
    amaxs = {}
    for spec_tr in spec_trs:
        amax = num.max(num.abs(spec_tr.ydata))
        k = key(spec_tr)
        if k not in amaxs:
            amaxs[k] = amax
        else:
            amaxs[k] = max(amaxs[k], amax)

    return amaxs


Sebastian Heimann's avatar
Sebastian Heimann committed
33
34
35
36
37
38
39
def ordersort(x):
    isort = num.argsort(x)
    iorder = num.empty(isort.size)
    iorder[isort] = num.arange(isort.size)
    return iorder


Sebastian Heimann's avatar
Sebastian Heimann committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def nextpow2(i):
    return 2**int(math.ceil(math.log(i)/math.log(2.)))


def fixlim(lo, hi):
    if lo == hi:
        return lo - 1.0, hi + 1.0
    else:
        return lo, hi


def str_dist(dist):
    if dist < 10.0:
        return '%g m' % dist
    elif 10. <= dist < 1.*km:
        return '%.0f m' % dist
    elif 1.*km <= dist < 10.*km:
        return '%.1f km' % (dist / km)
    else:
        return '%.0f km' % (dist / km)


def str_duration(t):
Sebastian Heimann's avatar
Sebastian Heimann committed
63
64
65
    s = ''
    if t < 0.:
        s = '-'
Sebastian Heimann's avatar
Sebastian Heimann committed
66

Sebastian Heimann's avatar
Sebastian Heimann committed
67
    t = abs(t)
Sebastian Heimann's avatar
Sebastian Heimann committed
68

Sebastian Heimann's avatar
Sebastian Heimann committed
69
70
    if t < 10.0:
        return s + '%.2g s' % t
Sebastian Heimann's avatar
Sebastian Heimann committed
71
    elif 10.0 <= t < 3600.:
Sebastian Heimann's avatar
Sebastian Heimann committed
72
73
74
75
76
        return s + util.time_to_str(t, format='%M:%S min')
    elif 3600. <= t < 24*3600.:
        return s + util.time_to_str(t, format='%H:%M h')
    else:
        return s + '%.1f d' % (t / (24.*3600.))
Sebastian Heimann's avatar
Sebastian Heimann committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243


def eigh_sorted(mat):
    evals, evecs = num.linalg.eigh(mat)
    iorder = num.argsort(evals)
    return evals[iorder], evecs[:, iorder]


def plot(stations, center_lat, center_lon, radius, output_path,
         width=25., height=25.,
         show_station_labels=False):

    station_lats = num.array([s.lat for s in stations])
    station_lons = num.array([s.lon for s in stations])

    map = automap.Map(
        width=width,
        height=height,
        lat=center_lat,
        lon=center_lon,
        radius=radius,
        show_rivers=False,
        show_topo=False,
        illuminate_factor_land=0.35,
        color_dry=(240, 240, 235),
        topo_cpt_wet='white_sea_land',
        topo_cpt_dry='white_sea_land')

    map.gmt.psxy(
        in_columns=(station_lons, station_lats),
        S='t8p',
        G='black',
        *map.jxyr)

    if show_station_labels:
        for s in stations:
            map.add_label(s.lat, s.lon, '%s' % s.station)

    map.save(output_path)


def map_geometry(config, output_path):
    stations = config.get_dataset().get_stations()

    lat0, lon0, radius = core.stations_mean_latlondist(stations)

    radius *= 1.5

    plot(stations, lat0, lon0, radius, output_path,
         show_station_labels=True)


class GrondModel(object):
    def __init__(self, **kwargs):
        self.listeners = []
        self.set_problem(None)

    def add_listener(self, listener):
        self.listeners.append(listener)

    def set_problem(self, problem):

        self.problem = problem
        if problem:
            nparameters = problem.nparameters
            ntargets = problem.ntargets
        else:
            nparameters = 0
            ntargets = 0

        nmodels = 0
        nmodels_capacity = 1024

        self._xs_buffer = num.zeros(
            (nmodels_capacity, nparameters), dtype=num.float)
        self._misfits_buffer = num.zeros(
            (nmodels_capacity, ntargets, 2), dtype=num.float)

        self.xs = self._xs_buffer[:nmodels, :]
        self.misfits = self._misfits_buffer[:nmodels, :, :]

        self.data_changed()

    @property
    def nmodels(self):
        return self.xs.shape[0]

    @property
    def nmodels_capacity(self):
        return self._xs_buffer.shape[0]

    def append(self, xs, misfits):
        assert xs.shape[0] == misfits.shape[0]

        nmodels_add = xs.shape[0]

        nmodels = self.nmodels
        nmodels_new = nmodels + nmodels_add
        nmodels_capacity_new = max(1024, nextpow2(nmodels_new))

        nmodels_capacity = self.nmodels_capacity
        if nmodels_capacity_new > nmodels_capacity:
            xs_buffer = num.zeros(
                (nmodels_capacity_new, self.problem.nparameters),
                dtype=num.float)

            misfits_buffer = num.zeros(
                (nmodels_capacity_new, self.problem.ntargets, 2),
                dtype=num.float)

            xs_buffer[:nmodels, :] = self._xs_buffer[:nmodels]
            misfits_buffer[:nmodels, :] = self._misfits_buffer[:nmodels]
            self._xs_buffer = xs_buffer
            self._misfits_buffer = misfits_buffer

        self._xs_buffer[nmodels:nmodels+nmodels_add, :] = xs
        self._misfits_buffer[nmodels:nmodels+nmodels_add, :, :] = misfits

        nmodels = nmodels_new

        self.xs = self._xs_buffer[:nmodels, :]
        self.misfits = self._misfits_buffer[:nmodels, :, :]

        self.data_changed()

    def data_changed(self):
        for listener in self.listeners:
            listener()


def draw_sequence_figures(model, plt, misfit_cutoff=None):
    problem = model.problem

    imodels = num.arange(model.nmodels)
    bounds = problem.bounds() + problem.dependant_bounds()

    xref = problem.pack(problem.base_source)

    xs = model.xs

    npar = problem.nparameters
    ndep = problem.ndependants

    gms = problem.global_misfits(model.misfits)
    gms_softclip = num.where(gms > 1.0, 0.2 * num.log10(gms) + 1.0, gms)

    isort = num.argsort(gms)[::-1]

    imodels = imodels[isort]
    gms = gms[isort]
    gms_softclip = gms_softclip[isort]
    xs = xs[isort, :]

    iorder = num.empty_like(isort)
    iorder = num.arange(iorder.size)

    if misfit_cutoff is None:
        ibest = num.ones(gms.size, dtype=num.bool)
    else:
        ibest = gms < misfit_cutoff

    nfx = 2
    nfy = 4
    # nfz = (npar + ndep + 1 - 1) / (nfx*nfy) + 1
    cmap = cm.YlOrRd
    cmap = cm.jet
    axes = None
244
    figs = []
Sebastian Heimann's avatar
Sebastian Heimann committed
245
246
247
248
249
250
251
    fig = None
    alpha = 0.5
    for ipar in xrange(npar):
        impl = ipar % (nfx*nfy) + 1

        if impl == 1:
            fig = plt.figure()
252
            figs.append(fig)
Sebastian Heimann's avatar
Sebastian Heimann committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

        par = problem.parameters[ipar]

        axes = fig.add_subplot(nfy, nfx, impl, sharex=axes)
        axes.set_ylabel(par.get_label())
        axes.get_yaxis().set_major_locator(plt.MaxNLocator(4))
        if impl < (nfx*nfy-1):
            axes.get_xaxis().set_visible(False)
        else:
            axes.set_xlabel('Iteration')

        axes.set_ylim(*fixlim(*par.scaled(bounds[ipar])))
        axes.set_xlim(0, model.nmodels)
        axes.axhline(par.scaled(xref[ipar]), color='black', alpha=0.3)

        axes.scatter(
            imodels[ibest], par.scaled(xs[ibest, ipar]), s=3, c=iorder[ibest],
            lw=0, cmap=cmap, alpha=alpha)

    for idep in xrange(ndep):
        # ifz, ify, ifx = num.unravel_index(ipar, (nfz, nfy, nfx))
        impl = (npar+idep) % (nfx*nfy) + 1

        if impl == 1:
            fig = plt.figure()
278
            figs.append(fig)
Sebastian Heimann's avatar
Sebastian Heimann committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

        par = problem.dependants[idep]

        axes = fig.add_subplot(nfy, nfx, impl, sharex=axes)
        axes.set_ylabel(par.get_label())
        axes.get_yaxis().set_major_locator(plt.MaxNLocator(4))
        if impl < (nfx*nfy-1):
            axes.get_xaxis().set_visible(False)
        else:
            axes.set_xlabel('Iteration')
        axes.set_ylim(*fixlim(*par.scaled(bounds[npar+idep])))
        axes.set_xlim(0, model.nmodels)

        y = problem.make_dependant(xref, par.name)
        axes.axhline(par.scaled(y), color='black', alpha=0.3)

        ys = problem.make_dependant(xs[ibest, :], par.name)
        axes.scatter(
            imodels[ibest], par.scaled(ys), s=3, c=iorder[ibest],
            lw=0, cmap=cmap, alpha=alpha)

    impl = (npar+ndep) % (nfx*nfy) + 1
    if impl == 1:
        fig = plt.figure()
303
        figs.append(fig)
Sebastian Heimann's avatar
Sebastian Heimann committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

    axes = fig.add_subplot(nfy, nfx, impl, sharex=axes)

    axes.set_ylim(0., 1.5)
    axes.axhspan(1.0, 1.5, color=(0.8, 0.8, 0.8), alpha=0.2)
    axes.axhline(1.0, color=(0.5, 0.5, 0.5), zorder=2)
    axes.set_yticks([0., 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4])
    axes.set_yticklabels(['0.0', '0.2', '0.4', '0.6', '0.8', '1', '10', '100'])

    axes.scatter(
        imodels[ibest], gms_softclip[ibest], c=iorder[ibest],
        s=3, lw=0, cmap=cmap, alpha=alpha)

    axes.set_xlim(0, model.nmodels)
    axes.set_xlabel('Iteration')

    axes.set_ylabel('Misfit')

322
    return figs
Sebastian Heimann's avatar
Sebastian Heimann committed
323
324
325


def draw_jointpar_figures(
326
        model, plt, misfit_cutoff=None, ibootstrap=None, color=None,
327
        exclude=None, include=None):
328

329
    color = 'misfit'
Sebastian Heimann's avatar
Sebastian Heimann committed
330
    # exclude = ['duration']
331
    # include = ['magnitude', 'rel_moment_iso', 'rel_moment_clvd', 'depth']
332
333
    neach = 6
    figsize = (8, 8)
Sebastian Heimann's avatar
Sebastian Heimann committed
334
335
    # cmap = cm.YlOrRd
    # cmap = cm.jet
336
    cmap = cm.coolwarm
Sebastian Heimann's avatar
Sebastian Heimann committed
337
338
339

    problem = model.problem
    if not problem:
340
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
341
342
343
344

    xs = model.xs

    bounds = problem.bounds() + problem.dependant_bounds()
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
345
346
347
348
349
350
351
352
    for ipar in xrange(problem.ncombined):
        par = problem.combined[ipar]
        lo, hi = bounds[ipar]
        if lo == hi:
            if exclude is None:
                exclude = []

            exclude.append(par.name)
Sebastian Heimann's avatar
Sebastian Heimann committed
353
354
355
356
357
358
359
360
361
362
363
364
365

    xref = problem.pack(problem.base_source)

    if ibootstrap is not None:
        gms = problem.bootstrap_misfits(model.misfits, ibootstrap)
    else:
        gms = problem.global_misfits(model.misfits)

    isort = num.argsort(gms)[::-1]

    gms = gms[isort]
    xs = xs[isort, :]

Sebastian Heimann's avatar
Sebastian Heimann committed
366
    if misfit_cutoff is not None:
Sebastian Heimann's avatar
Sebastian Heimann committed
367
        ibest = gms < misfit_cutoff
Sebastian Heimann's avatar
Sebastian Heimann committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        gms = gms[ibest]
        xs = xs[ibest]

    nmodels = xs.shape[0]

    if color == 'dist':
        mx = num.mean(xs, axis=0)
        cov = num.cov(xs.T)
        mdists = core.mahalanobis_distance(xs, mx, cov)
        color = ordersort(mdists)

    elif color == 'misfit':
        iorder = num.arange(nmodels)
        color = iorder

    elif color in problem.parameter_names:
        ind = problem.name_to_index(color)
        color = ordersort(problem.extract(xs, ind))
Sebastian Heimann's avatar
Sebastian Heimann committed
386

387
388
389
390
    smap = {}
    iselected = 0
    for ipar in xrange(problem.ncombined):
        par = problem.combined[ipar]
Sebastian Heimann's avatar
wip    
Sebastian Heimann committed
391
392
        if exclude and par.name in exclude or \
                include and par.name not in include:
393
            continue
Sebastian Heimann's avatar
Sebastian Heimann committed
394

395
396
397
398
        smap[iselected] = ipar
        iselected += 1

    nselected = iselected
Sebastian Heimann's avatar
Sebastian Heimann committed
399

400
401
402
403
    if nselected < 2:
        logger.warn('cannot draw joinpar figures with less than two '
                    'parameters selected')
        return []
404
405

    nfig = (nselected-2) / neach + 1
Sebastian Heimann's avatar
Sebastian Heimann committed
406
407
408
409
410
411

    figs = []
    for ifig in xrange(nfig):
        figs_row = []
        for jfig in xrange(nfig):
            if ifig >= jfig:
412
                figs_row.append(plt.figure(figsize=figsize))
Sebastian Heimann's avatar
Sebastian Heimann committed
413
414
415
416
417
            else:
                figs_row.append(None)

        figs.append(figs_row)

418
419
    for iselected in xrange(nselected):
        ipar = smap[iselected]
Sebastian Heimann's avatar
Sebastian Heimann committed
420
        ypar = problem.combined[ipar]
421
422
        for jselected in xrange(iselected):
            jpar = smap[jselected]
Sebastian Heimann's avatar
Sebastian Heimann committed
423
424
            xpar = problem.combined[jpar]

425
426
            ixg = (iselected - 1)
            iyg = jselected
Sebastian Heimann's avatar
Sebastian Heimann committed
427
428
429
430
431
432
433
434
435
436
437
438
439

            ix = ixg % neach
            iy = iyg % neach

            ifig = ixg/neach
            jfig = iyg/neach

            aind = (neach, neach, (ix * neach) + iy + 1)

            fig = figs[ifig][jfig]

            axes = fig.add_subplot(*aind)

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
            axes.axvline(0., color=scolor('aluminium3'), lw=0.5)
            axes.axhline(0., color=scolor('aluminium3'), lw=0.5)
            for spine in axes.spines.values():
                spine.set_edgecolor(scolor('aluminium5'))
                spine.set_linewidth(0.5)

            xmin, xmax = fixlim(*xpar.scaled(bounds[jpar]))
            ymin, ymax = fixlim(*ypar.scaled(bounds[ipar]))

            if ix == 0 or jselected + 1 == iselected:
                for (xpos, xoff, x) in [(0.0, 10., xmin), (1.0, -10., xmax)]:
                    axes.annotate(
                        '%.2g%s' % (x, xpar.get_unit_suffix()),
                        xy=(xpos, 1.05),
                        xycoords='axes fraction',
                        xytext=(xoff, 5.),
                        textcoords='offset points',
                        verticalalignment='bottom',
                        horizontalalignment='left',
                        rotation=45.)

            if iy == neach - 1 or jselected + 1 == iselected:
                for (ypos, yoff, y) in [(0., 10., ymin), (1.0, -10., ymax)]:
                    axes.annotate(
                        '%.2g%s' % (y, ypar.get_unit_suffix()),
                        xy=(1.0, ypos),
                        xycoords='axes fraction',
                        xytext=(5., yoff),
                        textcoords='offset points',
                        verticalalignment='bottom',
                        horizontalalignment='left',
                        rotation=45.)

            axes.set_xlim(xmin, xmax)
            axes.set_ylim(ymin, ymax)
Sebastian Heimann's avatar
Sebastian Heimann committed
475
476
477
478

            axes.get_xaxis().set_ticks([])
            axes.get_yaxis().set_ticks([])

479
            if iselected == nselected - 1 or ix == neach - 1:
Sebastian Heimann's avatar
Sebastian Heimann committed
480
                axes.annotate(
481
                    xpar.get_label(with_unit=False),
Sebastian Heimann's avatar
Sebastian Heimann committed
482
483
484
485
486
487
488
489
                    xy=(0.5, -0.05),
                    xycoords='axes fraction',
                    verticalalignment='top',
                    horizontalalignment='right',
                    rotation=45.)

            if iy == 0:
                axes.annotate(
490
                    ypar.get_label(with_unit=False),
Sebastian Heimann's avatar
Sebastian Heimann committed
491
492
                    xy=(-0.05, 0.5),
                    xycoords='axes fraction',
493
494
495
                    verticalalignment='top',
                    horizontalalignment='right',
                    rotation=45.)
Sebastian Heimann's avatar
Sebastian Heimann committed
496

Sebastian Heimann's avatar
Sebastian Heimann committed
497
498
            fx = problem.extract(xs, jpar)
            fy = problem.extract(xs, ipar)
Sebastian Heimann's avatar
Sebastian Heimann committed
499
500
501
502
503

            axes.scatter(
                xpar.scaled(fx),
                ypar.scaled(fy),
                c=color,
504
                s=3, alpha=0.5, cmap=cmap, edgecolors='none')
Sebastian Heimann's avatar
Sebastian Heimann committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

            cov = num.cov((xpar.scaled(fx), ypar.scaled(fy)))
            evals, evecs = eigh_sorted(cov)
            evals = num.sqrt(evals)
            ell = patches.Ellipse(
                xy=(num.mean(xpar.scaled(fx)), num.mean(ypar.scaled(fy))),
                width=evals[0]*2,
                height=evals[1]*2,
                angle=num.rad2deg(num.arctan2(evecs[1][0], evecs[0][0])))

            ell.set_facecolor('none')
            axes.add_artist(ell)

            fx = problem.extract(xref, jpar)
            fy = problem.extract(xref, ipar)
520
521
522
523
524
525
526

            ref_color = scolor('aluminium6')
            ref_color_light = 'none'
            axes.plot(
                xpar.scaled(fx), ypar.scaled(fy), 's',
                mew=1.5, ms=5, color=ref_color_light, mec=ref_color)

527
528
529
530
531
532
    figs_flat = []
    for figs_row in figs:
        figs_flat.extend(fig for fig in figs_row if fig is not None)

    return figs_flat

Sebastian Heimann's avatar
Sebastian Heimann committed
533
534
535
536

def draw_solution_figure(
        model, plt, misfit_cutoff=None, beachball_type='full'):

Sebastian Heimann's avatar
Sebastian Heimann committed
537
538
539
540
541
    fontsize = 10.

    fig = plt.figure(figsize=(6, 2))
    axes = fig.add_subplot(1, 1, 1, aspect=1.0)
    fig.subplots_adjust(left=0., right=1., bottom=0., top=1.)
Sebastian Heimann's avatar
Sebastian Heimann committed
542
543
544

    problem = model.problem
    if not problem:
545
546
        logger.warn('problem not set')
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
547
548
549
550

    xs = model.xs

    if xs.size == 0:
551
552
        logger.warn('empty models vector')
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
553
554
555
556
557
558

    gms = problem.global_misfits(model.misfits)
    isort = num.argsort(gms)
    iorder = num.empty_like(isort)
    iorder[isort] = num.arange(iorder.size)[::-1]

Sebastian Heimann's avatar
Sebastian Heimann committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
    mean_source = core.get_mean_source(problem, model.xs)
    best_source = core.get_best_source(problem, model.xs, model.misfits)
    ref_source = problem.base_source

    for xpos, label in [
            (0., 'Full'),
            (2., 'Isotropic'),
            (4., 'Deviatoric'),
            (6., 'CLVD'),
            (8., 'DC')]:

        axes.annotate(
            label,
            xy=(1+xpos, 3),
            xycoords='data',
            xytext=(0., 0.),
            textcoords='offset points',
            ha='center',
            va='center',
            color='black',
            fontsize=fontsize)

    decos = []
    for source in [best_source, mean_source, ref_source]:
        mt = source.pyrocko_moment_tensor()
        deco = mt.standard_decomposition()
        decos.append(deco)

    moment_full_max = max(deco[-1][0] for deco in decos)

    for ypos, label, deco, color_t in [
            (2., 'Ensemble best', decos[0], scolor('aluminium5')),
            (1., 'Ensemble mean', decos[1], scolor('scarletred1')),
            (0., 'Reference', decos[2], scolor('aluminium3'))]:

        [(moment_iso, ratio_iso, m_iso),
         (moment_dc, ratio_dc, m_dc),
         (moment_clvd, ratio_clvd, m_clvd),
         (moment_devi, ratio_devi, m_devi),
         (moment_full, ratio_full, m_full)] = deco

        size0 = moment_full / moment_full_max

        axes.annotate(
            label,
            xy=(-2., ypos),
            xycoords='data',
            xytext=(0., 0.),
            textcoords='offset points',
            ha='left',
            va='center',
            color='black',
            fontsize=fontsize)

        for xpos, mt_part, ratio, ops in [
                (0., m_full, ratio_full, '-'),
                (2., m_iso, ratio_iso, '='),
                (4., m_devi, ratio_devi, '='),
                (6., m_clvd, ratio_clvd, '+'),
                (8., m_dc, ratio_dc, None)]:

620
            if ratio > 1e-4:
621
622
623
624
625
626
627
628
629
630
631
632
                try:
                    beachball.plot_beachball_mpl(
                        mt_part, axes,
                        beachball_type='full',
                        position=(1.+xpos, ypos),
                        size=0.9*size0*math.sqrt(ratio),
                        size_units='data',
                        color_t=color_t,
                        linewidth=1.0)

                except beachball.BeachballError, e:
                    logger.warn(str(e))
Sebastian Heimann's avatar
Sebastian Heimann committed
633

634
635
636
637
638
639
640
641
                    axes.annotate(
                        'ERROR',
                        xy=(1.+xpos, ypos),
                        ha='center',
                        va='center',
                        color='red',
                        fontsize=fontsize)

Sebastian Heimann's avatar
Sebastian Heimann committed
642
643
644
            else:
                axes.annotate(
                    'N/A',
Sebastian Heimann's avatar
Sebastian Heimann committed
645
                    xy=(1.+xpos, ypos),
Sebastian Heimann's avatar
Sebastian Heimann committed
646
647
648
649
650
651
652
653
654
655
656
657
658
                    ha='center',
                    va='center',
                    color='black',
                    fontsize=fontsize)

            if ops is not None:
                axes.annotate(
                    ops,
                    xy=(2. + xpos, ypos),
                    ha='center',
                    va='center',
                    color='black',
                    fontsize=fontsize)
Sebastian Heimann's avatar
Sebastian Heimann committed
659
660

    axes.axison = False
Sebastian Heimann's avatar
Sebastian Heimann committed
661
662
    axes.set_xlim(-2.25, 9.75)
    axes.set_ylim(-0.5, 3.5)
Sebastian Heimann's avatar
Sebastian Heimann committed
663

664
665
    return [fig]

Sebastian Heimann's avatar
Sebastian Heimann committed
666
667
668
669
670
671
672

def draw_contributions_figure(model, plt):

    fig = plt.figure()

    problem = model.problem
    if not problem:
673
674
        logger.warn('problem not set')
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
675
676
677
678

    xs = model.xs

    if xs.size == 0:
679
680
        logger.warn('empty models vector')
        return []
Sebastian Heimann's avatar
Sebastian Heimann committed
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

    imodels = num.arange(model.nmodels)

    gms = problem.global_misfits(model.misfits)**2

    isort = num.argsort(gms)[::-1]

    gms = gms[isort]

    gms_softclip = num.where(gms > 1.0, 0.1 * num.log10(gms) + 1.0, gms)

    gcms = problem.global_contributions(model.misfits)
    gcms = gcms[isort, :]

    jsort = num.argsort(gcms[-1, :])[::-1]

    # ncols = 4
    # nrows = ((problem.ntargets + 1) - 1) / ncols + 1

    axes = fig.add_subplot(2, 2, 1)
    labelspace(axes)
    axes.set_ylabel('Relative contribution (smoothed)')
    axes.set_ylim(0.0, 1.0)

    axes2 = fig.add_subplot(2, 2, 3, sharex=axes)
    labelspace(axes2)
    axes2.set_xlabel('Tested model, sorted descending by global misfit value')

    axes2.set_ylabel('Square of misfit')

    axes2.set_ylim(0., 1.5)
    axes2.axhspan(1.0, 1.5, color=(0.8, 0.8, 0.8))
    axes2.set_yticks([0., 0.2, 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5])
    axes2.set_yticklabels(
        ['0.0', '0.2', '0.4', '0.6', '0.8', '1', '10', '100', '1000', '10000',
         '100000'])

    axes2.set_xlim(imodels[0], imodels[-1])

    rel_ms_sum = num.zeros(model.nmodels)
    rel_ms_smooth_sum = num.zeros(model.nmodels)
    ms_smooth_sum = num.zeros(model.nmodels)
    b = num.hanning(100)
    b /= num.sum(b)
    a = [1]
    ii = 0

    for itarget in jsort:
        target = problem.targets[itarget]
        ms = gcms[:, itarget]
        ms = num.where(num.isfinite(ms), ms, 0.0)
        if num.all(ms == 0.0):
            continue

        rel_ms = ms / gms

        rel_ms_smooth = signal.filtfilt(b, a, rel_ms)

        ms_smooth = rel_ms_smooth * gms_softclip

        rel_poly_y = num.concatenate(
            [rel_ms_smooth_sum[::-1], rel_ms_smooth_sum + rel_ms_smooth])
        poly_x = num.concatenate([imodels[::-1], imodels])

        axes.fill(
            poly_x, rel_poly_y,
            alpha=0.5,
            color=colors[ii % len(colors)],
Sebastian Heimann's avatar
Sebastian Heimann committed
749
            label='%s (%.2g)' % (target.string_id(), num.mean(rel_ms[-1])))
Sebastian Heimann's avatar
Sebastian Heimann committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773

        poly_y = num.concatenate(
            [ms_smooth_sum[::-1], ms_smooth_sum + ms_smooth])

        axes2.fill(poly_x, poly_y, alpha=0.5, color=colors[ii % len(colors)])

        rel_ms_sum += rel_ms

        # axes.plot(imodels, rel_ms_sum, color='black', alpha=0.1, zorder=-1)

        ms_smooth_sum += ms_smooth
        rel_ms_smooth_sum += rel_ms_smooth
        ii += 1

    axes.legend(
        title='Contributions (large to small at minimal global misfit)',
        bbox_to_anchor=(1.05, 0.0, 1.0, 1.0),
        loc='upper left',
        ncol=2, borderaxespad=0., prop={'size': 12})

    axes2.plot(imodels, gms_softclip, color='black')
    axes2.axhline(1.0, color=(0.5, 0.5, 0.5))
    fig.tight_layout()

774
775
    return [fig]

Sebastian Heimann's avatar
Sebastian Heimann committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799

def draw_bootstrap_figure(model, plt):

    fig = plt.figure()

    problem = model.problem
    gms = problem.global_misfits(model.misfits)

    imodels = num.arange(model.nmodels)

    axes = fig.add_subplot(1, 1, 1)

    gms_softclip = num.where(gms > 1.0, 0.1 * num.log10(gms) + 1.0, gms)

    ibests = []
    for ibootstrap in xrange(problem.nbootstrap):
        bms = problem.bootstrap_misfits(model.misfits, ibootstrap)
        isort_bms = num.argsort(bms)[::-1]

        ibests.append(isort_bms[-1])

        bms_softclip = num.where(bms > 1.0, 0.1 * num.log10(bms) + 1.0, bms)
        axes.plot(imodels, bms_softclip[isort_bms], color='red', alpha=0.2)

Sebastian Heimann's avatar
Sebastian Heimann committed
800
801
802
803
804
805
806
807
808
809
810
811
812
    isort = num.argsort(gms)[::-1]
    iorder = num.empty(isort.size)
    iorder[isort] = imodels

    axes.plot(iorder[ibests], gms_softclip[ibests], 'x', color='black')

    m = num.median(gms[ibests])
    s = num.std(gms[ibests])

    axes.axhline(m+s, color='black', alpha=0.5)
    axes.axhline(m, color='black')
    axes.axhline(m-s, color='black', alpha=0.5)

Sebastian Heimann's avatar
Sebastian Heimann committed
813
814
    axes.plot(imodels, gms_softclip[isort], color='black')

Sebastian Heimann's avatar
Sebastian Heimann committed
815
816
    axes.set_xlim(imodels[0], imodels[-1])
    axes.set_xlabel('Tested model, sorted descending by global misfit value')
Sebastian Heimann's avatar
Sebastian Heimann committed
817

818
819
    return [fig]

820

Sebastian Heimann's avatar
Sebastian Heimann committed
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
def gather(l, key, sort=None, filter=None):
    d = {}
    for x in l:
        if filter is not None and not filter(x):
            continue

        k = key(x)
        if k not in d:
            d[k] = []

        d[k].append(x)

    if sort is not None:
        for v in d.itervalues():
            v.sort(key=sort)

    return d


def plot_trace(axes, tr, **kwargs):
    return axes.plot(tr.get_xdata(), tr.get_ydata(), **kwargs)


def plot_taper(axes, t, taper, **kwargs):
    y = num.ones(t.size) * 0.9
    taper(y, t[0], t[1] - t[0])
    y2 = num.concatenate((y, -y[::-1]))
    t2 = num.concatenate((t, t[::-1]))
    axes.fill(t2, y2, **kwargs)


852
def plot_dtrace(axes, tr, space, mi, ma, **kwargs):
Sebastian Heimann's avatar
Sebastian Heimann committed
853
854
    t = tr.get_xdata()
    y = tr.get_ydata()
855
856
    y2 = (num.concatenate((y, num.zeros(y.size))) - mi) / \
        (ma-mi) * space - (1.0 + space)
Sebastian Heimann's avatar
Sebastian Heimann committed
857
    t2 = num.concatenate((t, t[::-1]))
858
    axes.fill(
Sebastian Heimann's avatar
Sebastian Heimann committed
859
860
861
862
        t2, y2,
        clip_on=False,
        **kwargs)

863

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
def plot_spectrum(
        axes, spec_syn, spec_obs, fmin, fmax, space, mi, ma,
        syn_color='red', obs_color='black',
        syn_lw=1.5, obs_lw=1.0, color_vline='gray', fontsize=9.):

    fpad = (fmax - fmin) / 6.

    for spec, color, lw in [
            (spec_syn, syn_color, syn_lw),
            (spec_obs, obs_color, obs_lw)]:

        f = spec.get_xdata()
        mask = num.logical_and(fmin - fpad <= f, f <= fmax + fpad)

        f = f[mask]
        y = num.abs(spec.get_ydata())[mask]

        y2 = (num.concatenate((y, num.zeros(y.size))) - mi) / \
            (ma-mi) * space - (1.0 + space)
        f2 = num.concatenate((f, f[::-1]))
        axes2 = axes.twiny()
        axes2.set_axis_off()

        axes2.set_xlim(fmin - fpad * 5, fmax + fpad * 5)

        axes2.plot(f2, y2, clip_on=False, color=color, lw=lw)
        axes2.fill(f2, y2, alpha=0.1, clip_on=False, color=color)

    axes2.plot([fmin, fmin], [-1.0 - space, -1.0], color=color_vline)
    axes2.plot([fmax, fmax], [-1.0 - space, -1.0], color=color_vline)

    for (text, fx, ha) in [
            ('%.3g Hz' % fmin, fmin, 'right'),
            ('%.3g Hz' % fmax, fmax, 'left')]:

        axes2.annotate(
            text,
            xy=(fx, -1.0),
            xycoords='data',
            xytext=(
                fontsize*0.4 * [-1, 1][ha == 'left'],
                -fontsize*0.2),
            textcoords='offset points',
            ha=ha,
            va='top',
            color=color_vline,
            fontsize=fontsize)

Sebastian Heimann's avatar
Sebastian Heimann committed
912

913
914
915
916
def plot_dtrace_vline(axes, t, space, **kwargs):
    axes.plot([t, t], [-1.0 - space, -1.0], **kwargs)


Sebastian Heimann's avatar
Sebastian Heimann committed
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
def draw_fits_figures(ds, model, plt):
    fontsize = 10

    problem = model.problem

    for target in problem.targets:
        target.set_dataset(ds)

    target_index = dict(
        (target, i) for (i, target) in enumerate(problem.targets))

    gms = problem.global_misfits(model.misfits)
    isort = num.argsort(gms)
    gms = gms[isort]
    xs = model.xs[isort, :]
    misfits = model.misfits[isort, :]

    xbest = xs[0, :]

    ws = problem.get_target_weights()
    gcms = problem.global_contributions(misfits[:1])[0]

    w_max = num.nanmax(ws)
    gcm_max = num.nanmax(gcms)

    source = problem.unpack(xbest)

    target_to_result = {}
    all_syn_trs = []
946
    all_syn_specs = []
947
    ms, ns, results = problem.evaluate(xbest, result_mode='full')
Sebastian Heimann's avatar
Sebastian Heimann committed
948
949
950
951
952
953
954
955
956
957

    dtraces = []
    for target, result in zip(problem.targets, results):
        if result is None:
            dtraces.append(None)
            continue

        itarget = target_index[target]
        w = target.get_combined_weight(problem.apply_balancing_weights)

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
        if target.misfit_config.domain == 'cc_max_norm':
            tref = (result.filtered_obs.tmin + result.filtered_obs.tmax) * 0.5
            for tr_filt, tr_proc, tshift in (
                    (result.filtered_obs,
                     result.processed_obs,
                     0.),
                    (result.filtered_syn,
                     result.processed_syn,
                     result.cc_shift)):

                norm = num.sum(num.abs(tr_proc.ydata)) / tr_proc.data_len()
                tr_filt.ydata /= norm
                tr_proc.ydata /= norm

                tr_filt.shift(tshift)
                tr_proc.shift(tshift)

            ctr = result.cc
            ctr.shift(tref)

            dtrace = ctr

        else:
            for tr in (
                    result.filtered_obs,
                    result.filtered_syn,
                    result.processed_obs,
                    result.processed_syn):
Sebastian Heimann's avatar
Sebastian Heimann committed
986

987
                tr.ydata *= w
Sebastian Heimann's avatar
Sebastian Heimann committed
988

989
990
991
992
993
994
995
            for spec in (
                    result.spectrum_obs,
                    result.spectrum_syn):

                if spec is not None:
                    spec.ydata *= w

996
997
998
999
1000
            dtrace = result.processed_syn.copy()
            dtrace.set_ydata(
                (
                    (result.processed_syn.get_ydata() -
                     result.processed_obs.get_ydata())**2))