model_opt_r.Rd 1.63 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/model_opt.r
\name{model_opt_r}
\alias{model_opt_r}
\title{Perform Habitat Sampling and Probability Mapping}
\usage{
model_opt_r(
  k,
  raster,
  sample_type,
  buffer,
  model,
  seed,
  n,
  sample_size,
  n_channel,
  seed2,
  mtry,
Daniela Rabe's avatar
Daniela Rabe committed
19
  mod.error,
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
  pbtn1,
  max_samples_per_class
)
}
\arguments{
\item{k}{Iteration value for the models.}

\item{raster}{satellite time series stack (rasterBrickObject) or just any type of image (*rasterObject)}

\item{sample_type}{distribution of spatial locations c("random","regular")}

\item{buffer}{distance (in m) for new sample collection around initial samples (depends on pixel size)}

\item{model}{which machine learning classifier to use c("rf", "svm") for random forest or support vector machine implementation}

\item{seed}{set seed for reproducible results}

\item{n}{number of iterations for model accuracy}

\item{sample_size}{number of spatial locations}

\item{n_channel}{number of channels}

\item{seed2}{spatial points sample}

\item{mtry}{number of predictor used at random forest splitting nodes (mtry << n predictors)}

Daniela Rabe's avatar
Daniela Rabe committed
47
\item{mod.error}{threshold for model error until which iteration is being executed}
48

Daniela Rabe's avatar
Daniela Rabe committed
49
\item{pbtn1}{matrix for points}
50
51
52
53
54
55
56
57

\item{max_samples_per_class}{maximum number of samples per class}
}
\value{
a list with 4 elements:
\enumerate{
\item k To identify the used model \cr
\item model The model - mmax \cr
58
\item points List of points used part of the sample. \cr
59
60
61
62
63
64
65
\item oobe The accuracy achieved by the model \cr
}
}
\description{
This function finds the best model (mmax) for a set of sampled points.
}
\keyword{internal}