reproject.py 55.1 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
# -*- coding: utf-8 -*-
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

# py_tools_ds
#
# Copyright (C) 2019  Daniel Scheffler (GFZ Potsdam, daniel.scheffler@gfz-potsdam.de)
#
# This software was developed within the context of the GeoMultiSens project funded
# by the German Federal Ministry of Education and Research
# (project grant code: 01 IS 14 010 A-C).
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program.  If not, see <http://www.gnu.org/licenses/>.

Daniel Scheffler's avatar
Daniel Scheffler committed
24
25
import numpy as np
import warnings
26
import multiprocessing
27
28
import os
from tempfile import TemporaryDirectory
29
from typing import Union, Tuple, List, Any  # noqa: F401
30
import sys
31

32
# custom
Daniel Scheffler's avatar
Daniel Scheffler committed
33
34
35
36
37
38
try:
    from osgeo import gdal
    from osgeo import gdalnumeric
except ImportError:
    import gdal
    import gdalnumeric
Daniel Scheffler's avatar
Daniel Scheffler committed
39

40
41
42

# NOTE: In case of ImportError: dlopen: cannot load any more object with static TLS,
#       one could add 'from pykdtree.kdtree import KDTree' here (before pyresample import)
43
44
45
from pyresample.geometry import AreaDefinition, SwathDefinition
from pyresample.bilinear import resample_bilinear
from pyresample.kd_tree import resample_nearest, resample_gauss, resample_custom
Daniel Scheffler's avatar
Daniel Scheffler committed
46

47
from ...dtypes.conversion import dTypeDic_NumPy2GDAL
48
49
from ..projection import EPSG2WKT, WKT2EPSG, isProjectedOrGeographic, prj_equal, proj4_to_WKT
from ..coord_trafo import pixelToLatLon, get_proj4info, proj4_to_dict, transform_coordArray, transform_any_prj
50
51
from ..coord_calc import corner_coord_to_minmax, get_corner_coordinates
from ...io.raster.gdal import get_GDAL_ds_inmem
52
from ...io.raster.writer import write_numpy_to_image
53
from ...processing.progress_mon import ProgressBar
54
from ...compatibility.gdal import get_gdal_func
55
from ...processing.shell import subcall_with_output
Daniel Scheffler's avatar
Daniel Scheffler committed
56

57
__author__ = "Daniel Scheffler"
Daniel Scheffler's avatar
Daniel Scheffler committed
58

Daniel Scheffler's avatar
Daniel Scheffler committed
59
60

def warp_ndarray_OLD(ndarray, in_gt, in_prj, out_prj, out_gt=None, outRowsCols=None, outUL=None, out_res=None,
61
                     out_extent=None, out_dtype=None, rsp_alg=0, in_nodata=None, out_nodata=None,
62
                     outExtent_within=True):  # pragma: no cover
Daniel Scheffler's avatar
Daniel Scheffler committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    """Reproject / warp a numpy array with given geo information to target coordinate system.

    :param ndarray:             numpy.ndarray [rows,cols,bands]
    :param in_gt:               input gdal GeoTransform
    :param in_prj:              input projection as WKT string
    :param out_prj:             output projection as WKT string
    :param out_gt:              output gdal GeoTransform as float tuple in the source coordinate system (optional)
    :param outUL:               [X,Y] output upper left coordinates as floats in the source coordinate system
                                (requires outRowsCols)
    :param outRowsCols:         [rows, cols] (optional)
    :param out_res:             output resolution as tuple of floats (x,y) in the TARGET coordinate system
    :param out_extent:          [left, bottom, right, top] as floats in the source coordinate system
    :param out_dtype:           output data type as numpy data type
    :param rsp_alg:             Resampling method to use. One of the following (int, default is 0):
                                0 = nearest neighbour, 1 = bilinear, 2 = cubic, 3 = cubic spline, 4 = lanczos,
                                5 = average, 6 = mode
    :param in_nodata:           no data value of the input image
    :param out_nodata:          no data value of the output image
    :param outExtent_within:    Ensures that the output extent is within the input extent.
                                Otherwise an exception is raised.
    :return out_arr:            warped numpy array
    :return out_gt:             warped gdal GeoTransform
    :return out_prj:            warped projection as WKT string
    """
87
88
89
90
91
92
93
94
95
96
    # NOTE: rasterio seems to increase the number of objects with static TLS
    #       There is a maximum number and if this is exceeded an ImportError is raised:
    #       ImportError: dlopen: cannot load any more object with static TLS
    #       - see also: https://gitext.gfz-potsdam.de/danschef/py_tools_ds/issues/8
    #       - NOTE: importing rasterio AFTER pyresample (which uses pykdtree) seems to solve that too
    #       => keep the rasterio import within the function locals to avoid not needed imports
    import rasterio
    from rasterio.warp import reproject as rio_reproject
    from rasterio.warp import calculate_default_transform as rio_calc_transform
    from rasterio.warp import Resampling
Daniel Scheffler's avatar
Daniel Scheffler committed
97

Daniel Scheffler's avatar
Daniel Scheffler committed
98
    if not ndarray.flags['OWNDATA']:
99
        temp = np.empty_like(ndarray)
Daniel Scheffler's avatar
Daniel Scheffler committed
100
101
102
103
104
105
106
107
108
        temp[:] = ndarray
        ndarray = temp  # deep copy: converts view to its own array in order to avoid wrong output

    with rasterio.env.Env():
        if outUL is not None:
            assert outRowsCols is not None, 'outRowsCols must be given if outUL is given.'
        outUL = [in_gt[0], in_gt[3]] if outUL is None else outUL

        inEPSG, outEPSG = [WKT2EPSG(prj) for prj in [in_prj, out_prj]]
109
        assert inEPSG, 'Could not derive input EPSG code.'
Daniel Scheffler's avatar
Daniel Scheffler committed
110
        assert outEPSG, 'Could not derive output EPSG code.'
111
112
113
        assert in_nodata is None or isinstance(in_nodata, (int, float)), \
            'Received invalid input nodata value: %s; type: %s.' % (in_nodata, type(in_nodata))
        assert out_nodata is None or isinstance(out_nodata, (int, float)), \
Daniel Scheffler's avatar
Daniel Scheffler committed
114
            'Received invalid output nodata value: %s; type: %s.' % (out_nodata, type(out_nodata))
Daniel Scheffler's avatar
Daniel Scheffler committed
115
116
117
118
119
120
121
122
123
124
125
126
127

        src_crs = {'init': 'EPSG:%s' % inEPSG}
        dst_crs = {'init': 'EPSG:%s' % outEPSG}

        if len(ndarray.shape) == 3:
            # convert input array axis order to rasterio axis order
            ndarray = np.swapaxes(np.swapaxes(ndarray, 0, 2), 1, 2)
            bands, rows, cols = ndarray.shape
            rows, cols = outRowsCols if outRowsCols else (rows, cols)
        else:
            rows, cols = ndarray.shape if outRowsCols is None else outRowsCols

        # set dtypes ensuring at least int16 (int8 is not supported by rasterio)
128
        in_dtype = ndarray.dtype
Daniel Scheffler's avatar
Daniel Scheffler committed
129
130
        out_dtype = ndarray.dtype if out_dtype is None else out_dtype
        out_dtype = np.int16 if str(out_dtype) == 'int8' else out_dtype
131
        ndarray = ndarray.astype(np.int16) if str(in_dtype) == 'int8' else ndarray
Daniel Scheffler's avatar
Daniel Scheffler committed
132
133

        # get dst_transform
134
135
        def gt2bounds(gt, r, c): return [gt[0], gt[3] + r * gt[5], gt[0] + c * gt[1], gt[3]]  # left, bottom, right, top

Daniel Scheffler's avatar
Daniel Scheffler committed
136
137
        if out_gt is None and out_extent is None:
            if outRowsCols:
138
139
140
141
142
                outUL = [in_gt[0], in_gt[3]] if outUL is None else outUL

                def ulRC2bounds(ul, r, c):
                    return [ul[0], ul[1] + r * in_gt[5], ul[0] + c * in_gt[1], ul[1]]  # left, bottom, right, top

Daniel Scheffler's avatar
Daniel Scheffler committed
143
                left, bottom, right, top = ulRC2bounds(outUL, rows, cols)
144

Daniel Scheffler's avatar
Daniel Scheffler committed
145
146
147
            else:  # outRowsCols is None and outUL is None: use in_gt
                left, bottom, right, top = gt2bounds(in_gt, rows, cols)
                # ,im_xmax,im_ymin,im_ymax = corner_coord_to_minmax(get_corner_coordinates(self.ds_im2shift))
148

Daniel Scheffler's avatar
Daniel Scheffler committed
149
150
        elif out_extent:
            left, bottom, right, top = out_extent
151

Daniel Scheffler's avatar
Daniel Scheffler committed
152
153
154
155
156
157
        else:  # out_gt is given
            left, bottom, right, top = gt2bounds(in_gt, rows, cols)

        if outExtent_within:
            # input array is only a window of the actual input array
            assert left >= in_gt[0] and right <= (in_gt[0] + (cols + 1) * in_gt[1]) and \
158
159
                   bottom >= in_gt[3] + (rows + 1) * in_gt[5] and top <= in_gt[3], \
                   "out_extent has to be completely within the input image bounds."
Daniel Scheffler's avatar
Daniel Scheffler committed
160
161
162
163
164

        if out_res is None:
            # get pixel resolution in target coord system
            prj_in_out = (isProjectedOrGeographic(in_prj), isProjectedOrGeographic(out_prj))
            assert None not in prj_in_out, 'prj_in_out contains None.'
165

Daniel Scheffler's avatar
Daniel Scheffler committed
166
167
            if prj_in_out[0] == prj_in_out[1]:
                out_res = (in_gt[1], abs(in_gt[5]))
168

Daniel Scheffler's avatar
Daniel Scheffler committed
169
170
            elif prj_in_out == ('geographic', 'projected'):
                raise NotImplementedError('Different projections are currently not supported.')
171

Daniel Scheffler's avatar
Daniel Scheffler committed
172
173
174
175
176
177
            else:  # ('projected','geographic')
                px_size_LatLon = np.array(pixelToLatLon([1, 1], geotransform=in_gt, projection=in_prj)) - \
                                 np.array(pixelToLatLon([0, 0], geotransform=in_gt, projection=in_prj))
                out_res = tuple(reversed(abs(px_size_LatLon)))
                print('OUT_RES NOCHMAL CHECKEN: ', out_res)

Daniel Scheffler's avatar
Daniel Scheffler committed
178
179
180
        dict_rspInt_rspAlg = \
            {0: Resampling.nearest, 1: Resampling.bilinear, 2: Resampling.cubic,
             3: Resampling.cubic_spline, 4: Resampling.lanczos, 5: Resampling.average, 6: Resampling.mode}
Daniel Scheffler's avatar
Daniel Scheffler committed
181

182
        var1 = True
Daniel Scheffler's avatar
Daniel Scheffler committed
183
184
185
        if var1:
            src_transform = rasterio.transform.from_origin(in_gt[0], in_gt[3], in_gt[1], abs(in_gt[5]))
            print('calc_trafo_args')
186
187
            for i in [src_crs, dst_crs, cols, rows, left, bottom, right, top, out_res]:
                print(i, '\n')
188
            left, right, bottom, top = corner_coord_to_minmax(get_corner_coordinates(gt=in_gt, rows=rows, cols=cols))
Daniel Scheffler's avatar
Daniel Scheffler committed
189

Daniel Scheffler's avatar
Daniel Scheffler committed
190
191
            dst_transform, out_cols, out_rows = rio_calc_transform(
                src_crs, dst_crs, cols, rows, left, bottom, right, top, resolution=out_res)
Daniel Scheffler's avatar
Daniel Scheffler committed
192

Daniel Scheffler's avatar
Daniel Scheffler committed
193
194
195
            out_arr = np.zeros((bands, out_rows, out_cols), out_dtype) \
                if len(ndarray.shape) == 3 else np.zeros((out_rows, out_cols), out_dtype)
            print(out_res)
196
            for i in [src_transform, src_crs, dst_transform, dst_crs]:
197
                print(i, '\n')
Daniel Scheffler's avatar
Daniel Scheffler committed
198
            rio_reproject(ndarray, out_arr, src_transform=src_transform, src_crs=src_crs, dst_transform=dst_transform,
199
200
                          dst_crs=dst_crs, resampling=dict_rspInt_rspAlg[rsp_alg], src_nodata=in_nodata,
                          dst_nodata=out_nodata)
Daniel Scheffler's avatar
Daniel Scheffler committed
201
202
203
204
205
206
207
208
209

            aff = list(dst_transform)
            out_gt = out_gt if out_gt else (aff[2], aff[0], aff[1], aff[5], aff[3], aff[4])
            # FIXME sometimes output dimensions are not exactly as requested (1px difference)
        else:
            dst_transform, out_cols, out_rows = rio_calc_transform(
                src_crs, dst_crs, cols, rows, left, bottom, right, top, resolution=out_res)

            # check if calculated output dimensions correspond to expected ones and correct them if neccessary
210
211
212
213
214
215
216
217
            # rows_expected = int(round(abs(top - bottom) / out_res[1], 0))
            # cols_expected = int(round(abs(right - left) / out_res[0], 0))

            # diff_rows_exp_real, diff_cols_exp_real = abs(out_rows - rows_expected), abs(out_cols - cols_expected)
            # if diff_rows_exp_real > 0.1 or diff_cols_exp_real > 0.1:
            # assert diff_rows_exp_real < 1.1 and diff_cols_exp_real < 1.1,
            #     'warp_ndarray: The output image size calculated by rasterio is too far away from the expected output '
            #     'image size.'
Daniel Scheffler's avatar
Daniel Scheffler committed
218
            #    out_rows, out_cols = rows_expected, cols_expected
219
220
            # fixes an issue where rio_calc_transform() does not return quadratic output image although input parameters
            # correspond to a quadratic image and inEPSG equals outEPSG
Daniel Scheffler's avatar
Daniel Scheffler committed
221
222
223
224
225
226
227
228

            aff = list(dst_transform)
            out_gt = out_gt if out_gt else (aff[2], aff[0], aff[1], aff[5], aff[3], aff[4])

            out_arr = np.zeros((bands, out_rows, out_cols), out_dtype) \
                if len(ndarray.shape) == 3 else np.zeros((out_rows, out_cols), out_dtype)

            with warnings.catch_warnings():
229
230
231
                # FIXME supresses: FutureWarning:
                # FIXME: GDAL-style transforms are deprecated and will not be supported in Rasterio 1.0.
                warnings.simplefilter('ignore')
Daniel Scheffler's avatar
Daniel Scheffler committed
232
                try:
233
234
235
236
237
238
239
240
241
                    # print('INPUTS')
                    # print(ndarray.shape, ndarray.dtype, out_arr.shape, out_arr.dtype)
                    # print(in_gt)
                    # print(src_crs)
                    # print(out_gt)
                    # print(dst_crs)
                    # print(dict_rspInt_rspAlg[rsp_alg])
                    # print(in_nodata)
                    # print(out_nodata)
242
243
                    for i in [in_gt, src_crs, out_gt, dst_crs]:
                        print(i, '\n')
Daniel Scheffler's avatar
Daniel Scheffler committed
244
245
246
                    rio_reproject(ndarray, out_arr,
                                  src_transform=in_gt, src_crs=src_crs, dst_transform=out_gt, dst_crs=dst_crs,
                                  resampling=dict_rspInt_rspAlg[rsp_alg], src_nodata=in_nodata, dst_nodata=out_nodata)
247
248
249
250
                    # from matplotlib import pyplot as plt
                    # print(out_arr.shape)
                    # plt.figure()
                    # plt.imshow(out_arr[:,:,1])
Daniel Scheffler's avatar
Daniel Scheffler committed
251
252
253
                except KeyError:
                    print(in_dtype, str(in_dtype))
                    print(ndarray.dtype)
Daniel Scheffler's avatar
Daniel Scheffler committed
254
255
256
257
258
259
260
261

        # convert output array axis order to GMS axis order [rows,cols,bands]
        out_arr = out_arr if len(ndarray.shape) == 2 else np.swapaxes(np.swapaxes(out_arr, 0, 1), 1, 2)

        if outRowsCols:
            out_arr = out_arr[:outRowsCols[0], :outRowsCols[1]]

    return out_arr, out_gt, out_prj
Daniel Scheffler's avatar
Daniel Scheffler committed
262
263


264
def warp_GeoArray(geoArr, **kwargs):  # pragma: no cover
265
    # TODO remove that function
266
267
268
    warnings.warn("warp_GeoArray is deprecated. Use geoarray.GeoArray.reproject_to_new_grid instead.",
                  DeprecationWarning)
    # FIXME this does not copy GeoArray attributes
269
270
    # ndarray = geoArr[:]
    # from geoarray import GeoArray
271
    # return GeoArray(*warp_ndarray(ndarray, geoArr.geotransform, geoArr.projection, **kwargs))
Daniel Scheffler's avatar
Daniel Scheffler committed
272
273


274
275
def warp_ndarray(ndarray, in_gt, in_prj=None, out_prj=None, out_dtype=None,
                 out_gsd=(None, None), out_bounds=None, out_bounds_prj=None, out_XYdims=(None, None),
Daniel Scheffler's avatar
Daniel Scheffler committed
276
                 rspAlg='near', in_nodata=None, out_nodata=None, in_alpha=False,
277
                 out_alpha=False, targetAlignedPixels=False, gcpList=None, polynomialOrder=None, options=None,
278
                 transformerOptions=None, warpOptions=None, CPUs=1, warpMemoryLimit=0, progress=True, q=False):
279
    # type: () -> (np.ndarray, tuple, str)
Daniel Scheffler's avatar
Daniel Scheffler committed
280
281
    """

282
283
284
    :param ndarray:             numpy array to be warped (or a list of numpy arrays (requires lists for in_gt/in_prj))
    :param in_gt:               input GDAL geotransform (or a list of GDAL geotransforms)
    :param in_prj:              input GDAL projection or list of projections (WKT string, 'EPSG:1234', <EPSG_int>),
285
286
287
                                default: "LOCAL_CS[\"MAP\"]"
    :param out_prj:             output GDAL projection (WKT string, 'EPSG:1234', <EPSG_int>),
                                default: "LOCAL_CS[\"MAP\"]"
Daniel Scheffler's avatar
Daniel Scheffler committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    :param out_dtype:           gdal.DataType
    :param out_gsd:
    :param out_bounds:          [xmin,ymin,xmax,ymax] set georeferenced extents of output file to be created,
                                e.g. [440720, 3750120, 441920, 3751320])
                                (in target SRS by default, or in the SRS specified with -te_srs)
    :param out_bounds_prj:
    :param out_XYdims:
    :param rspAlg:              <str> Resampling method to use. Available methods are:
                                near, bilinear, cubic, cubicspline, lanczos, average, mode, max, min, med, q1, q2
    :param in_nodata:
    :param out_nodata:
    :param in_alpha:            <bool> Force the last band of a source image to be considered as a source alpha band.
    :param out_alpha:           <bool> Create an output alpha band to identify nodata (unset/transparent) pixels
    :param targetAlignedPixels:   (GDAL >= 1.8.0) (target aligned pixels) align the coordinates of the extent
                                        of the output file to the values of the -tr, such that the aligned extent
                                        includes the minimum extent.
    :param gcpList:             <list> list of ground control points in the output coordinate system
                                to be used for warping, e.g. [gdal.GCP(mapX,mapY,mapZ,column,row),...]
306
    :param polynomialOrder:     <int> order of polynomial GCP interpolation
307
    :param options:             <str> additional GDAL options as string, e.g. '-nosrcalpha' or '-order'
308
    :param transformerOptions:  <list> list of transformer options, e.g.  ['SRC_SRS=invalid']
309
310
    :param warpOptions:         <list> list of warp options, e.g.  ['CUTLINE_ALL_TOUCHED=TRUE'],
                                find available options here: http://www.gdal.org/structGDALWarpOptions.html
311
    :param CPUs:                <int> number of CPUs to use (default: None, which means 'all CPUs available')
312
    :param warpMemoryLimit:     <int> size of working buffer in bytes (default: 0)
313
314
    :param progress:            <bool> show progress bar (default: True)
    :param q:                   <bool> quiet mode (default: False)
Daniel Scheffler's avatar
Daniel Scheffler committed
315
316
317
    :return:

    """
318
    # TODO complete type hint
319
320
    # TODO test if this function delivers the exact same output like console version,
    # TODO otherwise implment error_threshold=0.125
Daniel Scheffler's avatar
Daniel Scheffler committed
321
322
    # how to implement:    https://svn.osgeo.org/gdal/trunk/autotest/utilities/test_gdalwarp_lib.py

323
    # assume local coordinates if no projections are given
324
325
326
327
    if not in_prj and not out_prj:
        if out_bounds_prj and not out_bounds_prj.startswith('LOCAL_CS'):
            raise ValueError("'out_bounds_prj' cannot have a projection if 'in_prj' and 'out_prj' are not given.")
        in_prj = out_prj = out_bounds_prj = "LOCAL_CS[\"MAP\"]"
328

329
    # assertions
330
    if rspAlg == 'average':
331
332
333
334
        is_avail_rsp_average = int(gdal.VersionInfo()[0]) >= 2
        if not is_avail_rsp_average:
            warnings.warn("The GDAL version on this machine does not yet support the resampling algorithm 'average'. "
                          "'cubic' is used instead. To avoid this please update GDAL to a version above 2.0.0!")
335
336
            rspAlg = 'cubic'

337
    if not isinstance(ndarray, (list, tuple)):
338
339
        assert str(np.dtype(ndarray.dtype)) in dTypeDic_NumPy2GDAL, "Unknown target datatype '%s'." % ndarray.dtype
    else:
340
341
        assert str(np.dtype(ndarray[0].dtype)) in dTypeDic_NumPy2GDAL, "Unknown target datatype '%s'." \
                                                                       % ndarray[0].dtype
342
343
        assert isinstance(in_gt, (list, tuple)), "If 'ndarray' is a list, 'in_gt' must also be a list!"
        assert isinstance(in_prj, (list, tuple)), "If 'ndarray' is a list, 'in_prj' must also be a list!"
344
345
        assert len(list(set([arr.dtype for arr in ndarray]))) == 1,  "Data types of input ndarray list must be equal."

346
347
348
349
350
351
    def get_SRS(prjArg):
        return prjArg if isinstance(prjArg, str) and prjArg.startswith('EPSG:') else \
            'EPSG:%s' % prjArg if isinstance(prjArg, int) else prjArg

    def get_GDT(DT): return dTypeDic_NumPy2GDAL[str(np.dtype(DT))]

352
    in_dtype_np = ndarray.dtype if not isinstance(ndarray, (list, tuple)) else ndarray[0].dtype
353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    # # not yet implemented
    # # TODO cutline from OGR datasource. => implement input shapefile or Geopandas dataframe
    # cutlineDSName = 'data/cutline.vrt'  # '/vsimem/cutline.shp'
    # cutlineLayer = 'cutline'
    # cropToCutline = False
    # cutlineSQL = 'SELECT * FROM cutline'
    # cutlineWhere = '1 = 1'
    # rpc = [
    #     "HEIGHT_OFF=1466.05894327379",
    #     "HEIGHT_SCALE=144.837606185489",
    #     "LAT_OFF=38.9266809014185",
    #     "LAT_SCALE=-0.108324009570885",
    #     "LINE_DEN_COEFF="
    #     "1 -0.000392404256440504 -0.0027925489381758 0.000501819414812054 0.00216726134806561 "
    #     "-0.00185617059201599 0.000183834173326118 -0.00290342803717354 -0.00207181007131322 -0.000900223247894285 "
    #     "-0.00132518281680544 0.00165598132063197 0.00681015244696305 0.000547865679631528 0.00516214646283021 "
    #     "0.00795287690785699 -0.000705040639059332 -0.00254360623317078 -0.000291154885056484 0.00070943440010757",
    #     "LINE_NUM_COEFF="
    #     "-0.000951099635749339 1.41709976082781 -0.939591985038569 -0.00186609235173885 0.00196881101098923 "
    #     "0.00361741523740639 -0.00282449434932066 0.0115361898794214 -0.00276027843825304 9.37913944402154e-05 "
    #     "-0.00160950221565737 0.00754053609977256 0.00461831968713819 0.00274991122620312 0.000689605203796422 "
    #     "-0.0042482778732957 -0.000123966494595151 0.00307976709897974 -0.000563274426174409 0.00049981716767074",
    #     "LINE_OFF=2199.50159296339",
    #     "LINE_SCALE=2195.852519621",
    #     "LONG_OFF=76.0381768085136",
    #     "LONG_SCALE=0.130066683772651",
    #     "SAMP_DEN_COEFF="
    #     "1 -0.000632078047521022 -0.000544107268758971 0.000172438016778527 -0.00206391734870399 "
    #     "-0.00204445747536872 -0.000715754551621987 -0.00195545265530244 -0.00168532972557267 -0.00114709980708329 "
    #     "-0.00699131177532728 0.0038551339822296 0.00283631282133365 -0.00436885468926666 -0.00381335885955994 "
    #     "0.0018742043611019 -0.0027263909314293 -0.00237054119407013 0.00246374716379501 -0.00121074576302219",
    #     "SAMP_NUM_COEFF="
    #     "0.00249293151551852 -0.581492592442025 -1.00947448466175 0.00121597346320039 -0.00552825219917498 "
    #     "-0.00194683170765094 -0.00166012459012905 -0.00338315804553888 -0.00152062885009498 -0.000214562164393127 "
    #     "-0.00219914905535387 -0.000662800177832777 -0.00118644828432841 -0.00180061222825708 -0.00364756875260519 "
    #     "-0.00287273485650089 -0.000540077934728493 -0.00166800463003749 0.000201057249109451 -8.49620129025469e-05",
    #     "SAMP_OFF=3300.34602166792",
    #     "SAMP_SCALE=3297.51222987611"
    # ]
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    """ Create a WarpOptions() object that can be passed to gdal.Warp()
        Keyword arguments are :
          options --- can be be an array of strings, a string or let empty and filled from other keywords.
          format --- output format ("GTiff", etc...)
          outputBounds --- output bounds as (minX, minY, maxX, maxY) in target SRS
          outputBoundsSRS --- SRS in which output bounds are expressed, in the case they are not expressed in dstSRS
          xRes, yRes --- output resolution in target SRS
          targetAlignedPixels --- whether to force output bounds to be multiple of output resolution
          width --- width of the output raster in pixel
          height --- height of the output raster in pixel
          srcSRS --- source SRS
          dstSRS --- output SRS
          srcAlpha --- whether to force the last band of the input dataset to be considered as an alpha band
          dstAlpha --- whether to force the creation of an output alpha band
          outputType --- output type (gdal.GDT_Byte, etc...)
          workingType --- working type (gdal.GDT_Byte, etc...)
          warpOptions --- list of warping options
          errorThreshold --- error threshold for approximation transformer (in pixels)
          warpMemoryLimit --- size of working buffer in bytes
          resampleAlg --- resampling mode
          creationOptions --- list of creation options
          srcNodata --- source nodata value(s)
          dstNodata --- output nodata value(s)
          multithread --- whether to multithread computation and I/O operations
          tps --- whether to use Thin Plate Spline GCP transformer
          rpc --- whether to use RPC transformer
          geoloc --- whether to use GeoLocation array transformer
          polynomialOrder --- order of polynomial GCP interpolation
          transformerOptions --- list of transformer options
          cutlineDSName --- cutline dataset name
          cutlineLayer --- cutline layer name
          cutlineWhere --- cutline WHERE clause
          cutlineSQL --- cutline SQL statement
          cutlineBlend --- cutline blend distance in pixels
          cropToCutline --- whether to use cutline extent for output bounds
          copyMetadata --- whether to copy source metadata
          metadataConflictValue --- metadata data conflict value
          setColorInterpretation --- whether to force color interpretation of input bands to output bands
          callback --- callback method
433
          callback_data --- user data for callback  # value for last parameter of progress callback
434
    """
435

Daniel Scheffler's avatar
Daniel Scheffler committed
436
    # get input dataset (in-MEM)
437
    if not isinstance(ndarray, (list, tuple)):
438
439
440
441
        in_ds = get_GDAL_ds_inmem(ndarray, in_gt, in_prj)
    else:
        # list of ndarrays
        in_ds = [get_GDAL_ds_inmem(arr, gt, prj) for arr, gt, prj in zip(ndarray, in_gt, in_prj)]
Daniel Scheffler's avatar
Daniel Scheffler committed
442

443
    # set RPCs
444
    # if rpcList:
445
446
447
    #    in_ds.SetMetadata(rpc, "RPC")
    #    transformerOptions = ['RPC_DEM=data/warp_52_dem.tif']

448
    if CPUs is None or CPUs > 1:
449
        gdal.SetConfigOption('GDAL_NUM_THREADS', str(CPUs if CPUs else multiprocessing.cpu_count()))
450

451
        # gdal.SetConfigOption('GDAL_CACHEMAX', str(800))
452

453
454
455
        # GDAL Translate if needed
        # if gcpList:
        #   in_ds.SetGCPs(gcpList, in_ds.GetProjection())
456
457

    if gcpList:
458
459
        gdal_Translate = get_gdal_func('Translate')
        in_ds = gdal_Translate(
460
            '', in_ds, format='MEM',
461
462
463
464
            outputSRS=get_SRS(out_prj),
            GCPs=gcpList,
            callback=ProgressBar(prefix='Translating progress', timeout=None) if progress and not q else None
        )
465
466
467
        # NOTE: options = ['SPARSE_OK=YES'] ## => what is that for?

    # GDAL Warp
468
    gdal_Warp = get_gdal_func('Warp')
469
    res_ds = gdal_Warp(
470
        '', in_ds, format='MEM',
471
        dstSRS=get_SRS(out_prj),
472
        outputType=get_GDT(out_dtype) if out_dtype else get_GDT(in_dtype_np),
473
474
475
476
477
478
479
480
481
482
483
484
        xRes=out_gsd[0],
        yRes=out_gsd[1],
        outputBounds=out_bounds,
        outputBoundsSRS=get_SRS(out_bounds_prj),
        width=out_XYdims[0],
        height=out_XYdims[1],
        resampleAlg=rspAlg,
        srcNodata=in_nodata,
        dstNodata=out_nodata,
        srcAlpha=in_alpha,
        dstAlpha=out_alpha,
        options=options if options else [],
485
486
        warpOptions=warpOptions or [],
        transformerOptions=transformerOptions or [],
487
488
489
490
491
492
493
494
        targetAlignedPixels=targetAlignedPixels,
        tps=True if gcpList else False,
        polynomialOrder=polynomialOrder,
        warpMemoryLimit=warpMemoryLimit,
        callback=ProgressBar(prefix='Warping progress    ', timeout=None) if progress and not q else None,
        callback_data=[0],
        errorThreshold=0.125,  # this is needed to get exactly the same output like the console version of GDAL warp
    )
495
496

    gdal.SetConfigOption('GDAL_NUM_THREADS', None)
Daniel Scheffler's avatar
Daniel Scheffler committed
497

498
    if res_ds is None:
Daniel Scheffler's avatar
Daniel Scheffler committed
499
500
501
        raise Exception('Warping Error:  ' + gdal.GetLastErrorMsg())

    # get outputs
502
503
504
    res_arr = gdalnumeric.DatasetReadAsArray(res_ds)
    if len(res_arr.shape) == 3:
        res_arr = np.swapaxes(np.swapaxes(res_arr, 0, 2), 0, 1)
Daniel Scheffler's avatar
Daniel Scheffler committed
505

506
    res_gt = res_ds.GetGeoTransform()
507
    res_prj = res_ds.GetProjection()
Daniel Scheffler's avatar
Daniel Scheffler committed
508
509

    # cleanup
510
    del in_ds, res_ds
Daniel Scheffler's avatar
Daniel Scheffler committed
511

512
    # dtype check -> possibly dtype had to be changed for GDAL compatibility
513
514
    if in_dtype_np != res_arr.dtype:
        res_arr = res_arr.astype(in_dtype_np)
515

516
    # test output
517
    if out_prj and prj_equal(out_prj, 4626):
518
519
        assert -180 < res_gt[0] < 180 and -90 < res_gt[3] < 90, 'Testing of gdal_warp output failed.'

Daniel Scheffler's avatar
Daniel Scheffler committed
520
521
522
523
    # output bounds verification
    if out_bounds:
        xmin, xmax, ymin, ymax = \
            corner_coord_to_minmax(get_corner_coordinates(gt=res_gt, rows=res_arr.shape[0], cols=res_arr.shape[1]))
524
        if False in np.isclose(out_bounds, (xmin, ymin, xmax, ymax)):
Daniel Scheffler's avatar
Daniel Scheffler committed
525
526
            warnings.warn('The output bounds of warp_ndarray do not match the requested bounds!')

527
    return res_arr, res_gt, res_prj
528
529
530


class SensorMapGeometryTransformer(object):
531
532
    def __init__(self, lons, lats, resamp_alg='nearest', radius_of_influence=30, **opts):
        # type: (np.ndarray, np.ndarray, str, int, Any) -> None
533
534
        """Get an instance of SensorMapGeometryTransformer.

535
536
        :param lons:    2D longitude array corresponding to the 2D sensor geometry array
        :param lats:    2D latitude array corresponding to the 2D sensor geometry array
537

Daniel Scheffler's avatar
Daniel Scheffler committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
        :Keyword Arguments:  (further documentation here: https://pyresample.readthedocs.io/en/latest/swath.html)
            - resamp_alg:           resampling algorithm ('nearest', 'bilinear', 'gauss', 'custom')
            - radius_of_influence:  <float> Cut off distance in meters (default: 30)
                                    NOTE: keyword is named 'radius' in case of bilinear resampling
            - sigmas:               <list of floats or float> [ONLY 'gauss'] List of sigmas to use for the gauss
                                    weighting of each channel 1 to k, w_k = exp(-dist^2/sigma_k^2). If only one channel
                                    is resampled sigmas is a single float value.
            - neighbours:           <int> [ONLY 'bilinear', 'gauss'] Number of neighbours to consider for each grid
                                    point when searching the closest corner points
            - epsilon:              <float> Allowed uncertainty in meters. Increasing uncertainty reduces execution time
            - weight_funcs:         <list of function objects or function object> [ONLY 'custom'] List of weight
                                    functions f(dist) to use for the weighting of each channel 1 to k. If only one
                                    channel is resampled weight_funcs is a single function object.
            - fill_value:           <int or None> Set undetermined pixels to this value.
                                    If fill_value is None a masked array is returned with undetermined pixels masked
            - reduce_data:          <bool> Perform initial coarse reduction of source dataset in order to reduce
                                    execution time
            - nprocs:               <int>, Number of processor cores to be used
            - segments:             <int or None> Number of segments to use when resampling.
                                    If set to None an estimate will be calculated
            - with_uncert:          <bool> [ONLY 'gauss' and 'custom'] Calculate uncertainty estimates
                                    NOTE: resampling function has 3 return values instead of 1: result, stddev, count
560
        """
561
        # validation
562
563
564
565
        if lons.ndim != 2:
            raise ValueError('Expected a 2D longitude array. Received a %dD array.' % lons.ndim)
        if lats.ndim != 2:
            raise ValueError('Expected a 2D latitude array. Received a %dD array.' % lats.ndim)
Daniel Scheffler's avatar
Daniel Scheffler committed
566
567
        if lons.shape != lats.shape:
            raise ValueError((lons.shape, lats.shape), "'lons' and 'lats' are expected to have the same shape.")
568

569
        self.resamp_alg = resamp_alg
Daniel Scheffler's avatar
Daniel Scheffler committed
570
571
        self.opts = dict(radius_of_influence=radius_of_influence,
                         sigmas=(radius_of_influence / 2))
572
573
        self.opts.update(opts)

574
575
576
577
        if resamp_alg == 'bilinear':
            del self.opts['radius_of_influence']
            self.opts['radius'] = radius_of_influence

578
579
580
581
582
583
584
        # NOTE: If pykdtree is built with OpenMP support (default) the number of threads is controlled with the
        #       standard OpenMP environment variable OMP_NUM_THREADS. The nprocs argument has no effect on pykdtree.
        if 'nprocs' in self.opts:
            if self.opts['nprocs'] > 1:
                os.environ['OMP_NUM_THREADS'] = '%d' % opts['nprocs']
            del self.opts['nprocs']

585
586
        self.lats = lats
        self.lons = lons
587
        self.swath_definition = SwathDefinition(lons=lons, lats=lats)
588
        self.area_extent_ll = [np.min(lons), np.min(lats), np.max(lons), np.max(lats)]
589
        self.area_definition = None  # type: AreaDefinition
590

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    def _get_target_extent(self, tgt_epsg):
        if tgt_epsg == 4326:
            tgt_extent = self.area_extent_ll
        else:
            corner_coords_ll = [[self.lons[0, 0], self.lats[0, 0]],  # UL_xy
                                [self.lons[0, -1], self.lats[0, -1]],  # UR_xy
                                [self.lons[-1, 0], self.lats[-1, 0]],  # LL_xy
                                [self.lons[-1, -1], self.lats[-1, -1]],  # LR_xy
                                ]
            corner_coords_tgt_prj = [transform_any_prj(EPSG2WKT(4326), EPSG2WKT(tgt_epsg), x, y)
                                     for x, y in corner_coords_ll]
            corner_coords_tgt_prj_np = np.array(corner_coords_tgt_prj)
            x_coords, y_coords = corner_coords_tgt_prj_np[:, 0], corner_coords_tgt_prj_np[:, 1]
            tgt_extent = [np.min(x_coords), np.min(y_coords), np.max(x_coords), np.max(y_coords)]

        return tgt_extent

608
609
610
    def compute_areadefinition_sensor2map(self, data, tgt_prj, tgt_extent=None, tgt_res=None):
        # type: (np.ndarray, Union[int, str], Tuple[float, float, float, float], Tuple[float, float]) -> AreaDefinition
        """Compute the area_definition to resample a sensor geometry array to map geometry.
611

612
        :param data:        numpy array to be warped to sensor or map geometry
613
614
        :param tgt_prj:     target projection (WKT or 'epsg:1234' or <EPSG_int>)
        :param tgt_extent:  extent coordinates of output map geometry array (LL_x, LL_y, UR_x, UR_y) in the tgt_prj
615
                            (automatically computed from the corner positions of the coordinate arrays)
616
        :param tgt_res:     target X/Y resolution (e.g., (30, 30))
617
618
        :return:
        """
619
620
621
        tgt_epsg = WKT2EPSG(proj4_to_WKT(get_proj4info(proj=tgt_prj)))
        tgt_extent = tgt_extent or self._get_target_extent(tgt_epsg)

622
        with TemporaryDirectory() as td:
623
624
            path_xycoords = os.path.join(td, 'xy_coords.bsq')
            path_xycoords_vrt = os.path.join(td, 'xy_coords.vrt')
625
626
627
628
            path_data = os.path.join(td, 'data.bsq')
            path_datavrt = os.path.join(td, 'data.vrt')
            path_data_out = os.path.join(td, 'data_out.bsq')

629
630
631
632
633
634
635
636
637
638
639
640
641
642
            # write X/Y coordinate array
            if tgt_epsg == 4326:
                xy_coords = np.dstack([self.swath_definition.lons,
                                       self.swath_definition.lats])
                # xy_coords = np.dstack([self.swath_definition.lons[::10, ::10],
                #                        self.swath_definition.lats[::10, ::10]])
            else:
                xy_coords = np.dstack(list(transform_coordArray(EPSG2WKT(4326), EPSG2WKT(tgt_epsg),
                                                                self.swath_definition.lons,
                                                                self.swath_definition.lats)))
            write_numpy_to_image(xy_coords, path_xycoords, 'ENVI')

            # create VRT for X/Y coordinate array
            ds_xy_coords = gdal.Open(path_xycoords)
643
            drv_vrt = gdal.GetDriverByName("VRT")
644
645
            vrt = drv_vrt.CreateCopy(path_xycoords_vrt, ds_xy_coords)
            del ds_xy_coords, vrt
646
647

            # create VRT for one data band
648
            mask_band = np.ones((data.shape[:2]), np.int32)
649
650
651
            write_numpy_to_image(mask_band, path_data, 'ENVI')
            ds_data = gdal.Open(path_data)
            vrt = drv_vrt.CreateCopy(path_datavrt, ds_data)
652
653
            vrt.SetMetadata({"X_DATASET": path_xycoords_vrt,
                             "Y_DATASET": path_xycoords_vrt,
654
655
656
657
658
659
                             "X_BAND": "1",
                             "Y_BAND": "2",
                             "PIXEL_OFFSET": "0",
                             "LINE_OFFSET": "0",
                             "PIXEL_STEP": "1",
                             "LINE_STEP": "1",
660
                             "SRS": EPSG2WKT(tgt_epsg),
661
662
663
664
                             }, "GEOLOCATION")
            vrt.FlushCache()
            del ds_data, vrt

665
666
667
668
669
670
671
672
673
674
675
676
677
678
            subcall_with_output('gdalwarp %s %s '
                                '-geoloc '
                                '-t_srs EPSG:%d '
                                '-srcnodata 0 '
                                '-r near '
                                '-of ENVI '
                                '-dstnodata none '
                                '-et 0 '
                                '-overwrite '
                                '-te %s'
                                '%s' % (path_datavrt, path_data_out, tgt_epsg,
                                        ' '.join([str(i) for i in tgt_extent]),
                                        ' -tr %s %s' % tgt_res if tgt_res else '',),
                                v=True)
679
680
681

            # get output X/Y size
            ds_out = gdal.Open(path_data_out)
682
683
684
685

            if not ds_out:
                raise Exception(gdal.GetLastErrorMsg())

686
687
            x_size = ds_out.RasterXSize
            y_size = ds_out.RasterYSize
688
            out_gt = ds_out.GetGeoTransform()
689
690
            del ds_out

691
692
693
694
695
696
697
698
        # add 1 px buffer around out_extent to avoid cutting the output image
        x_size += 2
        y_size += 2
        out_gt = list(out_gt)
        out_gt[0] -= out_gt[1]
        out_gt[3] += abs(out_gt[5])
        out_gt = tuple(out_gt)
        xmin, xmax, ymin, ymax = corner_coord_to_minmax(get_corner_coordinates(gt=out_gt, cols=x_size, rows=y_size))
699
700
701
        out_extent = xmin, ymin, xmax, ymax

        # get area_definition
702
703
704
705
706
707
708
709
        area_definition = AreaDefinition(area_id='',
                                         description='',
                                         proj_id='',
                                         projection=get_proj4info(proj=tgt_prj),
                                         width=x_size,
                                         height=y_size,
                                         area_extent=list(out_extent),
                                         )
710
711
712
713
714

        return area_definition

    def _resample(self, data, source_geo_def, target_geo_def):
        # type: (np.ndarray, Union[AreaDefinition, SwathDefinition], Union[AreaDefinition, SwathDefinition]) -> ...
715
716
        """Run the resampling algorithm.

717
        :param data:            numpy array to be warped to sensor or map geometry
718
719
720
721
        :param source_geo_def:  source geo definition
        :param target_geo_def:  target geo definition
        :return:
        """
722
723
        if self.resamp_alg == 'nearest':
            opts = {k: v for k, v in self.opts.items() if k not in ['sigmas']}
724
            result = resample_nearest(source_geo_def, data, target_geo_def, **opts)
725
726
727

        elif self.resamp_alg == 'bilinear':
            opts = {k: v for k, v in self.opts.items() if k not in ['sigmas']}
728
            result = resample_bilinear(data, source_geo_def, target_geo_def, **opts)
729
730

        elif self.resamp_alg == 'gauss':
731
            opts = {k: v for k, v in self.opts.items()}
732
            result = resample_gauss(source_geo_def, data, target_geo_def, **opts)
733

734
735
736
737
        elif self.resamp_alg == 'custom':
            opts = {k: v for k, v in self.opts.items()}
            if 'weight_funcs' not in opts:
                raise ValueError(opts, "Options must contain a 'weight_funcs' item.")
738
            result = resample_custom(source_geo_def, data, target_geo_def, **opts)
739
740
741
742

        else:
            raise ValueError(self.resamp_alg)

743
744
745
746
747
748
749
750
        return result  # type: np.ndarray

    @staticmethod
    def _get_gt_prj_from_areadefinition(area_definition):
        # type: (AreaDefinition) -> (Tuple[float, float, float, float, float, float], str)
        gt = area_definition.area_extent[0], area_definition.pixel_size_x, 0, \
             area_definition.area_extent[3], 0, -area_definition.pixel_size_y
        prj = proj4_to_WKT(area_definition.proj_str)
751

752
753
        return gt, prj

754
    def to_map_geometry(self, data, tgt_prj=None, tgt_extent=None, tgt_res=None, area_definition=None):
755
        # type: (np.ndarray, Union[str, int], Tuple[float, float, float, float], Tuple, AreaDefinition) -> ...
756
757
        """Transform the input sensor geometry array into map geometry.

758
759
760
761
        :param data:            numpy array (representing sensor geometry) to be warped to map geometry
        :param tgt_prj:         target projection (WKT or 'epsg:1234' or <EPSG_int>)
        :param tgt_extent:      extent coordinates of output map geometry array (LL_x, LL_y, UR_x, UR_y) in the tgt_prj
        :param tgt_res:         target X/Y resolution (e.g., (30, 30))
762
763
        :param area_definition: an instance of pyresample.geometry.AreaDefinition;
                                OVERRIDES tgt_prj, tgt_extent and tgt_res; saves computation time
764
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
765
766
767
768
769
        if self.lons.ndim > 2 >= data.ndim:
            raise ValueError(data.ndim, "'data' must at least have %d dimensions because of %d longiture array "
                                        "dimensions." % (self.lons.ndim, self.lons.ndim))

        if data.shape[:2] != self.lons.shape[:2]:
Daniel Scheffler's avatar
Daniel Scheffler committed
770
            raise ValueError(data.shape, 'Expected a sensor geometry data array with %d rows and %d columns.'
Daniel Scheffler's avatar
Daniel Scheffler committed
771
                             % self.lons.shape[:2])
772

773
774
775
776
777
778
779
780
        # get area_definition
        if area_definition:
            self.area_definition = area_definition
        else:
            if not tgt_prj:
                raise ValueError(tgt_prj, 'Target projection must be given if area_definition is not given.')

            self.area_definition = self.compute_areadefinition_sensor2map(
781
782
                data, tgt_prj=tgt_prj, tgt_extent=tgt_extent, tgt_res=tgt_res)

783
        # resample
784
785
        data_mapgeo = self._resample(data, self.swath_definition, self.area_definition)
        out_gt, out_prj = self._get_gt_prj_from_areadefinition(self.area_definition)
Daniel Scheffler's avatar
Daniel Scheffler committed
786
787

        # output validation
788
        if not data_mapgeo.shape[:2] == (self.area_definition.height, self.area_definition.width):
789
790
            raise RuntimeError('The computed map geometry output does not have the expected number of rows/columns. '
                               'Expected: %s; output: %s.'
791
                               % (str((self.area_definition.height, self.area_definition.width)),
792
793
794
795
                                  str(data_mapgeo.shape[:2])))
        if data.ndim > 2 and data_mapgeo.ndim == 2:
            raise RuntimeError('The computed map geometry output only one band instead of the expected %d bands.'
                               % data.shape[2])
Daniel Scheffler's avatar
Daniel Scheffler committed
796

797
        return data_mapgeo, out_gt, out_prj  # type: Tuple[np.ndarray, tuple, str]
798

799
800
    def to_sensor_geometry(self, data, src_prj, src_extent):
        # type: (np.ndarray, Union[str, int], List[float, float, float, float]) -> np.ndarray
801
802
        """Transform the input map geometry array into sensor geometry

803
        :param data:        numpy array (representing map geometry) to be warped to sensor geometry
804
805
806
        :param src_prj:     projection of the input map geometry array (WKT or 'epsg:1234' or <EPSG_int>)
        :param src_extent:  extent coordinates of input map geometry array (LL_x, LL_y, UR_x, UR_y) in the src_prj
        """
807
808
        proj4_args = proj4_to_dict(get_proj4info(proj=src_prj))

809
        # get area_definition
810
        self.area_definition = AreaDefinition('', '', '', proj4_args, data.shape[1], data.shape[0],
811
812
                                              src_extent)

813
        # resample
814
        data_sensorgeo = self._resample(data, self.area_definition, self.swath_definition)
Daniel Scheffler's avatar
Daniel Scheffler committed
815
816
817
818
819
820
821
822

        # output validation
        if not data_sensorgeo.shape == self.lats.shape:
            raise RuntimeError('The computed sensor geometry output does not have the same size like the coordinates '
                               'array. Coordinates array: %s; output array: %s.'
                               % (self.lats.shape, data_sensorgeo.shape))

        return data_sensorgeo
823
824


825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
_global_shared_lats = None
_global_shared_lons = None
_global_shared_data = None


def _initializer(lats, lons, data):
    """Declare global variables needed for SensorMapGeometryTransformer3D.to_map_geometry and to_sensor_geometry.

    :param lats:
    :param lons:
    :param data:
    """
    global _global_shared_lats, _global_shared_lons, _global_shared_data
    _global_shared_lats = lats
    _global_shared_lons = lons
    _global_shared_data = data


843
class SensorMapGeometryTransformer3D(object):
Daniel Scheffler's avatar
Daniel Scheffler committed
844
845
    def __init__(self, lons, lats, resamp_alg='nearest', radius_of_influence=30, mp_alg='auto', **opts):
        # type: (np.ndarray, np.ndarray, str, int, str, Any) -> None
846
847
848
849
850
851
852
853
854
        """Get an instance of SensorMapGeometryTransformer.

        :param lons:    3D longitude array corresponding to the 3D sensor geometry array
        :param lats:    3D latitude array corresponding to the 3D sensor geometry array

        :Keyword Arguments:  (further documentation here: https://pyresample.readthedocs.io/en/latest/swath.html)
            - resamp_alg:           resampling algorithm ('nearest', 'bilinear', 'gauss', 'custom')
            - radius_of_influence:  <float> Cut off distance in meters (default: 30)
                                    NOTE: keyword is named 'radius' in case of bilinear resampling
Daniel Scheffler's avatar
Daniel Scheffler committed
855
856
857
858
            - mp_alg                multiprocessing algorithm
                                    'bands': parallelize over bands using multiprocessing lib
                                    'tiles': parallelize over tiles using OpenMP
                                    'auto': automatically choose the algorithm
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
            - sigmas:               <list of floats or float> [ONLY 'gauss'] List of sigmas to use for the gauss
                                    weighting of each channel 1 to k, w_k = exp(-dist^2/sigma_k^2). If only one channel
                                    is resampled sigmas is a single float value.
            - neighbours:           <int> [ONLY 'bilinear', 'gauss'] Number of neighbours to consider for each grid
                                    point when searching the closest corner points
            - epsilon:              <float> Allowed uncertainty in meters. Increasing uncertainty reduces execution time
            - weight_funcs:         <list of function objects or function object> [ONLY 'custom'] List of weight
                                    functions f(dist) to use for the weighting of each channel 1 to k. If only one
                                    channel is resampled weight_funcs is a single function object.
            - fill_value:           <int or None> Set undetermined pixels to this value.
                                    If fill_value is None a masked array is returned with undetermined pixels masked
            - reduce_data:          <bool> Perform initial coarse reduction of source dataset in order to reduce
                                    execution time
            - nprocs:               <int>, Number of processor cores to be used
            - segments:             <int or None> Number of segments to use when resampling.
                                    If set to None an estimate will be calculated
            - with_uncert:          <bool> [ONLY 'gauss' and 'custom'] Calculate uncertainty estimates
                                    NOTE: resampling function has 3 return values instead of 1: result, stddev, count
        """
        # validation
        if lons.ndim != 3:
            raise ValueError('Expected a 3D longitude array. Received a %dD array.' % lons.ndim)
        if lats.ndim != 3:
            raise ValueError('Expected a 3D latitude array. Received a %dD array.' % lats.ndim)
        if lons.shape != lats.shape:
            raise ValueError((lons.shape, lats.shape), "'lons' and 'lats' are expected to have the same shape.")

        self.lats = lats
        self.lons = lons
        self.resamp_alg = resamp_alg
        self.radius_of_influence = radius_of_influence
        self.opts = opts
891
892
893

        # define number of CPUs to use (but avoid sub-multiprocessing)
        #   -> parallelize either over bands or over image tiles
894
895
896
        #      bands: multiprocessing uses multiprocessing.Pool, implemented in to_map_geometry / to_sensor_geometry
        #      tiles: multiprocessing uses OpenMP implemented in pykdtree which is used by pyresample
        self.opts['nprocs'] = opts.get('nprocs', multiprocessing.cpu_count())
Daniel Scheffler's avatar
Daniel Scheffler committed
897
        self.mp_alg = ('bands' if self.lons.shape[2] >= opts['nprocs'] else 'tiles') if mp_alg == 'auto' else mp_alg
898

899
        # override self.mp_alg if SensorMapGeometryTransformer3D is called by nosetest or unittest
900
901
        is_called_by_nose_cmd = 'nosetest' in sys.argv[0]
        if self.opts['nprocs'] > 1 and self.mp_alg == 'bands' and is_called_by_nose_cmd:
902
            warnings.warn("mp_alg='bands' causes deadlocks if SensorMapGeometryTransformer3D is called within a "
903
                          "nosetest console call. Using mp_alg='tiles'.")
904
905
            self.mp_alg = 'tiles'

906
907
908
    @staticmethod
    def _to_map_geometry_2D(kwargs_dict):
        # type: (dict) -> Tuple[np.ndarray, tuple, str, int]
909
910
911
912
        assert [var is not None for var in (_global_shared_lons, _global_shared_lats, _global_shared_data)]

        SMGT2D = SensorMapGeometryTransformer(lons=_global_shared_lons[:, :, kwargs_dict['band_idx']],
                                              lats=_global_shared_lats[:, :, kwargs_dict['band_idx']],
913
914
915
                                              resamp_alg=kwargs_dict['resamp_alg'],
                                              radius_of_influence=kwargs_dict['radius_of_influence'],
                                              **kwargs_dict['init_opts'])
916
        data_mapgeo, out_gt, out_prj = SMGT2D.to_map_geometry(data=_global_shared_data[:, :, kwargs_dict['band_idx']],
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
                                                              tgt_prj=kwargs_dict['tgt_prj'],
                                                              tgt_extent=kwargs_dict['tgt_extent'],
                                                              tgt_res=kwargs_dict['tgt_res'])

        return data_mapgeo, out_gt, out_prj, kwargs_dict['band_idx']

    def _get_common_target_extent(self, tgt_epsg):
        corner_coords_ll = [[self.lons[0, 0, :].min(), self.lats[0, 0, :].max()],  # common UL_xy
                            [self.lons[0, -1, :].max(), self.lats[0, -1, :].max()],  # common UR_xy
                            [self.lons[-1, 0, :].min(), self.lats[-1, 0, :].min()],  # common LL_xy
                            [self.lons[-1, -1, :].max(), self.lats[-1, -1, :].min()],  # common LR_xy
                            ]
        corner_coords_tgt_prj = [transform_any_prj(EPSG2WKT(4326), EPSG2WKT(tgt_epsg), x, y)
                                 for x, y in corner_coords_ll]
        corner_coords_tgt_prj_np = np.array(corner_coords_tgt_prj)
        x_coords, y_coords = corner_coords_tgt_prj_np[:, 0], corner_coords_tgt_prj_np[:, 1]
        tgt_extent = [np.min(x_coords), np.min(y_coords), np.max(x_coords), np.max(y_coords)]

        return tgt_extent

    def to_map_geometry(self, data, tgt_prj, tgt_extent=None, tgt_res=None):
        # type: (np.ndarray, Union[str, int], Tuple[float, float, float, float], Tuple) -> ...
        """Transform the input sensor geometry array into map geometry.

        :param data:            3D numpy array (representing sensor geometry) to be warped to map geometry
        :param tgt_prj:         target projection (WKT or 'epsg:1234' or <EPSG_int>)
        :param tgt_extent:      extent coordinates of output map geometry array (LL_x, LL_y, UR_x, UR_y) in the tgt_prj
        :param tgt_res:         target X/Y resolution (e.g., (30, 30))
        """
        if data.ndim != 3:
            raise ValueError(data.ndim, "'data' must have 3 dimensions.")

        if data.shape != self.lons.shape:
            raise ValueError(data.shape, 'Expected a sensor geometry data array with %d rows, %d columns and %d bands.'
                             % self.lons.shape)

        # get common target extent
        tgt_epsg = WKT2EPSG(proj4_to_WKT(get_proj4info(proj=tgt_prj)))
        tgt_extent = tgt_extent or self._get_common_target_extent(tgt_epsg)

957
958
959
960
        init_opts = self.opts.copy()
        if self.mp_alg == 'bands':
            del init_opts['nprocs']  # avoid sub-multiprocessing

961
962
963
        args = [dict(
            resamp_alg=self.resamp_alg,
            radius_of_influence=self.radius_of_influence,
964
            init_opts=init_opts,
965
966
967
968
969
970
            tgt_prj=tgt_prj,
            tgt_extent=tgt_extent,
            tgt_res=tgt_res,
            band_idx=band
        ) for band in range(data.shape[2])]

971
        if self.opts['nprocs'] > 1 and self.mp_alg == 'bands':
972
973
974
            with multiprocessing.Pool(self.opts['nprocs'],
                                      initializer=_initializer,
                                      initargs=(self.lats, self.lons, data)) as pool:
975
976
                result = pool.map(self._to_map_geometry_2D, args)
        else:
977
            _initializer(self.lats, self.lons, data)
978
            result = [self._to_map_geometry_2D(argsdict) for argsdict in args]
979
980

        band_inds = list(np.array(result)[:, -1])
981
        data_mapgeo = np.dstack([result[band_inds.index(i)][0] for i in range(data.shape[2])])
982
        out_gt = result[0][1]
983
        out_prj = result[0][2]
984
985
986
987
988
989

        return data_mapgeo, out_gt, out_prj  # type: Tuple[np.ndarray, tuple, str]

    @staticmethod
    def _to_sensor_geometry_2D(kwargs_dict):
        # type: (dict) -> (np.ndarray, int)
990
991
992
993
        assert [var is not None for var in (_global_shared_lons, _global_shared_lats, _global_shared_data)]

        SMGT2D = SensorMapGeometryTransformer(lons=_global_shared_lons[:, :, kwargs_dict['band_idx']],
                                              lats=_global_shared_lats[:, :, kwargs_dict['band_idx']],
994
995
996
                                              resamp_alg=kwargs_dict['resamp_alg'],
                                              radius_of_influence=kwargs_dict['radius_of_influence'],
                                              **kwargs_dict['init_opts'])
997
        data_sensorgeo = SMGT2D.to_sensor_geometry(data=_global_shared_data[:, :, kwargs_dict['band_idx']],
998
999
1000
                                                   src_prj=kwargs_dict['src_prj'],
                                                   src_extent=kwargs_dict['src_extent'])

For faster browsing, not all history is shown. View entire blame