reproject.py 51.6 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
2
3
# -*- coding: utf-8 -*-
import numpy as np
import warnings
4
import multiprocessing
5
6
import os
from tempfile import TemporaryDirectory
7
from typing import Union, Tuple, List, Any  # noqa: F401
8

9
# custom
Daniel Scheffler's avatar
Daniel Scheffler committed
10
11
12
13
14
15
try:
    from osgeo import gdal
    from osgeo import gdalnumeric
except ImportError:
    import gdal
    import gdalnumeric
Daniel Scheffler's avatar
Daniel Scheffler committed
16
17
18
19
20

import rasterio
from rasterio.warp import reproject as rio_reproject
from rasterio.warp import calculate_default_transform as rio_calc_transform
from rasterio.warp import Resampling
21
22
23
24
from pyresample.geometry import AreaDefinition, SwathDefinition
from pyresample.utils import get_area_def
from pyresample.bilinear import resample_bilinear
from pyresample.kd_tree import resample_nearest, resample_gauss, resample_custom
Daniel Scheffler's avatar
Daniel Scheffler committed
25

26
from ...dtypes.conversion import dTypeDic_NumPy2GDAL
27
28
from ..projection import EPSG2WKT, WKT2EPSG, isProjectedOrGeographic, prj_equal, proj4_to_WKT
from ..coord_trafo import pixelToLatLon, get_proj4info, proj4_to_dict, transform_coordArray, transform_any_prj
29
30
from ..coord_calc import corner_coord_to_minmax, get_corner_coordinates
from ...io.raster.gdal import get_GDAL_ds_inmem
31
from ...io.raster.writer import write_numpy_to_image
32
from ...processing.progress_mon import ProgressBar
33
from ...compatibility.gdal import get_gdal_func
34
from ...processing.shell import subcall_with_output
Daniel Scheffler's avatar
Daniel Scheffler committed
35

36
__author__ = "Daniel Scheffler"
Daniel Scheffler's avatar
Daniel Scheffler committed
37

Daniel Scheffler's avatar
Daniel Scheffler committed
38
39

def warp_ndarray_OLD(ndarray, in_gt, in_prj, out_prj, out_gt=None, outRowsCols=None, outUL=None, out_res=None,
40
                     out_extent=None, out_dtype=None, rsp_alg=0, in_nodata=None, out_nodata=None,
41
                     outExtent_within=True):  # pragma: no cover
Daniel Scheffler's avatar
Daniel Scheffler committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    """Reproject / warp a numpy array with given geo information to target coordinate system.

    :param ndarray:             numpy.ndarray [rows,cols,bands]
    :param in_gt:               input gdal GeoTransform
    :param in_prj:              input projection as WKT string
    :param out_prj:             output projection as WKT string
    :param out_gt:              output gdal GeoTransform as float tuple in the source coordinate system (optional)
    :param outUL:               [X,Y] output upper left coordinates as floats in the source coordinate system
                                (requires outRowsCols)
    :param outRowsCols:         [rows, cols] (optional)
    :param out_res:             output resolution as tuple of floats (x,y) in the TARGET coordinate system
    :param out_extent:          [left, bottom, right, top] as floats in the source coordinate system
    :param out_dtype:           output data type as numpy data type
    :param rsp_alg:             Resampling method to use. One of the following (int, default is 0):
                                0 = nearest neighbour, 1 = bilinear, 2 = cubic, 3 = cubic spline, 4 = lanczos,
                                5 = average, 6 = mode
    :param in_nodata:           no data value of the input image
    :param out_nodata:          no data value of the output image
    :param outExtent_within:    Ensures that the output extent is within the input extent.
                                Otherwise an exception is raised.
    :return out_arr:            warped numpy array
    :return out_gt:             warped gdal GeoTransform
    :return out_prj:            warped projection as WKT string
    """
Daniel Scheffler's avatar
Daniel Scheffler committed
66

Daniel Scheffler's avatar
Daniel Scheffler committed
67
    if not ndarray.flags['OWNDATA']:
68
        temp = np.empty_like(ndarray)
Daniel Scheffler's avatar
Daniel Scheffler committed
69
70
71
72
73
74
75
76
77
        temp[:] = ndarray
        ndarray = temp  # deep copy: converts view to its own array in order to avoid wrong output

    with rasterio.env.Env():
        if outUL is not None:
            assert outRowsCols is not None, 'outRowsCols must be given if outUL is given.'
        outUL = [in_gt[0], in_gt[3]] if outUL is None else outUL

        inEPSG, outEPSG = [WKT2EPSG(prj) for prj in [in_prj, out_prj]]
78
        assert inEPSG, 'Could not derive input EPSG code.'
Daniel Scheffler's avatar
Daniel Scheffler committed
79
        assert outEPSG, 'Could not derive output EPSG code.'
80
81
82
        assert in_nodata is None or isinstance(in_nodata, (int, float)), \
            'Received invalid input nodata value: %s; type: %s.' % (in_nodata, type(in_nodata))
        assert out_nodata is None or isinstance(out_nodata, (int, float)), \
Daniel Scheffler's avatar
Daniel Scheffler committed
83
            'Received invalid output nodata value: %s; type: %s.' % (out_nodata, type(out_nodata))
Daniel Scheffler's avatar
Daniel Scheffler committed
84
85
86
87
88
89
90
91
92
93
94
95
96

        src_crs = {'init': 'EPSG:%s' % inEPSG}
        dst_crs = {'init': 'EPSG:%s' % outEPSG}

        if len(ndarray.shape) == 3:
            # convert input array axis order to rasterio axis order
            ndarray = np.swapaxes(np.swapaxes(ndarray, 0, 2), 1, 2)
            bands, rows, cols = ndarray.shape
            rows, cols = outRowsCols if outRowsCols else (rows, cols)
        else:
            rows, cols = ndarray.shape if outRowsCols is None else outRowsCols

        # set dtypes ensuring at least int16 (int8 is not supported by rasterio)
97
        in_dtype = ndarray.dtype
Daniel Scheffler's avatar
Daniel Scheffler committed
98
99
        out_dtype = ndarray.dtype if out_dtype is None else out_dtype
        out_dtype = np.int16 if str(out_dtype) == 'int8' else out_dtype
100
        ndarray = ndarray.astype(np.int16) if str(in_dtype) == 'int8' else ndarray
Daniel Scheffler's avatar
Daniel Scheffler committed
101
102

        # get dst_transform
103
104
        def gt2bounds(gt, r, c): return [gt[0], gt[3] + r * gt[5], gt[0] + c * gt[1], gt[3]]  # left, bottom, right, top

Daniel Scheffler's avatar
Daniel Scheffler committed
105
106
        if out_gt is None and out_extent is None:
            if outRowsCols:
107
108
109
110
111
                outUL = [in_gt[0], in_gt[3]] if outUL is None else outUL

                def ulRC2bounds(ul, r, c):
                    return [ul[0], ul[1] + r * in_gt[5], ul[0] + c * in_gt[1], ul[1]]  # left, bottom, right, top

Daniel Scheffler's avatar
Daniel Scheffler committed
112
                left, bottom, right, top = ulRC2bounds(outUL, rows, cols)
113

Daniel Scheffler's avatar
Daniel Scheffler committed
114
115
116
            else:  # outRowsCols is None and outUL is None: use in_gt
                left, bottom, right, top = gt2bounds(in_gt, rows, cols)
                # ,im_xmax,im_ymin,im_ymax = corner_coord_to_minmax(get_corner_coordinates(self.ds_im2shift))
117

Daniel Scheffler's avatar
Daniel Scheffler committed
118
119
        elif out_extent:
            left, bottom, right, top = out_extent
120

Daniel Scheffler's avatar
Daniel Scheffler committed
121
122
123
124
125
126
        else:  # out_gt is given
            left, bottom, right, top = gt2bounds(in_gt, rows, cols)

        if outExtent_within:
            # input array is only a window of the actual input array
            assert left >= in_gt[0] and right <= (in_gt[0] + (cols + 1) * in_gt[1]) and \
127
128
                   bottom >= in_gt[3] + (rows + 1) * in_gt[5] and top <= in_gt[3], \
                   "out_extent has to be completely within the input image bounds."
Daniel Scheffler's avatar
Daniel Scheffler committed
129
130
131
132
133

        if out_res is None:
            # get pixel resolution in target coord system
            prj_in_out = (isProjectedOrGeographic(in_prj), isProjectedOrGeographic(out_prj))
            assert None not in prj_in_out, 'prj_in_out contains None.'
134

Daniel Scheffler's avatar
Daniel Scheffler committed
135
136
            if prj_in_out[0] == prj_in_out[1]:
                out_res = (in_gt[1], abs(in_gt[5]))
137

Daniel Scheffler's avatar
Daniel Scheffler committed
138
139
            elif prj_in_out == ('geographic', 'projected'):
                raise NotImplementedError('Different projections are currently not supported.')
140

Daniel Scheffler's avatar
Daniel Scheffler committed
141
142
143
144
145
146
            else:  # ('projected','geographic')
                px_size_LatLon = np.array(pixelToLatLon([1, 1], geotransform=in_gt, projection=in_prj)) - \
                                 np.array(pixelToLatLon([0, 0], geotransform=in_gt, projection=in_prj))
                out_res = tuple(reversed(abs(px_size_LatLon)))
                print('OUT_RES NOCHMAL CHECKEN: ', out_res)

Daniel Scheffler's avatar
Daniel Scheffler committed
147
148
149
        dict_rspInt_rspAlg = \
            {0: Resampling.nearest, 1: Resampling.bilinear, 2: Resampling.cubic,
             3: Resampling.cubic_spline, 4: Resampling.lanczos, 5: Resampling.average, 6: Resampling.mode}
Daniel Scheffler's avatar
Daniel Scheffler committed
150

151
        var1 = True
Daniel Scheffler's avatar
Daniel Scheffler committed
152
153
154
        if var1:
            src_transform = rasterio.transform.from_origin(in_gt[0], in_gt[3], in_gt[1], abs(in_gt[5]))
            print('calc_trafo_args')
155
156
            for i in [src_crs, dst_crs, cols, rows, left, bottom, right, top, out_res]:
                print(i, '\n')
157
            left, right, bottom, top = corner_coord_to_minmax(get_corner_coordinates(gt=in_gt, rows=rows, cols=cols))
Daniel Scheffler's avatar
Daniel Scheffler committed
158

Daniel Scheffler's avatar
Daniel Scheffler committed
159
160
            dst_transform, out_cols, out_rows = rio_calc_transform(
                src_crs, dst_crs, cols, rows, left, bottom, right, top, resolution=out_res)
Daniel Scheffler's avatar
Daniel Scheffler committed
161

Daniel Scheffler's avatar
Daniel Scheffler committed
162
163
164
            out_arr = np.zeros((bands, out_rows, out_cols), out_dtype) \
                if len(ndarray.shape) == 3 else np.zeros((out_rows, out_cols), out_dtype)
            print(out_res)
165
            for i in [src_transform, src_crs, dst_transform, dst_crs]:
166
                print(i, '\n')
Daniel Scheffler's avatar
Daniel Scheffler committed
167
            rio_reproject(ndarray, out_arr, src_transform=src_transform, src_crs=src_crs, dst_transform=dst_transform,
168
169
                          dst_crs=dst_crs, resampling=dict_rspInt_rspAlg[rsp_alg], src_nodata=in_nodata,
                          dst_nodata=out_nodata)
Daniel Scheffler's avatar
Daniel Scheffler committed
170
171
172
173
174
175
176
177
178

            aff = list(dst_transform)
            out_gt = out_gt if out_gt else (aff[2], aff[0], aff[1], aff[5], aff[3], aff[4])
            # FIXME sometimes output dimensions are not exactly as requested (1px difference)
        else:
            dst_transform, out_cols, out_rows = rio_calc_transform(
                src_crs, dst_crs, cols, rows, left, bottom, right, top, resolution=out_res)

            # check if calculated output dimensions correspond to expected ones and correct them if neccessary
179
180
181
182
183
184
185
186
            # rows_expected = int(round(abs(top - bottom) / out_res[1], 0))
            # cols_expected = int(round(abs(right - left) / out_res[0], 0))

            # diff_rows_exp_real, diff_cols_exp_real = abs(out_rows - rows_expected), abs(out_cols - cols_expected)
            # if diff_rows_exp_real > 0.1 or diff_cols_exp_real > 0.1:
            # assert diff_rows_exp_real < 1.1 and diff_cols_exp_real < 1.1,
            #     'warp_ndarray: The output image size calculated by rasterio is too far away from the expected output '
            #     'image size.'
Daniel Scheffler's avatar
Daniel Scheffler committed
187
            #    out_rows, out_cols = rows_expected, cols_expected
188
189
            # fixes an issue where rio_calc_transform() does not return quadratic output image although input parameters
            # correspond to a quadratic image and inEPSG equals outEPSG
Daniel Scheffler's avatar
Daniel Scheffler committed
190
191
192
193
194
195
196
197

            aff = list(dst_transform)
            out_gt = out_gt if out_gt else (aff[2], aff[0], aff[1], aff[5], aff[3], aff[4])

            out_arr = np.zeros((bands, out_rows, out_cols), out_dtype) \
                if len(ndarray.shape) == 3 else np.zeros((out_rows, out_cols), out_dtype)

            with warnings.catch_warnings():
198
199
200
                # FIXME supresses: FutureWarning:
                # FIXME: GDAL-style transforms are deprecated and will not be supported in Rasterio 1.0.
                warnings.simplefilter('ignore')
Daniel Scheffler's avatar
Daniel Scheffler committed
201
                try:
202
203
204
205
206
207
208
209
210
                    # print('INPUTS')
                    # print(ndarray.shape, ndarray.dtype, out_arr.shape, out_arr.dtype)
                    # print(in_gt)
                    # print(src_crs)
                    # print(out_gt)
                    # print(dst_crs)
                    # print(dict_rspInt_rspAlg[rsp_alg])
                    # print(in_nodata)
                    # print(out_nodata)
211
212
                    for i in [in_gt, src_crs, out_gt, dst_crs]:
                        print(i, '\n')
Daniel Scheffler's avatar
Daniel Scheffler committed
213
214
215
                    rio_reproject(ndarray, out_arr,
                                  src_transform=in_gt, src_crs=src_crs, dst_transform=out_gt, dst_crs=dst_crs,
                                  resampling=dict_rspInt_rspAlg[rsp_alg], src_nodata=in_nodata, dst_nodata=out_nodata)
216
217
218
219
                    # from matplotlib import pyplot as plt
                    # print(out_arr.shape)
                    # plt.figure()
                    # plt.imshow(out_arr[:,:,1])
Daniel Scheffler's avatar
Daniel Scheffler committed
220
221
222
                except KeyError:
                    print(in_dtype, str(in_dtype))
                    print(ndarray.dtype)
Daniel Scheffler's avatar
Daniel Scheffler committed
223
224
225
226
227
228
229
230

        # convert output array axis order to GMS axis order [rows,cols,bands]
        out_arr = out_arr if len(ndarray.shape) == 2 else np.swapaxes(np.swapaxes(out_arr, 0, 1), 1, 2)

        if outRowsCols:
            out_arr = out_arr[:outRowsCols[0], :outRowsCols[1]]

    return out_arr, out_gt, out_prj
Daniel Scheffler's avatar
Daniel Scheffler committed
231
232


233
def warp_GeoArray(geoArr, **kwargs):  # pragma: no cover
234
    # TODO remove that function
235
236
237
    warnings.warn("warp_GeoArray is deprecated. Use geoarray.GeoArray.reproject_to_new_grid instead.",
                  DeprecationWarning)
    # FIXME this does not copy GeoArray attributes
238
239
    # ndarray = geoArr[:]
    # from geoarray import GeoArray
240
    # return GeoArray(*warp_ndarray(ndarray, geoArr.geotransform, geoArr.projection, **kwargs))
Daniel Scheffler's avatar
Daniel Scheffler committed
241
242


243
244
def warp_ndarray(ndarray, in_gt, in_prj=None, out_prj=None, out_dtype=None,
                 out_gsd=(None, None), out_bounds=None, out_bounds_prj=None, out_XYdims=(None, None),
Daniel Scheffler's avatar
Daniel Scheffler committed
245
                 rspAlg='near', in_nodata=None, out_nodata=None, in_alpha=False,
246
                 out_alpha=False, targetAlignedPixels=False, gcpList=None, polynomialOrder=None, options=None,
247
                 transformerOptions=None, warpOptions=None, CPUs=1, warpMemoryLimit=0, progress=True, q=False):
248
    # type: () -> (np.ndarray, tuple, str)
Daniel Scheffler's avatar
Daniel Scheffler committed
249
250
    """

251
252
253
    :param ndarray:             numpy array to be warped (or a list of numpy arrays (requires lists for in_gt/in_prj))
    :param in_gt:               input GDAL geotransform (or a list of GDAL geotransforms)
    :param in_prj:              input GDAL projection or list of projections (WKT string, 'EPSG:1234', <EPSG_int>),
254
255
256
                                default: "LOCAL_CS[\"MAP\"]"
    :param out_prj:             output GDAL projection (WKT string, 'EPSG:1234', <EPSG_int>),
                                default: "LOCAL_CS[\"MAP\"]"
Daniel Scheffler's avatar
Daniel Scheffler committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    :param out_dtype:           gdal.DataType
    :param out_gsd:
    :param out_bounds:          [xmin,ymin,xmax,ymax] set georeferenced extents of output file to be created,
                                e.g. [440720, 3750120, 441920, 3751320])
                                (in target SRS by default, or in the SRS specified with -te_srs)
    :param out_bounds_prj:
    :param out_XYdims:
    :param rspAlg:              <str> Resampling method to use. Available methods are:
                                near, bilinear, cubic, cubicspline, lanczos, average, mode, max, min, med, q1, q2
    :param in_nodata:
    :param out_nodata:
    :param in_alpha:            <bool> Force the last band of a source image to be considered as a source alpha band.
    :param out_alpha:           <bool> Create an output alpha band to identify nodata (unset/transparent) pixels
    :param targetAlignedPixels:   (GDAL >= 1.8.0) (target aligned pixels) align the coordinates of the extent
                                        of the output file to the values of the -tr, such that the aligned extent
                                        includes the minimum extent.
    :param gcpList:             <list> list of ground control points in the output coordinate system
                                to be used for warping, e.g. [gdal.GCP(mapX,mapY,mapZ,column,row),...]
275
    :param polynomialOrder:     <int> order of polynomial GCP interpolation
276
    :param options:             <str> additional GDAL options as string, e.g. '-nosrcalpha' or '-order'
277
    :param transformerOptions:  <list> list of transformer options, e.g.  ['SRC_SRS=invalid']
278
279
    :param warpOptions:         <list> list of warp options, e.g.  ['CUTLINE_ALL_TOUCHED=TRUE'],
                                find available options here: http://www.gdal.org/structGDALWarpOptions.html
280
    :param CPUs:                <int> number of CPUs to use (default: None, which means 'all CPUs available')
281
    :param warpMemoryLimit:     <int> size of working buffer in bytes (default: 0)
282
283
    :param progress:            <bool> show progress bar (default: True)
    :param q:                   <bool> quiet mode (default: False)
Daniel Scheffler's avatar
Daniel Scheffler committed
284
285
286
    :return:

    """
287
    # TODO complete type hint
288
289
    # TODO test if this function delivers the exact same output like console version,
    # TODO otherwise implment error_threshold=0.125
Daniel Scheffler's avatar
Daniel Scheffler committed
290
291
    # how to implement:    https://svn.osgeo.org/gdal/trunk/autotest/utilities/test_gdalwarp_lib.py

292
    # assume local coordinates if no projections are given
293
294
295
296
    if not in_prj and not out_prj:
        if out_bounds_prj and not out_bounds_prj.startswith('LOCAL_CS'):
            raise ValueError("'out_bounds_prj' cannot have a projection if 'in_prj' and 'out_prj' are not given.")
        in_prj = out_prj = out_bounds_prj = "LOCAL_CS[\"MAP\"]"
297

298
    # assertions
299
    if rspAlg == 'average':
300
301
302
303
        is_avail_rsp_average = int(gdal.VersionInfo()[0]) >= 2
        if not is_avail_rsp_average:
            warnings.warn("The GDAL version on this machine does not yet support the resampling algorithm 'average'. "
                          "'cubic' is used instead. To avoid this please update GDAL to a version above 2.0.0!")
304
305
            rspAlg = 'cubic'

306
    if not isinstance(ndarray, (list, tuple)):
307
308
        assert str(np.dtype(ndarray.dtype)) in dTypeDic_NumPy2GDAL, "Unknown target datatype '%s'." % ndarray.dtype
    else:
309
310
        assert str(np.dtype(ndarray[0].dtype)) in dTypeDic_NumPy2GDAL, "Unknown target datatype '%s'." \
                                                                       % ndarray[0].dtype
311
312
        assert isinstance(in_gt, (list, tuple)), "If 'ndarray' is a list, 'in_gt' must also be a list!"
        assert isinstance(in_prj, (list, tuple)), "If 'ndarray' is a list, 'in_prj' must also be a list!"
313
314
        assert len(list(set([arr.dtype for arr in ndarray]))) == 1,  "Data types of input ndarray list must be equal."

315
316
317
318
319
320
    def get_SRS(prjArg):
        return prjArg if isinstance(prjArg, str) and prjArg.startswith('EPSG:') else \
            'EPSG:%s' % prjArg if isinstance(prjArg, int) else prjArg

    def get_GDT(DT): return dTypeDic_NumPy2GDAL[str(np.dtype(DT))]

321
    in_dtype_np = ndarray.dtype if not isinstance(ndarray, (list, tuple)) else ndarray[0].dtype
322

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    # # not yet implemented
    # # TODO cutline from OGR datasource. => implement input shapefile or Geopandas dataframe
    # cutlineDSName = 'data/cutline.vrt'  # '/vsimem/cutline.shp'
    # cutlineLayer = 'cutline'
    # cropToCutline = False
    # cutlineSQL = 'SELECT * FROM cutline'
    # cutlineWhere = '1 = 1'
    # rpc = [
    #     "HEIGHT_OFF=1466.05894327379",
    #     "HEIGHT_SCALE=144.837606185489",
    #     "LAT_OFF=38.9266809014185",
    #     "LAT_SCALE=-0.108324009570885",
    #     "LINE_DEN_COEFF="
    #     "1 -0.000392404256440504 -0.0027925489381758 0.000501819414812054 0.00216726134806561 "
    #     "-0.00185617059201599 0.000183834173326118 -0.00290342803717354 -0.00207181007131322 -0.000900223247894285 "
    #     "-0.00132518281680544 0.00165598132063197 0.00681015244696305 0.000547865679631528 0.00516214646283021 "
    #     "0.00795287690785699 -0.000705040639059332 -0.00254360623317078 -0.000291154885056484 0.00070943440010757",
    #     "LINE_NUM_COEFF="
    #     "-0.000951099635749339 1.41709976082781 -0.939591985038569 -0.00186609235173885 0.00196881101098923 "
    #     "0.00361741523740639 -0.00282449434932066 0.0115361898794214 -0.00276027843825304 9.37913944402154e-05 "
    #     "-0.00160950221565737 0.00754053609977256 0.00461831968713819 0.00274991122620312 0.000689605203796422 "
    #     "-0.0042482778732957 -0.000123966494595151 0.00307976709897974 -0.000563274426174409 0.00049981716767074",
    #     "LINE_OFF=2199.50159296339",
    #     "LINE_SCALE=2195.852519621",
    #     "LONG_OFF=76.0381768085136",
    #     "LONG_SCALE=0.130066683772651",
    #     "SAMP_DEN_COEFF="
    #     "1 -0.000632078047521022 -0.000544107268758971 0.000172438016778527 -0.00206391734870399 "
    #     "-0.00204445747536872 -0.000715754551621987 -0.00195545265530244 -0.00168532972557267 -0.00114709980708329 "
    #     "-0.00699131177532728 0.0038551339822296 0.00283631282133365 -0.00436885468926666 -0.00381335885955994 "
    #     "0.0018742043611019 -0.0027263909314293 -0.00237054119407013 0.00246374716379501 -0.00121074576302219",
    #     "SAMP_NUM_COEFF="
    #     "0.00249293151551852 -0.581492592442025 -1.00947448466175 0.00121597346320039 -0.00552825219917498 "
    #     "-0.00194683170765094 -0.00166012459012905 -0.00338315804553888 -0.00152062885009498 -0.000214562164393127 "
    #     "-0.00219914905535387 -0.000662800177832777 -0.00118644828432841 -0.00180061222825708 -0.00364756875260519 "
    #     "-0.00287273485650089 -0.000540077934728493 -0.00166800463003749 0.000201057249109451 -8.49620129025469e-05",
    #     "SAMP_OFF=3300.34602166792",
    #     "SAMP_SCALE=3297.51222987611"
    # ]
362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    """ Create a WarpOptions() object that can be passed to gdal.Warp()
        Keyword arguments are :
          options --- can be be an array of strings, a string or let empty and filled from other keywords.
          format --- output format ("GTiff", etc...)
          outputBounds --- output bounds as (minX, minY, maxX, maxY) in target SRS
          outputBoundsSRS --- SRS in which output bounds are expressed, in the case they are not expressed in dstSRS
          xRes, yRes --- output resolution in target SRS
          targetAlignedPixels --- whether to force output bounds to be multiple of output resolution
          width --- width of the output raster in pixel
          height --- height of the output raster in pixel
          srcSRS --- source SRS
          dstSRS --- output SRS
          srcAlpha --- whether to force the last band of the input dataset to be considered as an alpha band
          dstAlpha --- whether to force the creation of an output alpha band
          outputType --- output type (gdal.GDT_Byte, etc...)
          workingType --- working type (gdal.GDT_Byte, etc...)
          warpOptions --- list of warping options
          errorThreshold --- error threshold for approximation transformer (in pixels)
          warpMemoryLimit --- size of working buffer in bytes
          resampleAlg --- resampling mode
          creationOptions --- list of creation options
          srcNodata --- source nodata value(s)
          dstNodata --- output nodata value(s)
          multithread --- whether to multithread computation and I/O operations
          tps --- whether to use Thin Plate Spline GCP transformer
          rpc --- whether to use RPC transformer
          geoloc --- whether to use GeoLocation array transformer
          polynomialOrder --- order of polynomial GCP interpolation
          transformerOptions --- list of transformer options
          cutlineDSName --- cutline dataset name
          cutlineLayer --- cutline layer name
          cutlineWhere --- cutline WHERE clause
          cutlineSQL --- cutline SQL statement
          cutlineBlend --- cutline blend distance in pixels
          cropToCutline --- whether to use cutline extent for output bounds
          copyMetadata --- whether to copy source metadata
          metadataConflictValue --- metadata data conflict value
          setColorInterpretation --- whether to force color interpretation of input bands to output bands
          callback --- callback method
402
          callback_data --- user data for callback  # value for last parameter of progress callback
403
    """
404

Daniel Scheffler's avatar
Daniel Scheffler committed
405
    # get input dataset (in-MEM)
406
    if not isinstance(ndarray, (list, tuple)):
407
408
409
410
        in_ds = get_GDAL_ds_inmem(ndarray, in_gt, in_prj)
    else:
        # list of ndarrays
        in_ds = [get_GDAL_ds_inmem(arr, gt, prj) for arr, gt, prj in zip(ndarray, in_gt, in_prj)]
Daniel Scheffler's avatar
Daniel Scheffler committed
411

412
    # set RPCs
413
    # if rpcList:
414
415
416
    #    in_ds.SetMetadata(rpc, "RPC")
    #    transformerOptions = ['RPC_DEM=data/warp_52_dem.tif']

417
    if CPUs is None or CPUs > 1:
418
        gdal.SetConfigOption('GDAL_NUM_THREADS', str(CPUs if CPUs else multiprocessing.cpu_count()))
419

420
        # gdal.SetConfigOption('GDAL_CACHEMAX', str(800))
421

422
423
424
        # GDAL Translate if needed
        # if gcpList:
        #   in_ds.SetGCPs(gcpList, in_ds.GetProjection())
425
426

    if gcpList:
427
428
        gdal_Translate = get_gdal_func('Translate')
        in_ds = gdal_Translate(
429
            '', in_ds, format='MEM',
430
431
432
433
            outputSRS=get_SRS(out_prj),
            GCPs=gcpList,
            callback=ProgressBar(prefix='Translating progress', timeout=None) if progress and not q else None
        )
434
435
436
        # NOTE: options = ['SPARSE_OK=YES'] ## => what is that for?

    # GDAL Warp
437
    gdal_Warp = get_gdal_func('Warp')
438
    res_ds = gdal_Warp(
439
        '', in_ds, format='MEM',
440
        dstSRS=get_SRS(out_prj),
441
        outputType=get_GDT(out_dtype) if out_dtype else get_GDT(in_dtype_np),
442
443
444
445
446
447
448
449
450
451
452
453
        xRes=out_gsd[0],
        yRes=out_gsd[1],
        outputBounds=out_bounds,
        outputBoundsSRS=get_SRS(out_bounds_prj),
        width=out_XYdims[0],
        height=out_XYdims[1],
        resampleAlg=rspAlg,
        srcNodata=in_nodata,
        dstNodata=out_nodata,
        srcAlpha=in_alpha,
        dstAlpha=out_alpha,
        options=options if options else [],
454
455
        warpOptions=warpOptions or [],
        transformerOptions=transformerOptions or [],
456
457
458
459
460
461
462
463
        targetAlignedPixels=targetAlignedPixels,
        tps=True if gcpList else False,
        polynomialOrder=polynomialOrder,
        warpMemoryLimit=warpMemoryLimit,
        callback=ProgressBar(prefix='Warping progress    ', timeout=None) if progress and not q else None,
        callback_data=[0],
        errorThreshold=0.125,  # this is needed to get exactly the same output like the console version of GDAL warp
    )
464
465

    gdal.SetConfigOption('GDAL_NUM_THREADS', None)
Daniel Scheffler's avatar
Daniel Scheffler committed
466

467
    if res_ds is None:
Daniel Scheffler's avatar
Daniel Scheffler committed
468
469
470
        raise Exception('Warping Error:  ' + gdal.GetLastErrorMsg())

    # get outputs
471
472
473
    res_arr = gdalnumeric.DatasetReadAsArray(res_ds)
    if len(res_arr.shape) == 3:
        res_arr = np.swapaxes(np.swapaxes(res_arr, 0, 2), 0, 1)
Daniel Scheffler's avatar
Daniel Scheffler committed
474

475
    res_gt = res_ds.GetGeoTransform()
476
    res_prj = res_ds.GetProjection()
Daniel Scheffler's avatar
Daniel Scheffler committed
477
478

    # cleanup
479
    del in_ds, res_ds
Daniel Scheffler's avatar
Daniel Scheffler committed
480

481
    # dtype check -> possibly dtype had to be changed for GDAL compatibility
482
483
    if in_dtype_np != res_arr.dtype:
        res_arr = res_arr.astype(in_dtype_np)
484

485
    # test output
486
    if out_prj and prj_equal(out_prj, 4626):
487
488
        assert -180 < res_gt[0] < 180 and -90 < res_gt[3] < 90, 'Testing of gdal_warp output failed.'

Daniel Scheffler's avatar
Daniel Scheffler committed
489
490
491
492
    # output bounds verification
    if out_bounds:
        xmin, xmax, ymin, ymax = \
            corner_coord_to_minmax(get_corner_coordinates(gt=res_gt, rows=res_arr.shape[0], cols=res_arr.shape[1]))
493
        if False in np.isclose(out_bounds, (xmin, ymin, xmax, ymax)):
Daniel Scheffler's avatar
Daniel Scheffler committed
494
495
            warnings.warn('The output bounds of warp_ndarray do not match the requested bounds!')

496
    return res_arr, res_gt, res_prj
497
498
499


class SensorMapGeometryTransformer(object):
500
501
    def __init__(self, lons, lats, resamp_alg='nearest', radius_of_influence=30, **opts):
        # type: (np.ndarray, np.ndarray, str, int, Any) -> None
502
503
        """Get an instance of SensorMapGeometryTransformer.

504
505
        :param lons:    2D longitude array corresponding to the 2D sensor geometry array
        :param lats:    2D latitude array corresponding to the 2D sensor geometry array
506

Daniel Scheffler's avatar
Daniel Scheffler committed
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        :Keyword Arguments:  (further documentation here: https://pyresample.readthedocs.io/en/latest/swath.html)
            - resamp_alg:           resampling algorithm ('nearest', 'bilinear', 'gauss', 'custom')
            - radius_of_influence:  <float> Cut off distance in meters (default: 30)
                                    NOTE: keyword is named 'radius' in case of bilinear resampling
            - sigmas:               <list of floats or float> [ONLY 'gauss'] List of sigmas to use for the gauss
                                    weighting of each channel 1 to k, w_k = exp(-dist^2/sigma_k^2). If only one channel
                                    is resampled sigmas is a single float value.
            - neighbours:           <int> [ONLY 'bilinear', 'gauss'] Number of neighbours to consider for each grid
                                    point when searching the closest corner points
            - epsilon:              <float> Allowed uncertainty in meters. Increasing uncertainty reduces execution time
            - weight_funcs:         <list of function objects or function object> [ONLY 'custom'] List of weight
                                    functions f(dist) to use for the weighting of each channel 1 to k. If only one
                                    channel is resampled weight_funcs is a single function object.
            - fill_value:           <int or None> Set undetermined pixels to this value.
                                    If fill_value is None a masked array is returned with undetermined pixels masked
            - reduce_data:          <bool> Perform initial coarse reduction of source dataset in order to reduce
                                    execution time
            - nprocs:               <int>, Number of processor cores to be used
            - segments:             <int or None> Number of segments to use when resampling.
                                    If set to None an estimate will be calculated
            - with_uncert:          <bool> [ONLY 'gauss' and 'custom'] Calculate uncertainty estimates
                                    NOTE: resampling function has 3 return values instead of 1: result, stddev, count
529
        """
530
        # validation
531
532
533
534
        if lons.ndim != 2:
            raise ValueError('Expected a 2D longitude array. Received a %dD array.' % lons.ndim)
        if lats.ndim != 2:
            raise ValueError('Expected a 2D latitude array. Received a %dD array.' % lats.ndim)
Daniel Scheffler's avatar
Daniel Scheffler committed
535
536
        if lons.shape != lats.shape:
            raise ValueError((lons.shape, lats.shape), "'lons' and 'lats' are expected to have the same shape.")
537

538
        self.resamp_alg = resamp_alg
Daniel Scheffler's avatar
Daniel Scheffler committed
539
540
        self.opts = dict(radius_of_influence=radius_of_influence,
                         sigmas=(radius_of_influence / 2))
541
542
        self.opts.update(opts)

543
544
545
546
        if resamp_alg == 'bilinear':
            del self.opts['radius_of_influence']
            self.opts['radius'] = radius_of_influence

547
548
549
550
551
552
553
        # NOTE: If pykdtree is built with OpenMP support (default) the number of threads is controlled with the
        #       standard OpenMP environment variable OMP_NUM_THREADS. The nprocs argument has no effect on pykdtree.
        if 'nprocs' in self.opts:
            if self.opts['nprocs'] > 1:
                os.environ['OMP_NUM_THREADS'] = '%d' % opts['nprocs']
            del self.opts['nprocs']

554
555
        self.lats = lats
        self.lons = lons
556
        self.swath_definition = SwathDefinition(lons=lons, lats=lats)
557
558
        self.area_extent_ll = [np.min(lons), np.min(lats), np.max(lons), np.max(lats)]
        self.area_definition = None
559

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    def _get_target_extent(self, tgt_epsg):
        if tgt_epsg == 4326:
            tgt_extent = self.area_extent_ll
        else:
            corner_coords_ll = [[self.lons[0, 0], self.lats[0, 0]],  # UL_xy
                                [self.lons[0, -1], self.lats[0, -1]],  # UR_xy
                                [self.lons[-1, 0], self.lats[-1, 0]],  # LL_xy
                                [self.lons[-1, -1], self.lats[-1, -1]],  # LR_xy
                                ]
            corner_coords_tgt_prj = [transform_any_prj(EPSG2WKT(4326), EPSG2WKT(tgt_epsg), x, y)
                                     for x, y in corner_coords_ll]
            corner_coords_tgt_prj_np = np.array(corner_coords_tgt_prj)
            x_coords, y_coords = corner_coords_tgt_prj_np[:, 0], corner_coords_tgt_prj_np[:, 1]
            tgt_extent = [np.min(x_coords), np.min(y_coords), np.max(x_coords), np.max(y_coords)]

        return tgt_extent

577
578
579
    def compute_areadefinition_sensor2map(self, data, tgt_prj, tgt_extent=None, tgt_res=None):
        # type: (np.ndarray, Union[int, str], Tuple[float, float, float, float], Tuple[float, float]) -> AreaDefinition
        """Compute the area_definition to resample a sensor geometry array to map geometry.
580

581
        :param data:        numpy array to be warped to sensor or map geometry
582
583
        :param tgt_prj:     target projection (WKT or 'epsg:1234' or <EPSG_int>)
        :param tgt_extent:  extent coordinates of output map geometry array (LL_x, LL_y, UR_x, UR_y) in the tgt_prj
584
                            (automatically computed from the corner positions of the coordinate arrays)
585
        :param tgt_res:     target X/Y resolution (e.g., (30, 30))
586
587
        :return:
        """
588
589
590
        tgt_epsg = WKT2EPSG(proj4_to_WKT(get_proj4info(proj=tgt_prj)))
        tgt_extent = tgt_extent or self._get_target_extent(tgt_epsg)

591
        with TemporaryDirectory() as td:
592
593
            path_xycoords = os.path.join(td, 'xy_coords.bsq')
            path_xycoords_vrt = os.path.join(td, 'xy_coords.vrt')
594
595
596
597
            path_data = os.path.join(td, 'data.bsq')
            path_datavrt = os.path.join(td, 'data.vrt')
            path_data_out = os.path.join(td, 'data_out.bsq')

598
599
600
601
602
603
604
605
606
607
608
609
610
611
            # write X/Y coordinate array
            if tgt_epsg == 4326:
                xy_coords = np.dstack([self.swath_definition.lons,
                                       self.swath_definition.lats])
                # xy_coords = np.dstack([self.swath_definition.lons[::10, ::10],
                #                        self.swath_definition.lats[::10, ::10]])
            else:
                xy_coords = np.dstack(list(transform_coordArray(EPSG2WKT(4326), EPSG2WKT(tgt_epsg),
                                                                self.swath_definition.lons,
                                                                self.swath_definition.lats)))
            write_numpy_to_image(xy_coords, path_xycoords, 'ENVI')

            # create VRT for X/Y coordinate array
            ds_xy_coords = gdal.Open(path_xycoords)
612
            drv_vrt = gdal.GetDriverByName("VRT")
613
614
            vrt = drv_vrt.CreateCopy(path_xycoords_vrt, ds_xy_coords)
            del ds_xy_coords, vrt
615
616

            # create VRT for one data band
617
            mask_band = np.ones((data.shape[:2]), np.int32)
618
619
620
            write_numpy_to_image(mask_band, path_data, 'ENVI')
            ds_data = gdal.Open(path_data)
            vrt = drv_vrt.CreateCopy(path_datavrt, ds_data)
621
622
            vrt.SetMetadata({"X_DATASET": path_xycoords_vrt,
                             "Y_DATASET": path_xycoords_vrt,
623
624
625
626
627
628
                             "X_BAND": "1",
                             "Y_BAND": "2",
                             "PIXEL_OFFSET": "0",
                             "LINE_OFFSET": "0",
                             "PIXEL_STEP": "1",
                             "LINE_STEP": "1",
629
                             "SRS": EPSG2WKT(tgt_epsg),
630
631
632
633
                             }, "GEOLOCATION")
            vrt.FlushCache()
            del ds_data, vrt

634
635
636
637
638
639
640
641
642
643
644
645
646
647
            subcall_with_output('gdalwarp %s %s '
                                '-geoloc '
                                '-t_srs EPSG:%d '
                                '-srcnodata 0 '
                                '-r near '
                                '-of ENVI '
                                '-dstnodata none '
                                '-et 0 '
                                '-overwrite '
                                '-te %s'
                                '%s' % (path_datavrt, path_data_out, tgt_epsg,
                                        ' '.join([str(i) for i in tgt_extent]),
                                        ' -tr %s %s' % tgt_res if tgt_res else '',),
                                v=True)
648
649
650

            # get output X/Y size
            ds_out = gdal.Open(path_data_out)
651
652
653
654

            if not ds_out:
                raise Exception(gdal.GetLastErrorMsg())

655
656
            x_size = ds_out.RasterXSize
            y_size = ds_out.RasterYSize
657
            out_gt = ds_out.GetGeoTransform()
658
659
            del ds_out

660
661
662
663
664
665
666
667
        # add 1 px buffer around out_extent to avoid cutting the output image
        x_size += 2
        y_size += 2
        out_gt = list(out_gt)
        out_gt[0] -= out_gt[1]
        out_gt[3] += abs(out_gt[5])
        out_gt = tuple(out_gt)
        xmin, xmax, ymin, ymax = corner_coord_to_minmax(get_corner_coordinates(gt=out_gt, cols=x_size, rows=y_size))
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
        out_extent = xmin, ymin, xmax, ymax

        # get area_definition
        area_definition = get_area_def(area_id='',
                                       area_name='',
                                       proj_id='',
                                       proj4_args=get_proj4info(proj=tgt_prj),
                                       x_size=x_size,
                                       y_size=y_size,
                                       area_extent=list(out_extent),
                                       )  # type: AreaDefinition

        return area_definition

    def _resample(self, data, source_geo_def, target_geo_def):
        # type: (np.ndarray, Union[AreaDefinition, SwathDefinition], Union[AreaDefinition, SwathDefinition]) -> ...
684
685
        """Run the resampling algorithm.

686
        :param data:            numpy array to be warped to sensor or map geometry
687
688
689
690
        :param source_geo_def:  source geo definition
        :param target_geo_def:  target geo definition
        :return:
        """
691
692
        if self.resamp_alg == 'nearest':
            opts = {k: v for k, v in self.opts.items() if k not in ['sigmas']}
693
            result = resample_nearest(source_geo_def, data, target_geo_def, **opts)
694
695
696

        elif self.resamp_alg == 'bilinear':
            opts = {k: v for k, v in self.opts.items() if k not in ['sigmas']}
697
            result = resample_bilinear(data, source_geo_def, target_geo_def, **opts)
698
699

        elif self.resamp_alg == 'gauss':
700
            opts = {k: v for k, v in self.opts.items()}
701
            result = resample_gauss(source_geo_def, data, target_geo_def, **opts)
702

703
704
705
706
        elif self.resamp_alg == 'custom':
            opts = {k: v for k, v in self.opts.items()}
            if 'weight_funcs' not in opts:
                raise ValueError(opts, "Options must contain a 'weight_funcs' item.")
707
            result = resample_custom(source_geo_def, data, target_geo_def, **opts)
708
709
710
711

        else:
            raise ValueError(self.resamp_alg)

712
713
714
715
716
717
718
719
        return result  # type: np.ndarray

    @staticmethod
    def _get_gt_prj_from_areadefinition(area_definition):
        # type: (AreaDefinition) -> (Tuple[float, float, float, float, float, float], str)
        gt = area_definition.area_extent[0], area_definition.pixel_size_x, 0, \
             area_definition.area_extent[3], 0, -area_definition.pixel_size_y
        prj = proj4_to_WKT(area_definition.proj_str)
720

721
722
        return gt, prj

723
    def to_map_geometry(self, data, tgt_prj=None, tgt_extent=None, tgt_res=None, area_definition=None):
724
        # type: (np.ndarray, Union[str, int], Tuple[float, float, float, float], Tuple, AreaDefinition) -> ...
725
726
        """Transform the input sensor geometry array into map geometry.

727
728
729
730
        :param data:            numpy array (representing sensor geometry) to be warped to map geometry
        :param tgt_prj:         target projection (WKT or 'epsg:1234' or <EPSG_int>)
        :param tgt_extent:      extent coordinates of output map geometry array (LL_x, LL_y, UR_x, UR_y) in the tgt_prj
        :param tgt_res:         target X/Y resolution (e.g., (30, 30))
731
732
        :param area_definition: an instance of pyresample.geometry.AreaDefinition;
                                OVERRIDES tgt_prj, tgt_extent and tgt_res; saves computation time
733
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
734
735
736
737
738
        if self.lons.ndim > 2 >= data.ndim:
            raise ValueError(data.ndim, "'data' must at least have %d dimensions because of %d longiture array "
                                        "dimensions." % (self.lons.ndim, self.lons.ndim))

        if data.shape[:2] != self.lons.shape[:2]:
Daniel Scheffler's avatar
Daniel Scheffler committed
739
            raise ValueError(data.shape, 'Expected a sensor geometry data array with %d rows and %d columns.'
Daniel Scheffler's avatar
Daniel Scheffler committed
740
                             % self.lons.shape[:2])
741

742
743
744
745
746
747
748
749
        # get area_definition
        if area_definition:
            self.area_definition = area_definition
        else:
            if not tgt_prj:
                raise ValueError(tgt_prj, 'Target projection must be given if area_definition is not given.')

            self.area_definition = self.compute_areadefinition_sensor2map(
750
751
                data, tgt_prj=tgt_prj, tgt_extent=tgt_extent, tgt_res=tgt_res)

752
        # resample
753
754
        data_mapgeo = self._resample(data, self.swath_definition, self.area_definition)
        out_gt, out_prj = self._get_gt_prj_from_areadefinition(self.area_definition)
Daniel Scheffler's avatar
Daniel Scheffler committed
755
756

        # output validation
757
758
759
760
761
762
763
764
        if not data_mapgeo.shape[:2] == (self.area_definition.y_size, self.area_definition.x_size):
            raise RuntimeError('The computed map geometry output does not have the expected number of rows/columns. '
                               'Expected: %s; output: %s.'
                               % (str((self.area_definition.y_size, self.area_definition.x_size)),
                                  str(data_mapgeo.shape[:2])))
        if data.ndim > 2 and data_mapgeo.ndim == 2:
            raise RuntimeError('The computed map geometry output only one band instead of the expected %d bands.'
                               % data.shape[2])
Daniel Scheffler's avatar
Daniel Scheffler committed
765

766
        return data_mapgeo, out_gt, out_prj  # type: Tuple[np.ndarray, tuple, str]
767

768
769
    def to_sensor_geometry(self, data, src_prj, src_extent):
        # type: (np.ndarray, Union[str, int], List[float, float, float, float]) -> np.ndarray
770
771
        """Transform the input map geometry array into sensor geometry

772
        :param data:        numpy array (representing map geometry) to be warped to sensor geometry
773
774
775
        :param src_prj:     projection of the input map geometry array (WKT or 'epsg:1234' or <EPSG_int>)
        :param src_extent:  extent coordinates of input map geometry array (LL_x, LL_y, UR_x, UR_y) in the src_prj
        """
776
777
        proj4_args = proj4_to_dict(get_proj4info(proj=src_prj))

778
        # get area_definition
779
        self.area_definition = AreaDefinition('', '', '', proj4_args, data.shape[1], data.shape[0],
780
781
                                              src_extent)

782
        # resample
783
        data_sensorgeo = self._resample(data, self.area_definition, self.swath_definition)
Daniel Scheffler's avatar
Daniel Scheffler committed
784
785
786
787
788
789
790
791

        # output validation
        if not data_sensorgeo.shape == self.lats.shape:
            raise RuntimeError('The computed sensor geometry output does not have the same size like the coordinates '
                               'array. Coordinates array: %s; output array: %s.'
                               % (self.lats.shape, data_sensorgeo.shape))

        return data_sensorgeo
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837


class SensorMapGeometryTransformer3D(object):
    def __init__(self, lons, lats, resamp_alg='nearest', radius_of_influence=30, **opts):
        # type: (np.ndarray, np.ndarray, str, int, Any) -> None
        """Get an instance of SensorMapGeometryTransformer.

        :param lons:    3D longitude array corresponding to the 3D sensor geometry array
        :param lats:    3D latitude array corresponding to the 3D sensor geometry array

        :Keyword Arguments:  (further documentation here: https://pyresample.readthedocs.io/en/latest/swath.html)
            - resamp_alg:           resampling algorithm ('nearest', 'bilinear', 'gauss', 'custom')
            - radius_of_influence:  <float> Cut off distance in meters (default: 30)
                                    NOTE: keyword is named 'radius' in case of bilinear resampling
            - sigmas:               <list of floats or float> [ONLY 'gauss'] List of sigmas to use for the gauss
                                    weighting of each channel 1 to k, w_k = exp(-dist^2/sigma_k^2). If only one channel
                                    is resampled sigmas is a single float value.
            - neighbours:           <int> [ONLY 'bilinear', 'gauss'] Number of neighbours to consider for each grid
                                    point when searching the closest corner points
            - epsilon:              <float> Allowed uncertainty in meters. Increasing uncertainty reduces execution time
            - weight_funcs:         <list of function objects or function object> [ONLY 'custom'] List of weight
                                    functions f(dist) to use for the weighting of each channel 1 to k. If only one
                                    channel is resampled weight_funcs is a single function object.
            - fill_value:           <int or None> Set undetermined pixels to this value.
                                    If fill_value is None a masked array is returned with undetermined pixels masked
            - reduce_data:          <bool> Perform initial coarse reduction of source dataset in order to reduce
                                    execution time
            - nprocs:               <int>, Number of processor cores to be used
            - segments:             <int or None> Number of segments to use when resampling.
                                    If set to None an estimate will be calculated
            - with_uncert:          <bool> [ONLY 'gauss' and 'custom'] Calculate uncertainty estimates
                                    NOTE: resampling function has 3 return values instead of 1: result, stddev, count
        """
        # validation
        if lons.ndim != 3:
            raise ValueError('Expected a 3D longitude array. Received a %dD array.' % lons.ndim)
        if lats.ndim != 3:
            raise ValueError('Expected a 3D latitude array. Received a %dD array.' % lats.ndim)
        if lons.shape != lats.shape:
            raise ValueError((lons.shape, lats.shape), "'lons' and 'lats' are expected to have the same shape.")

        self.lats = lats
        self.lons = lons
        self.resamp_alg = resamp_alg
        self.radius_of_influence = radius_of_influence
        self.opts = opts
838
839
840

        # define number of CPUs to use (but avoid sub-multiprocessing)
        #   -> parallelize either over bands or over image tiles
841
842
843
844
        #      bands: multiprocessing uses multiprocessing.Pool, implemented in to_map_geometry / to_sensor_geometry
        #      tiles: multiprocessing uses OpenMP implemented in pykdtree which is used by pyresample
        self.opts['nprocs'] = opts.get('nprocs', multiprocessing.cpu_count())
        self.mp_alg = 'bands' if self.lons.shape[2] >= opts['nprocs'] else 'tiles'
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894

    @staticmethod
    def _to_map_geometry_2D(kwargs_dict):
        # type: (dict) -> Tuple[np.ndarray, tuple, str, int]
        SMGT2D = SensorMapGeometryTransformer(lons=kwargs_dict['lons_2D'],
                                              lats=kwargs_dict['lats_2D'],
                                              resamp_alg=kwargs_dict['resamp_alg'],
                                              radius_of_influence=kwargs_dict['radius_of_influence'],
                                              **kwargs_dict['init_opts'])
        data_mapgeo, out_gt, out_prj = SMGT2D.to_map_geometry(data=kwargs_dict['data_sensor_geo_2D'],
                                                              tgt_prj=kwargs_dict['tgt_prj'],
                                                              tgt_extent=kwargs_dict['tgt_extent'],
                                                              tgt_res=kwargs_dict['tgt_res'])

        return data_mapgeo, out_gt, out_prj, kwargs_dict['band_idx']

    def _get_common_target_extent(self, tgt_epsg):
        corner_coords_ll = [[self.lons[0, 0, :].min(), self.lats[0, 0, :].max()],  # common UL_xy
                            [self.lons[0, -1, :].max(), self.lats[0, -1, :].max()],  # common UR_xy
                            [self.lons[-1, 0, :].min(), self.lats[-1, 0, :].min()],  # common LL_xy
                            [self.lons[-1, -1, :].max(), self.lats[-1, -1, :].min()],  # common LR_xy
                            ]
        corner_coords_tgt_prj = [transform_any_prj(EPSG2WKT(4326), EPSG2WKT(tgt_epsg), x, y)
                                 for x, y in corner_coords_ll]
        corner_coords_tgt_prj_np = np.array(corner_coords_tgt_prj)
        x_coords, y_coords = corner_coords_tgt_prj_np[:, 0], corner_coords_tgt_prj_np[:, 1]
        tgt_extent = [np.min(x_coords), np.min(y_coords), np.max(x_coords), np.max(y_coords)]

        return tgt_extent

    def to_map_geometry(self, data, tgt_prj, tgt_extent=None, tgt_res=None):
        # type: (np.ndarray, Union[str, int], Tuple[float, float, float, float], Tuple) -> ...
        """Transform the input sensor geometry array into map geometry.

        :param data:            3D numpy array (representing sensor geometry) to be warped to map geometry
        :param tgt_prj:         target projection (WKT or 'epsg:1234' or <EPSG_int>)
        :param tgt_extent:      extent coordinates of output map geometry array (LL_x, LL_y, UR_x, UR_y) in the tgt_prj
        :param tgt_res:         target X/Y resolution (e.g., (30, 30))
        """
        if data.ndim != 3:
            raise ValueError(data.ndim, "'data' must have 3 dimensions.")

        if data.shape != self.lons.shape:
            raise ValueError(data.shape, 'Expected a sensor geometry data array with %d rows, %d columns and %d bands.'
                             % self.lons.shape)

        # get common target extent
        tgt_epsg = WKT2EPSG(proj4_to_WKT(get_proj4info(proj=tgt_prj)))
        tgt_extent = tgt_extent or self._get_common_target_extent(tgt_epsg)

895
896
897
898
        init_opts = self.opts.copy()
        if self.mp_alg == 'bands':
            del init_opts['nprocs']  # avoid sub-multiprocessing

899
900
901
902
903
        args = [dict(
            lons_2D=self.lons[:, :, band],
            lats_2D=self.lats[:, :, band],
            resamp_alg=self.resamp_alg,
            radius_of_influence=self.radius_of_influence,
904
            init_opts=init_opts,
905
906
907
908
909
910
911
            data_sensor_geo_2D=data[:, :, band],
            tgt_prj=tgt_prj,
            tgt_extent=tgt_extent,
            tgt_res=tgt_res,
            band_idx=band
        ) for band in range(data.shape[2])]

912
913
        if self.mp_alg == 'bands':
            with multiprocessing.Pool(self.opts['nprocs']) as pool:
914
915
916
                result = pool.map(self._to_map_geometry_2D, args)
        else:
            result = [self._to_map_geometry_2D(argsdict) for argsdict in args]
917
918

        band_inds = list(np.array(result)[:, -1])
919
        data_mapgeo = np.dstack([result[band_inds.index(i)][0] for i in range(data.shape[2])])
920
        out_gt = result[0][1]
921
        out_prj = result[0][2]
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949

        return data_mapgeo, out_gt, out_prj  # type: Tuple[np.ndarray, tuple, str]

    @staticmethod
    def _to_sensor_geometry_2D(kwargs_dict):
        # type: (dict) -> (np.ndarray, int)
        SMGT2D = SensorMapGeometryTransformer(lons=kwargs_dict['lons_2D'],
                                              lats=kwargs_dict['lats_2D'],
                                              resamp_alg=kwargs_dict['resamp_alg'],
                                              radius_of_influence=kwargs_dict['radius_of_influence'],
                                              **kwargs_dict['init_opts'])
        data_sensorgeo = SMGT2D.to_sensor_geometry(data=kwargs_dict['data_map_geo_2D'],
                                                   src_prj=kwargs_dict['src_prj'],
                                                   src_extent=kwargs_dict['src_extent'])

        return data_sensorgeo, kwargs_dict['band_idx']

    def to_sensor_geometry(self, data, src_prj, src_extent):
        # type: (np.ndarray, Union[str, int], List[float, float, float, float]) -> np.ndarray
        """Transform the input map geometry array into sensor geometry

        :param data:        3D numpy array (representing map geometry) to be warped to sensor geometry
        :param src_prj:     projection of the input map geometry array (WKT or 'epsg:1234' or <EPSG_int>)
        :param src_extent:  extent coordinates of input map geometry array (LL_x, LL_y, UR_x, UR_y) in the src_prj
        """
        if data.ndim != 3:
            raise ValueError(data.ndim, "'data' must have 3 dimensions.")

950
951
952
953
        init_opts = self.opts.copy()
        if self.mp_alg == 'bands':
            del init_opts['nprocs']  # avoid sub-multiprocessing

954
955
956
957
958
        args = [dict(
            lons_2D=self.lons[:, :, band],
            lats_2D=self.lats[:, :, band],
            resamp_alg=self.resamp_alg,
            radius_of_influence=self.radius_of_influence,
959
            init_opts=init_opts,
960
961
962
963
964
965
            data_map_geo_2D=data[:, :, band],
            src_prj=src_prj,
            src_extent=src_extent,
            band_idx=band
        ) for band in range(data.shape[2])]

966
967
        if self.mp_alg == 'bands':
            with multiprocessing.Pool(self.opts['nprocs']) as pool:
968
969
970
                result = pool.map(self._to_sensor_geometry_2D, args)
        else:
            result = [self._to_sensor_geometry_2D(argsdict) for argsdict in args]
971
972

        band_inds = list(np.array(result)[:, -1])
973
        data_sensorgeo = np.dstack([result[band_inds.index(i)][0] for i in range(data.shape[2])])
974
975

        return data_sensorgeo