reproject.py 51.7 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
2
3
4
# -*- coding: utf-8 -*-

import numpy as np
import warnings
5
import multiprocessing
6
7
import os
from tempfile import TemporaryDirectory
8
from typing import Union, Tuple, List, Any  # noqa: F401
9

10
# custom
Daniel Scheffler's avatar
Daniel Scheffler committed
11
12
13
14
15
16
try:
    from osgeo import gdal
    from osgeo import gdalnumeric
except ImportError:
    import gdal
    import gdalnumeric
Daniel Scheffler's avatar
Daniel Scheffler committed
17
18
19
20
21

import rasterio
from rasterio.warp import reproject as rio_reproject
from rasterio.warp import calculate_default_transform as rio_calc_transform
from rasterio.warp import Resampling
22
23
from pyresample.geometry import AreaDefinition, SwathDefinition
from pyresample.utils import get_area_def
Daniel Scheffler's avatar
Daniel Scheffler committed
24

25
from ...dtypes.conversion import dTypeDic_NumPy2GDAL
26
27
from ..projection import EPSG2WKT, WKT2EPSG, isProjectedOrGeographic, prj_equal, proj4_to_WKT
from ..coord_trafo import pixelToLatLon, get_proj4info, proj4_to_dict, transform_coordArray, transform_any_prj
28
29
from ..coord_calc import corner_coord_to_minmax, get_corner_coordinates
from ...io.raster.gdal import get_GDAL_ds_inmem
30
from ...io.raster.writer import write_numpy_to_image
31
from ...processing.progress_mon import ProgressBar
32
from ...compatibility.gdal import get_gdal_func
33
from ...processing.shell import subcall_with_output
Daniel Scheffler's avatar
Daniel Scheffler committed
34

35
__author__ = "Daniel Scheffler"
Daniel Scheffler's avatar
Daniel Scheffler committed
36

Daniel Scheffler's avatar
Daniel Scheffler committed
37
38

def warp_ndarray_OLD(ndarray, in_gt, in_prj, out_prj, out_gt=None, outRowsCols=None, outUL=None, out_res=None,
39
                     out_extent=None, out_dtype=None, rsp_alg=0, in_nodata=None, out_nodata=None,
40
                     outExtent_within=True):  # pragma: no cover
Daniel Scheffler's avatar
Daniel Scheffler committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    """Reproject / warp a numpy array with given geo information to target coordinate system.

    :param ndarray:             numpy.ndarray [rows,cols,bands]
    :param in_gt:               input gdal GeoTransform
    :param in_prj:              input projection as WKT string
    :param out_prj:             output projection as WKT string
    :param out_gt:              output gdal GeoTransform as float tuple in the source coordinate system (optional)
    :param outUL:               [X,Y] output upper left coordinates as floats in the source coordinate system
                                (requires outRowsCols)
    :param outRowsCols:         [rows, cols] (optional)
    :param out_res:             output resolution as tuple of floats (x,y) in the TARGET coordinate system
    :param out_extent:          [left, bottom, right, top] as floats in the source coordinate system
    :param out_dtype:           output data type as numpy data type
    :param rsp_alg:             Resampling method to use. One of the following (int, default is 0):
                                0 = nearest neighbour, 1 = bilinear, 2 = cubic, 3 = cubic spline, 4 = lanczos,
                                5 = average, 6 = mode
    :param in_nodata:           no data value of the input image
    :param out_nodata:          no data value of the output image
    :param outExtent_within:    Ensures that the output extent is within the input extent.
                                Otherwise an exception is raised.
    :return out_arr:            warped numpy array
    :return out_gt:             warped gdal GeoTransform
    :return out_prj:            warped projection as WKT string
    """
Daniel Scheffler's avatar
Daniel Scheffler committed
65

Daniel Scheffler's avatar
Daniel Scheffler committed
66
    if not ndarray.flags['OWNDATA']:
67
        temp = np.empty_like(ndarray)
Daniel Scheffler's avatar
Daniel Scheffler committed
68
69
70
71
72
73
74
75
76
        temp[:] = ndarray
        ndarray = temp  # deep copy: converts view to its own array in order to avoid wrong output

    with rasterio.env.Env():
        if outUL is not None:
            assert outRowsCols is not None, 'outRowsCols must be given if outUL is given.'
        outUL = [in_gt[0], in_gt[3]] if outUL is None else outUL

        inEPSG, outEPSG = [WKT2EPSG(prj) for prj in [in_prj, out_prj]]
77
        assert inEPSG, 'Could not derive input EPSG code.'
Daniel Scheffler's avatar
Daniel Scheffler committed
78
        assert outEPSG, 'Could not derive output EPSG code.'
79
80
81
        assert in_nodata is None or isinstance(in_nodata, (int, float)), \
            'Received invalid input nodata value: %s; type: %s.' % (in_nodata, type(in_nodata))
        assert out_nodata is None or isinstance(out_nodata, (int, float)), \
Daniel Scheffler's avatar
Daniel Scheffler committed
82
            'Received invalid output nodata value: %s; type: %s.' % (out_nodata, type(out_nodata))
Daniel Scheffler's avatar
Daniel Scheffler committed
83
84
85
86
87
88
89
90
91
92
93
94
95

        src_crs = {'init': 'EPSG:%s' % inEPSG}
        dst_crs = {'init': 'EPSG:%s' % outEPSG}

        if len(ndarray.shape) == 3:
            # convert input array axis order to rasterio axis order
            ndarray = np.swapaxes(np.swapaxes(ndarray, 0, 2), 1, 2)
            bands, rows, cols = ndarray.shape
            rows, cols = outRowsCols if outRowsCols else (rows, cols)
        else:
            rows, cols = ndarray.shape if outRowsCols is None else outRowsCols

        # set dtypes ensuring at least int16 (int8 is not supported by rasterio)
96
        in_dtype = ndarray.dtype
Daniel Scheffler's avatar
Daniel Scheffler committed
97
98
        out_dtype = ndarray.dtype if out_dtype is None else out_dtype
        out_dtype = np.int16 if str(out_dtype) == 'int8' else out_dtype
99
        ndarray = ndarray.astype(np.int16) if str(in_dtype) == 'int8' else ndarray
Daniel Scheffler's avatar
Daniel Scheffler committed
100
101

        # get dst_transform
102
103
        def gt2bounds(gt, r, c): return [gt[0], gt[3] + r * gt[5], gt[0] + c * gt[1], gt[3]]  # left, bottom, right, top

Daniel Scheffler's avatar
Daniel Scheffler committed
104
105
        if out_gt is None and out_extent is None:
            if outRowsCols:
106
107
108
109
110
                outUL = [in_gt[0], in_gt[3]] if outUL is None else outUL

                def ulRC2bounds(ul, r, c):
                    return [ul[0], ul[1] + r * in_gt[5], ul[0] + c * in_gt[1], ul[1]]  # left, bottom, right, top

Daniel Scheffler's avatar
Daniel Scheffler committed
111
                left, bottom, right, top = ulRC2bounds(outUL, rows, cols)
112

Daniel Scheffler's avatar
Daniel Scheffler committed
113
114
115
            else:  # outRowsCols is None and outUL is None: use in_gt
                left, bottom, right, top = gt2bounds(in_gt, rows, cols)
                # ,im_xmax,im_ymin,im_ymax = corner_coord_to_minmax(get_corner_coordinates(self.ds_im2shift))
116

Daniel Scheffler's avatar
Daniel Scheffler committed
117
118
        elif out_extent:
            left, bottom, right, top = out_extent
119

Daniel Scheffler's avatar
Daniel Scheffler committed
120
121
122
123
124
125
        else:  # out_gt is given
            left, bottom, right, top = gt2bounds(in_gt, rows, cols)

        if outExtent_within:
            # input array is only a window of the actual input array
            assert left >= in_gt[0] and right <= (in_gt[0] + (cols + 1) * in_gt[1]) and \
126
127
                   bottom >= in_gt[3] + (rows + 1) * in_gt[5] and top <= in_gt[3], \
                   "out_extent has to be completely within the input image bounds."
Daniel Scheffler's avatar
Daniel Scheffler committed
128
129
130
131
132

        if out_res is None:
            # get pixel resolution in target coord system
            prj_in_out = (isProjectedOrGeographic(in_prj), isProjectedOrGeographic(out_prj))
            assert None not in prj_in_out, 'prj_in_out contains None.'
133

Daniel Scheffler's avatar
Daniel Scheffler committed
134
135
            if prj_in_out[0] == prj_in_out[1]:
                out_res = (in_gt[1], abs(in_gt[5]))
136

Daniel Scheffler's avatar
Daniel Scheffler committed
137
138
            elif prj_in_out == ('geographic', 'projected'):
                raise NotImplementedError('Different projections are currently not supported.')
139

Daniel Scheffler's avatar
Daniel Scheffler committed
140
141
142
143
144
145
            else:  # ('projected','geographic')
                px_size_LatLon = np.array(pixelToLatLon([1, 1], geotransform=in_gt, projection=in_prj)) - \
                                 np.array(pixelToLatLon([0, 0], geotransform=in_gt, projection=in_prj))
                out_res = tuple(reversed(abs(px_size_LatLon)))
                print('OUT_RES NOCHMAL CHECKEN: ', out_res)

Daniel Scheffler's avatar
Daniel Scheffler committed
146
147
148
        dict_rspInt_rspAlg = \
            {0: Resampling.nearest, 1: Resampling.bilinear, 2: Resampling.cubic,
             3: Resampling.cubic_spline, 4: Resampling.lanczos, 5: Resampling.average, 6: Resampling.mode}
Daniel Scheffler's avatar
Daniel Scheffler committed
149

150
        var1 = True
Daniel Scheffler's avatar
Daniel Scheffler committed
151
152
153
        if var1:
            src_transform = rasterio.transform.from_origin(in_gt[0], in_gt[3], in_gt[1], abs(in_gt[5]))
            print('calc_trafo_args')
154
155
            for i in [src_crs, dst_crs, cols, rows, left, bottom, right, top, out_res]:
                print(i, '\n')
156
            left, right, bottom, top = corner_coord_to_minmax(get_corner_coordinates(gt=in_gt, rows=rows, cols=cols))
Daniel Scheffler's avatar
Daniel Scheffler committed
157

Daniel Scheffler's avatar
Daniel Scheffler committed
158
159
            dst_transform, out_cols, out_rows = rio_calc_transform(
                src_crs, dst_crs, cols, rows, left, bottom, right, top, resolution=out_res)
Daniel Scheffler's avatar
Daniel Scheffler committed
160

Daniel Scheffler's avatar
Daniel Scheffler committed
161
162
163
            out_arr = np.zeros((bands, out_rows, out_cols), out_dtype) \
                if len(ndarray.shape) == 3 else np.zeros((out_rows, out_cols), out_dtype)
            print(out_res)
164
            for i in [src_transform, src_crs, dst_transform, dst_crs]:
165
                print(i, '\n')
Daniel Scheffler's avatar
Daniel Scheffler committed
166
            rio_reproject(ndarray, out_arr, src_transform=src_transform, src_crs=src_crs, dst_transform=dst_transform,
167
168
                          dst_crs=dst_crs, resampling=dict_rspInt_rspAlg[rsp_alg], src_nodata=in_nodata,
                          dst_nodata=out_nodata)
Daniel Scheffler's avatar
Daniel Scheffler committed
169
170
171
172
173
174
175
176
177

            aff = list(dst_transform)
            out_gt = out_gt if out_gt else (aff[2], aff[0], aff[1], aff[5], aff[3], aff[4])
            # FIXME sometimes output dimensions are not exactly as requested (1px difference)
        else:
            dst_transform, out_cols, out_rows = rio_calc_transform(
                src_crs, dst_crs, cols, rows, left, bottom, right, top, resolution=out_res)

            # check if calculated output dimensions correspond to expected ones and correct them if neccessary
178
179
180
181
182
183
184
185
            # rows_expected = int(round(abs(top - bottom) / out_res[1], 0))
            # cols_expected = int(round(abs(right - left) / out_res[0], 0))

            # diff_rows_exp_real, diff_cols_exp_real = abs(out_rows - rows_expected), abs(out_cols - cols_expected)
            # if diff_rows_exp_real > 0.1 or diff_cols_exp_real > 0.1:
            # assert diff_rows_exp_real < 1.1 and diff_cols_exp_real < 1.1,
            #     'warp_ndarray: The output image size calculated by rasterio is too far away from the expected output '
            #     'image size.'
Daniel Scheffler's avatar
Daniel Scheffler committed
186
            #    out_rows, out_cols = rows_expected, cols_expected
187
188
            # fixes an issue where rio_calc_transform() does not return quadratic output image although input parameters
            # correspond to a quadratic image and inEPSG equals outEPSG
Daniel Scheffler's avatar
Daniel Scheffler committed
189
190
191
192
193
194
195
196

            aff = list(dst_transform)
            out_gt = out_gt if out_gt else (aff[2], aff[0], aff[1], aff[5], aff[3], aff[4])

            out_arr = np.zeros((bands, out_rows, out_cols), out_dtype) \
                if len(ndarray.shape) == 3 else np.zeros((out_rows, out_cols), out_dtype)

            with warnings.catch_warnings():
197
198
199
                # FIXME supresses: FutureWarning:
                # FIXME: GDAL-style transforms are deprecated and will not be supported in Rasterio 1.0.
                warnings.simplefilter('ignore')
Daniel Scheffler's avatar
Daniel Scheffler committed
200
                try:
201
202
203
204
205
206
207
208
209
                    # print('INPUTS')
                    # print(ndarray.shape, ndarray.dtype, out_arr.shape, out_arr.dtype)
                    # print(in_gt)
                    # print(src_crs)
                    # print(out_gt)
                    # print(dst_crs)
                    # print(dict_rspInt_rspAlg[rsp_alg])
                    # print(in_nodata)
                    # print(out_nodata)
210
211
                    for i in [in_gt, src_crs, out_gt, dst_crs]:
                        print(i, '\n')
Daniel Scheffler's avatar
Daniel Scheffler committed
212
213
214
                    rio_reproject(ndarray, out_arr,
                                  src_transform=in_gt, src_crs=src_crs, dst_transform=out_gt, dst_crs=dst_crs,
                                  resampling=dict_rspInt_rspAlg[rsp_alg], src_nodata=in_nodata, dst_nodata=out_nodata)
215
216
217
218
                    # from matplotlib import pyplot as plt
                    # print(out_arr.shape)
                    # plt.figure()
                    # plt.imshow(out_arr[:,:,1])
Daniel Scheffler's avatar
Daniel Scheffler committed
219
220
221
                except KeyError:
                    print(in_dtype, str(in_dtype))
                    print(ndarray.dtype)
Daniel Scheffler's avatar
Daniel Scheffler committed
222
223
224
225
226
227
228
229

        # convert output array axis order to GMS axis order [rows,cols,bands]
        out_arr = out_arr if len(ndarray.shape) == 2 else np.swapaxes(np.swapaxes(out_arr, 0, 1), 1, 2)

        if outRowsCols:
            out_arr = out_arr[:outRowsCols[0], :outRowsCols[1]]

    return out_arr, out_gt, out_prj
Daniel Scheffler's avatar
Daniel Scheffler committed
230
231


232
def warp_GeoArray(geoArr, **kwargs):  # pragma: no cover
233
    # TODO remove that function
234
235
236
    warnings.warn("warp_GeoArray is deprecated. Use geoarray.GeoArray.reproject_to_new_grid instead.",
                  DeprecationWarning)
    # FIXME this does not copy GeoArray attributes
237
238
    # ndarray = geoArr[:]
    # from geoarray import GeoArray
239
    # return GeoArray(*warp_ndarray(ndarray, geoArr.geotransform, geoArr.projection, **kwargs))
Daniel Scheffler's avatar
Daniel Scheffler committed
240
241


242
243
def warp_ndarray(ndarray, in_gt, in_prj=None, out_prj=None, out_dtype=None,
                 out_gsd=(None, None), out_bounds=None, out_bounds_prj=None, out_XYdims=(None, None),
Daniel Scheffler's avatar
Daniel Scheffler committed
244
                 rspAlg='near', in_nodata=None, out_nodata=None, in_alpha=False,
245
                 out_alpha=False, targetAlignedPixels=False, gcpList=None, polynomialOrder=None, options=None,
246
                 transformerOptions=None, warpOptions=None, CPUs=1, warpMemoryLimit=0, progress=True, q=False):
247
    # type: () -> (np.ndarray, tuple, str)
Daniel Scheffler's avatar
Daniel Scheffler committed
248
249
    """

250
251
252
    :param ndarray:             numpy array to be warped (or a list of numpy arrays (requires lists for in_gt/in_prj))
    :param in_gt:               input GDAL geotransform (or a list of GDAL geotransforms)
    :param in_prj:              input GDAL projection or list of projections (WKT string, 'EPSG:1234', <EPSG_int>),
253
254
255
                                default: "LOCAL_CS[\"MAP\"]"
    :param out_prj:             output GDAL projection (WKT string, 'EPSG:1234', <EPSG_int>),
                                default: "LOCAL_CS[\"MAP\"]"
Daniel Scheffler's avatar
Daniel Scheffler committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    :param out_dtype:           gdal.DataType
    :param out_gsd:
    :param out_bounds:          [xmin,ymin,xmax,ymax] set georeferenced extents of output file to be created,
                                e.g. [440720, 3750120, 441920, 3751320])
                                (in target SRS by default, or in the SRS specified with -te_srs)
    :param out_bounds_prj:
    :param out_XYdims:
    :param rspAlg:              <str> Resampling method to use. Available methods are:
                                near, bilinear, cubic, cubicspline, lanczos, average, mode, max, min, med, q1, q2
    :param in_nodata:
    :param out_nodata:
    :param in_alpha:            <bool> Force the last band of a source image to be considered as a source alpha band.
    :param out_alpha:           <bool> Create an output alpha band to identify nodata (unset/transparent) pixels
    :param targetAlignedPixels:   (GDAL >= 1.8.0) (target aligned pixels) align the coordinates of the extent
                                        of the output file to the values of the -tr, such that the aligned extent
                                        includes the minimum extent.
    :param gcpList:             <list> list of ground control points in the output coordinate system
                                to be used for warping, e.g. [gdal.GCP(mapX,mapY,mapZ,column,row),...]
274
    :param polynomialOrder:     <int> order of polynomial GCP interpolation
275
    :param options:             <str> additional GDAL options as string, e.g. '-nosrcalpha' or '-order'
276
    :param transformerOptions:  <list> list of transformer options, e.g.  ['SRC_SRS=invalid']
277
278
    :param warpOptions:         <list> list of warp options, e.g.  ['CUTLINE_ALL_TOUCHED=TRUE'],
                                find available options here: http://www.gdal.org/structGDALWarpOptions.html
279
    :param CPUs:                <int> number of CPUs to use (default: None, which means 'all CPUs available')
280
    :param warpMemoryLimit:     <int> size of working buffer in bytes (default: 0)
281
282
    :param progress:            <bool> show progress bar (default: True)
    :param q:                   <bool> quiet mode (default: False)
Daniel Scheffler's avatar
Daniel Scheffler committed
283
284
285
    :return:

    """
286
    # TODO complete type hint
287
288
    # TODO test if this function delivers the exact same output like console version,
    # TODO otherwise implment error_threshold=0.125
Daniel Scheffler's avatar
Daniel Scheffler committed
289
290
    # how to implement:    https://svn.osgeo.org/gdal/trunk/autotest/utilities/test_gdalwarp_lib.py

291
    # assume local coordinates if no projections are given
292
293
294
295
    if not in_prj and not out_prj:
        if out_bounds_prj and not out_bounds_prj.startswith('LOCAL_CS'):
            raise ValueError("'out_bounds_prj' cannot have a projection if 'in_prj' and 'out_prj' are not given.")
        in_prj = out_prj = out_bounds_prj = "LOCAL_CS[\"MAP\"]"
296

297
    # assertions
298
    if rspAlg == 'average':
299
300
301
302
        is_avail_rsp_average = int(gdal.VersionInfo()[0]) >= 2
        if not is_avail_rsp_average:
            warnings.warn("The GDAL version on this machine does not yet support the resampling algorithm 'average'. "
                          "'cubic' is used instead. To avoid this please update GDAL to a version above 2.0.0!")
303
304
            rspAlg = 'cubic'

305
    if not isinstance(ndarray, (list, tuple)):
306
307
        assert str(np.dtype(ndarray.dtype)) in dTypeDic_NumPy2GDAL, "Unknown target datatype '%s'." % ndarray.dtype
    else:
308
309
        assert str(np.dtype(ndarray[0].dtype)) in dTypeDic_NumPy2GDAL, "Unknown target datatype '%s'." \
                                                                       % ndarray[0].dtype
310
311
        assert isinstance(in_gt, (list, tuple)), "If 'ndarray' is a list, 'in_gt' must also be a list!"
        assert isinstance(in_prj, (list, tuple)), "If 'ndarray' is a list, 'in_prj' must also be a list!"
312
313
        assert len(list(set([arr.dtype for arr in ndarray]))) == 1,  "Data types of input ndarray list must be equal."

314
315
316
317
318
319
    def get_SRS(prjArg):
        return prjArg if isinstance(prjArg, str) and prjArg.startswith('EPSG:') else \
            'EPSG:%s' % prjArg if isinstance(prjArg, int) else prjArg

    def get_GDT(DT): return dTypeDic_NumPy2GDAL[str(np.dtype(DT))]

320
    in_dtype_np = ndarray.dtype if not isinstance(ndarray, (list, tuple)) else ndarray[0].dtype
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    # # not yet implemented
    # # TODO cutline from OGR datasource. => implement input shapefile or Geopandas dataframe
    # cutlineDSName = 'data/cutline.vrt'  # '/vsimem/cutline.shp'
    # cutlineLayer = 'cutline'
    # cropToCutline = False
    # cutlineSQL = 'SELECT * FROM cutline'
    # cutlineWhere = '1 = 1'
    # rpc = [
    #     "HEIGHT_OFF=1466.05894327379",
    #     "HEIGHT_SCALE=144.837606185489",
    #     "LAT_OFF=38.9266809014185",
    #     "LAT_SCALE=-0.108324009570885",
    #     "LINE_DEN_COEFF="
    #     "1 -0.000392404256440504 -0.0027925489381758 0.000501819414812054 0.00216726134806561 "
    #     "-0.00185617059201599 0.000183834173326118 -0.00290342803717354 -0.00207181007131322 -0.000900223247894285 "
    #     "-0.00132518281680544 0.00165598132063197 0.00681015244696305 0.000547865679631528 0.00516214646283021 "
    #     "0.00795287690785699 -0.000705040639059332 -0.00254360623317078 -0.000291154885056484 0.00070943440010757",
    #     "LINE_NUM_COEFF="
    #     "-0.000951099635749339 1.41709976082781 -0.939591985038569 -0.00186609235173885 0.00196881101098923 "
    #     "0.00361741523740639 -0.00282449434932066 0.0115361898794214 -0.00276027843825304 9.37913944402154e-05 "
    #     "-0.00160950221565737 0.00754053609977256 0.00461831968713819 0.00274991122620312 0.000689605203796422 "
    #     "-0.0042482778732957 -0.000123966494595151 0.00307976709897974 -0.000563274426174409 0.00049981716767074",
    #     "LINE_OFF=2199.50159296339",
    #     "LINE_SCALE=2195.852519621",
    #     "LONG_OFF=76.0381768085136",
    #     "LONG_SCALE=0.130066683772651",
    #     "SAMP_DEN_COEFF="
    #     "1 -0.000632078047521022 -0.000544107268758971 0.000172438016778527 -0.00206391734870399 "
    #     "-0.00204445747536872 -0.000715754551621987 -0.00195545265530244 -0.00168532972557267 -0.00114709980708329 "
    #     "-0.00699131177532728 0.0038551339822296 0.00283631282133365 -0.00436885468926666 -0.00381335885955994 "
    #     "0.0018742043611019 -0.0027263909314293 -0.00237054119407013 0.00246374716379501 -0.00121074576302219",
    #     "SAMP_NUM_COEFF="
    #     "0.00249293151551852 -0.581492592442025 -1.00947448466175 0.00121597346320039 -0.00552825219917498 "
    #     "-0.00194683170765094 -0.00166012459012905 -0.00338315804553888 -0.00152062885009498 -0.000214562164393127 "
    #     "-0.00219914905535387 -0.000662800177832777 -0.00118644828432841 -0.00180061222825708 -0.00364756875260519 "
    #     "-0.00287273485650089 -0.000540077934728493 -0.00166800463003749 0.000201057249109451 -8.49620129025469e-05",
    #     "SAMP_OFF=3300.34602166792",
    #     "SAMP_SCALE=3297.51222987611"
    # ]
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    """ Create a WarpOptions() object that can be passed to gdal.Warp()
        Keyword arguments are :
          options --- can be be an array of strings, a string or let empty and filled from other keywords.
          format --- output format ("GTiff", etc...)
          outputBounds --- output bounds as (minX, minY, maxX, maxY) in target SRS
          outputBoundsSRS --- SRS in which output bounds are expressed, in the case they are not expressed in dstSRS
          xRes, yRes --- output resolution in target SRS
          targetAlignedPixels --- whether to force output bounds to be multiple of output resolution
          width --- width of the output raster in pixel
          height --- height of the output raster in pixel
          srcSRS --- source SRS
          dstSRS --- output SRS
          srcAlpha --- whether to force the last band of the input dataset to be considered as an alpha band
          dstAlpha --- whether to force the creation of an output alpha band
          outputType --- output type (gdal.GDT_Byte, etc...)
          workingType --- working type (gdal.GDT_Byte, etc...)
          warpOptions --- list of warping options
          errorThreshold --- error threshold for approximation transformer (in pixels)
          warpMemoryLimit --- size of working buffer in bytes
          resampleAlg --- resampling mode
          creationOptions --- list of creation options
          srcNodata --- source nodata value(s)
          dstNodata --- output nodata value(s)
          multithread --- whether to multithread computation and I/O operations
          tps --- whether to use Thin Plate Spline GCP transformer
          rpc --- whether to use RPC transformer
          geoloc --- whether to use GeoLocation array transformer
          polynomialOrder --- order of polynomial GCP interpolation
          transformerOptions --- list of transformer options
          cutlineDSName --- cutline dataset name
          cutlineLayer --- cutline layer name
          cutlineWhere --- cutline WHERE clause
          cutlineSQL --- cutline SQL statement
          cutlineBlend --- cutline blend distance in pixels
          cropToCutline --- whether to use cutline extent for output bounds
          copyMetadata --- whether to copy source metadata
          metadataConflictValue --- metadata data conflict value
          setColorInterpretation --- whether to force color interpretation of input bands to output bands
          callback --- callback method
401
          callback_data --- user data for callback  # value for last parameter of progress callback
402
    """
403

Daniel Scheffler's avatar
Daniel Scheffler committed
404
    # get input dataset (in-MEM)
405
    if not isinstance(ndarray, (list, tuple)):
406
407
408
409
        in_ds = get_GDAL_ds_inmem(ndarray, in_gt, in_prj)
    else:
        # list of ndarrays
        in_ds = [get_GDAL_ds_inmem(arr, gt, prj) for arr, gt, prj in zip(ndarray, in_gt, in_prj)]
Daniel Scheffler's avatar
Daniel Scheffler committed
410

411
    # set RPCs
412
    # if rpcList:
413
414
415
    #    in_ds.SetMetadata(rpc, "RPC")
    #    transformerOptions = ['RPC_DEM=data/warp_52_dem.tif']

416
    if CPUs is None or CPUs > 1:
417
        gdal.SetConfigOption('GDAL_NUM_THREADS', str(CPUs if CPUs else multiprocessing.cpu_count()))
418

419
        # gdal.SetConfigOption('GDAL_CACHEMAX', str(800))
420

421
422
423
        # GDAL Translate if needed
        # if gcpList:
        #   in_ds.SetGCPs(gcpList, in_ds.GetProjection())
424
425

    if gcpList:
426
427
        gdal_Translate = get_gdal_func('Translate')
        in_ds = gdal_Translate(
428
            '', in_ds, format='MEM',
429
430
431
432
            outputSRS=get_SRS(out_prj),
            GCPs=gcpList,
            callback=ProgressBar(prefix='Translating progress', timeout=None) if progress and not q else None
        )
433
434
435
        # NOTE: options = ['SPARSE_OK=YES'] ## => what is that for?

    # GDAL Warp
436
    gdal_Warp = get_gdal_func('Warp')
437
    res_ds = gdal_Warp(
438
        '', in_ds, format='MEM',
439
        dstSRS=get_SRS(out_prj),
440
        outputType=get_GDT(out_dtype) if out_dtype else get_GDT(in_dtype_np),
441
442
443
444
445
446
447
448
449
450
451
452
        xRes=out_gsd[0],
        yRes=out_gsd[1],
        outputBounds=out_bounds,
        outputBoundsSRS=get_SRS(out_bounds_prj),
        width=out_XYdims[0],
        height=out_XYdims[1],
        resampleAlg=rspAlg,
        srcNodata=in_nodata,
        dstNodata=out_nodata,
        srcAlpha=in_alpha,
        dstAlpha=out_alpha,
        options=options if options else [],
453
454
        warpOptions=warpOptions or [],
        transformerOptions=transformerOptions or [],
455
456
457
458
459
460
461
462
        targetAlignedPixels=targetAlignedPixels,
        tps=True if gcpList else False,
        polynomialOrder=polynomialOrder,
        warpMemoryLimit=warpMemoryLimit,
        callback=ProgressBar(prefix='Warping progress    ', timeout=None) if progress and not q else None,
        callback_data=[0],
        errorThreshold=0.125,  # this is needed to get exactly the same output like the console version of GDAL warp
    )
463
464

    gdal.SetConfigOption('GDAL_NUM_THREADS', None)
Daniel Scheffler's avatar
Daniel Scheffler committed
465

466
    if res_ds is None:
Daniel Scheffler's avatar
Daniel Scheffler committed
467
468
469
        raise Exception('Warping Error:  ' + gdal.GetLastErrorMsg())

    # get outputs
470
471
472
    res_arr = gdalnumeric.DatasetReadAsArray(res_ds)
    if len(res_arr.shape) == 3:
        res_arr = np.swapaxes(np.swapaxes(res_arr, 0, 2), 0, 1)
Daniel Scheffler's avatar
Daniel Scheffler committed
473

474
    res_gt = res_ds.GetGeoTransform()
475
    res_prj = res_ds.GetProjection()
Daniel Scheffler's avatar
Daniel Scheffler committed
476
477

    # cleanup
478
    del in_ds, res_ds
Daniel Scheffler's avatar
Daniel Scheffler committed
479

480
    # dtype check -> possibly dtype had to be changed for GDAL compatibility
481
482
    if in_dtype_np != res_arr.dtype:
        res_arr = res_arr.astype(in_dtype_np)
483

484
    # test output
485
    if out_prj and prj_equal(out_prj, 4626):
486
487
        assert -180 < res_gt[0] < 180 and -90 < res_gt[3] < 90, 'Testing of gdal_warp output failed.'

Daniel Scheffler's avatar
Daniel Scheffler committed
488
489
490
491
    # output bounds verification
    if out_bounds:
        xmin, xmax, ymin, ymax = \
            corner_coord_to_minmax(get_corner_coordinates(gt=res_gt, rows=res_arr.shape[0], cols=res_arr.shape[1]))
492
        if False in np.isclose(out_bounds, (xmin, ymin, xmax, ymax)):
Daniel Scheffler's avatar
Daniel Scheffler committed
493
494
            warnings.warn('The output bounds of warp_ndarray do not match the requested bounds!')

495
    return res_arr, res_gt, res_prj
496
497
498


class SensorMapGeometryTransformer(object):
499
500
    def __init__(self, lons, lats, resamp_alg='nearest', radius_of_influence=30, **opts):
        # type: (np.ndarray, np.ndarray, str, int, Any) -> None
501
502
        """Get an instance of SensorMapGeometryTransformer.

503
504
        :param lons:    2D longitude array corresponding to the 2D sensor geometry array
        :param lats:    2D latitude array corresponding to the 2D sensor geometry array
505

Daniel Scheffler's avatar
Daniel Scheffler committed
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        :Keyword Arguments:  (further documentation here: https://pyresample.readthedocs.io/en/latest/swath.html)
            - resamp_alg:           resampling algorithm ('nearest', 'bilinear', 'gauss', 'custom')
            - radius_of_influence:  <float> Cut off distance in meters (default: 30)
                                    NOTE: keyword is named 'radius' in case of bilinear resampling
            - sigmas:               <list of floats or float> [ONLY 'gauss'] List of sigmas to use for the gauss
                                    weighting of each channel 1 to k, w_k = exp(-dist^2/sigma_k^2). If only one channel
                                    is resampled sigmas is a single float value.
            - neighbours:           <int> [ONLY 'bilinear', 'gauss'] Number of neighbours to consider for each grid
                                    point when searching the closest corner points
            - epsilon:              <float> Allowed uncertainty in meters. Increasing uncertainty reduces execution time
            - weight_funcs:         <list of function objects or function object> [ONLY 'custom'] List of weight
                                    functions f(dist) to use for the weighting of each channel 1 to k. If only one
                                    channel is resampled weight_funcs is a single function object.
            - fill_value:           <int or None> Set undetermined pixels to this value.
                                    If fill_value is None a masked array is returned with undetermined pixels masked
            - reduce_data:          <bool> Perform initial coarse reduction of source dataset in order to reduce
                                    execution time
            - nprocs:               <int>, Number of processor cores to be used
            - segments:             <int or None> Number of segments to use when resampling.
                                    If set to None an estimate will be calculated
            - with_uncert:          <bool> [ONLY 'gauss' and 'custom'] Calculate uncertainty estimates
                                    NOTE: resampling function has 3 return values instead of 1: result, stddev, count
528
        """
529
        # validation
530
531
532
533
        if lons.ndim != 2:
            raise ValueError('Expected a 2D longitude array. Received a %dD array.' % lons.ndim)
        if lats.ndim != 2:
            raise ValueError('Expected a 2D latitude array. Received a %dD array.' % lats.ndim)
Daniel Scheffler's avatar
Daniel Scheffler committed
534
535
        if lons.shape != lats.shape:
            raise ValueError((lons.shape, lats.shape), "'lons' and 'lats' are expected to have the same shape.")
536

537
        self.resamp_alg = resamp_alg
Daniel Scheffler's avatar
Daniel Scheffler committed
538
539
        self.opts = dict(radius_of_influence=radius_of_influence,
                         sigmas=(radius_of_influence / 2))
540
541
        self.opts.update(opts)

542
543
544
545
        if resamp_alg == 'bilinear':
            del self.opts['radius_of_influence']
            self.opts['radius'] = radius_of_influence

546
547
548
549
550
551
552
        # NOTE: If pykdtree is built with OpenMP support (default) the number of threads is controlled with the
        #       standard OpenMP environment variable OMP_NUM_THREADS. The nprocs argument has no effect on pykdtree.
        if 'nprocs' in self.opts:
            if self.opts['nprocs'] > 1:
                os.environ['OMP_NUM_THREADS'] = '%d' % opts['nprocs']
            del self.opts['nprocs']

553
554
        self.lats = lats
        self.lons = lons
555
        self.swath_definition = SwathDefinition(lons=lons, lats=lats)
556
557
        self.area_extent_ll = [np.min(lons), np.min(lats), np.max(lons), np.max(lats)]
        self.area_definition = None
558

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    def _get_target_extent(self, tgt_epsg):
        if tgt_epsg == 4326:
            tgt_extent = self.area_extent_ll
        else:
            corner_coords_ll = [[self.lons[0, 0], self.lats[0, 0]],  # UL_xy
                                [self.lons[0, -1], self.lats[0, -1]],  # UR_xy
                                [self.lons[-1, 0], self.lats[-1, 0]],  # LL_xy
                                [self.lons[-1, -1], self.lats[-1, -1]],  # LR_xy
                                ]
            corner_coords_tgt_prj = [transform_any_prj(EPSG2WKT(4326), EPSG2WKT(tgt_epsg), x, y)
                                     for x, y in corner_coords_ll]
            corner_coords_tgt_prj_np = np.array(corner_coords_tgt_prj)
            x_coords, y_coords = corner_coords_tgt_prj_np[:, 0], corner_coords_tgt_prj_np[:, 1]
            tgt_extent = [np.min(x_coords), np.min(y_coords), np.max(x_coords), np.max(y_coords)]

        return tgt_extent

576
577
578
    def compute_areadefinition_sensor2map(self, data, tgt_prj, tgt_extent=None, tgt_res=None):
        # type: (np.ndarray, Union[int, str], Tuple[float, float, float, float], Tuple[float, float]) -> AreaDefinition
        """Compute the area_definition to resample a sensor geometry array to map geometry.
579

580
        :param data:        numpy array to be warped to sensor or map geometry
581
582
        :param tgt_prj:     target projection (WKT or 'epsg:1234' or <EPSG_int>)
        :param tgt_extent:  extent coordinates of output map geometry array (LL_x, LL_y, UR_x, UR_y) in the tgt_prj
583
                            (automatically computed from the corner positions of the coordinate arrays)
584
        :param tgt_res:     target X/Y resolution (e.g., (30, 30))
585
586
        :return:
        """
587
588
589
        tgt_epsg = WKT2EPSG(proj4_to_WKT(get_proj4info(proj=tgt_prj)))
        tgt_extent = tgt_extent or self._get_target_extent(tgt_epsg)

590
        with TemporaryDirectory() as td:
591
592
            path_xycoords = os.path.join(td, 'xy_coords.bsq')
            path_xycoords_vrt = os.path.join(td, 'xy_coords.vrt')
593
594
595
596
            path_data = os.path.join(td, 'data.bsq')
            path_datavrt = os.path.join(td, 'data.vrt')
            path_data_out = os.path.join(td, 'data_out.bsq')

597
598
599
600
601
602
603
604
605
606
607
608
609
610
            # write X/Y coordinate array
            if tgt_epsg == 4326:
                xy_coords = np.dstack([self.swath_definition.lons,
                                       self.swath_definition.lats])
                # xy_coords = np.dstack([self.swath_definition.lons[::10, ::10],
                #                        self.swath_definition.lats[::10, ::10]])
            else:
                xy_coords = np.dstack(list(transform_coordArray(EPSG2WKT(4326), EPSG2WKT(tgt_epsg),
                                                                self.swath_definition.lons,
                                                                self.swath_definition.lats)))
            write_numpy_to_image(xy_coords, path_xycoords, 'ENVI')

            # create VRT for X/Y coordinate array
            ds_xy_coords = gdal.Open(path_xycoords)
611
            drv_vrt = gdal.GetDriverByName("VRT")
612
613
            vrt = drv_vrt.CreateCopy(path_xycoords_vrt, ds_xy_coords)
            del ds_xy_coords, vrt
614
615

            # create VRT for one data band
616
            mask_band = np.ones((data.shape[:2]), np.int32)
617
618
619
            write_numpy_to_image(mask_band, path_data, 'ENVI')
            ds_data = gdal.Open(path_data)
            vrt = drv_vrt.CreateCopy(path_datavrt, ds_data)
620
621
            vrt.SetMetadata({"X_DATASET": path_xycoords_vrt,
                             "Y_DATASET": path_xycoords_vrt,
622
623
624
625
626
627
                             "X_BAND": "1",
                             "Y_BAND": "2",
                             "PIXEL_OFFSET": "0",
                             "LINE_OFFSET": "0",
                             "PIXEL_STEP": "1",
                             "LINE_STEP": "1",
628
                             "SRS": EPSG2WKT(tgt_epsg),
629
630
631
632
                             }, "GEOLOCATION")
            vrt.FlushCache()
            del ds_data, vrt

633
634
635
636
637
638
639
640
641
642
643
644
645
646
            subcall_with_output('gdalwarp %s %s '
                                '-geoloc '
                                '-t_srs EPSG:%d '
                                '-srcnodata 0 '
                                '-r near '
                                '-of ENVI '
                                '-dstnodata none '
                                '-et 0 '
                                '-overwrite '
                                '-te %s'
                                '%s' % (path_datavrt, path_data_out, tgt_epsg,
                                        ' '.join([str(i) for i in tgt_extent]),
                                        ' -tr %s %s' % tgt_res if tgt_res else '',),
                                v=True)
647
648
649

            # get output X/Y size
            ds_out = gdal.Open(path_data_out)
650
651
652
653

            if not ds_out:
                raise Exception(gdal.GetLastErrorMsg())

654
655
            x_size = ds_out.RasterXSize
            y_size = ds_out.RasterYSize
656
            out_gt = ds_out.GetGeoTransform()
657
658
            del ds_out

659
660
661
662
663
664
665
666
        # add 1 px buffer around out_extent to avoid cutting the output image
        x_size += 2
        y_size += 2
        out_gt = list(out_gt)
        out_gt[0] -= out_gt[1]
        out_gt[3] += abs(out_gt[5])
        out_gt = tuple(out_gt)
        xmin, xmax, ymin, ymax = corner_coord_to_minmax(get_corner_coordinates(gt=out_gt, cols=x_size, rows=y_size))
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
        out_extent = xmin, ymin, xmax, ymax

        # get area_definition
        area_definition = get_area_def(area_id='',
                                       area_name='',
                                       proj_id='',
                                       proj4_args=get_proj4info(proj=tgt_prj),
                                       x_size=x_size,
                                       y_size=y_size,
                                       area_extent=list(out_extent),
                                       )  # type: AreaDefinition

        return area_definition

    def _resample(self, data, source_geo_def, target_geo_def):
        # type: (np.ndarray, Union[AreaDefinition, SwathDefinition], Union[AreaDefinition, SwathDefinition]) -> ...
683
684
        """Run the resampling algorithm.

685
        :param data:            numpy array to be warped to sensor or map geometry
686
687
688
689
        :param source_geo_def:  source geo definition
        :param target_geo_def:  target geo definition
        :return:
        """
690
        from pyresample.bilinear import resample_bilinear
691
692
        from pyresample.kd_tree import resample_nearest, resample_gauss, resample_custom

693
694
        if self.resamp_alg == 'nearest':
            opts = {k: v for k, v in self.opts.items() if k not in ['sigmas']}
695
            result = resample_nearest(source_geo_def, data, target_geo_def, **opts)
696
697
698

        elif self.resamp_alg == 'bilinear':
            opts = {k: v for k, v in self.opts.items() if k not in ['sigmas']}
699
            result = resample_bilinear(data, source_geo_def, target_geo_def, **opts)
700
701

        elif self.resamp_alg == 'gauss':
702
            opts = {k: v for k, v in self.opts.items()}
703
            result = resample_gauss(source_geo_def, data, target_geo_def, **opts)
704

705
706
707
708
        elif self.resamp_alg == 'custom':
            opts = {k: v for k, v in self.opts.items()}
            if 'weight_funcs' not in opts:
                raise ValueError(opts, "Options must contain a 'weight_funcs' item.")
709
            result = resample_custom(source_geo_def, data, target_geo_def, **opts)
710
711
712
713

        else:
            raise ValueError(self.resamp_alg)

714
715
716
717
718
719
720
721
        return result  # type: np.ndarray

    @staticmethod
    def _get_gt_prj_from_areadefinition(area_definition):
        # type: (AreaDefinition) -> (Tuple[float, float, float, float, float, float], str)
        gt = area_definition.area_extent[0], area_definition.pixel_size_x, 0, \
             area_definition.area_extent[3], 0, -area_definition.pixel_size_y
        prj = proj4_to_WKT(area_definition.proj_str)
722

723
724
        return gt, prj

725
    def to_map_geometry(self, data, tgt_prj=None, tgt_extent=None, tgt_res=None, area_definition=None):
726
        # type: (np.ndarray, Union[str, int], Tuple[float, float, float, float], Tuple, AreaDefinition) -> ...
727
728
        """Transform the input sensor geometry array into map geometry.

729
730
731
732
        :param data:            numpy array (representing sensor geometry) to be warped to map geometry
        :param tgt_prj:         target projection (WKT or 'epsg:1234' or <EPSG_int>)
        :param tgt_extent:      extent coordinates of output map geometry array (LL_x, LL_y, UR_x, UR_y) in the tgt_prj
        :param tgt_res:         target X/Y resolution (e.g., (30, 30))
733
734
        :param area_definition: an instance of pyresample.geometry.AreaDefinition;
                                OVERRIDES tgt_prj, tgt_extent and tgt_res; saves computation time
735
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
736
737
738
739
740
        if self.lons.ndim > 2 >= data.ndim:
            raise ValueError(data.ndim, "'data' must at least have %d dimensions because of %d longiture array "
                                        "dimensions." % (self.lons.ndim, self.lons.ndim))

        if data.shape[:2] != self.lons.shape[:2]:
Daniel Scheffler's avatar
Daniel Scheffler committed
741
            raise ValueError(data.shape, 'Expected a sensor geometry data array with %d rows and %d columns.'
Daniel Scheffler's avatar
Daniel Scheffler committed
742
                             % self.lons.shape[:2])
743

744
745
746
747
748
749
750
751
        # get area_definition
        if area_definition:
            self.area_definition = area_definition
        else:
            if not tgt_prj:
                raise ValueError(tgt_prj, 'Target projection must be given if area_definition is not given.')

            self.area_definition = self.compute_areadefinition_sensor2map(
752
753
                data, tgt_prj=tgt_prj, tgt_extent=tgt_extent, tgt_res=tgt_res)

754
        # resample
755
756
        data_mapgeo = self._resample(data, self.swath_definition, self.area_definition)
        out_gt, out_prj = self._get_gt_prj_from_areadefinition(self.area_definition)
Daniel Scheffler's avatar
Daniel Scheffler committed
757
758

        # output validation
759
760
761
762
763
764
765
766
        if not data_mapgeo.shape[:2] == (self.area_definition.y_size, self.area_definition.x_size):
            raise RuntimeError('The computed map geometry output does not have the expected number of rows/columns. '
                               'Expected: %s; output: %s.'
                               % (str((self.area_definition.y_size, self.area_definition.x_size)),
                                  str(data_mapgeo.shape[:2])))
        if data.ndim > 2 and data_mapgeo.ndim == 2:
            raise RuntimeError('The computed map geometry output only one band instead of the expected %d bands.'
                               % data.shape[2])
Daniel Scheffler's avatar
Daniel Scheffler committed
767

768
        return data_mapgeo, out_gt, out_prj  # type: Tuple[np.ndarray, tuple, str]
769

770
771
    def to_sensor_geometry(self, data, src_prj, src_extent):
        # type: (np.ndarray, Union[str, int], List[float, float, float, float]) -> np.ndarray
772
773
        """Transform the input map geometry array into sensor geometry

774
        :param data:        numpy array (representing map geometry) to be warped to sensor geometry
775
776
777
        :param src_prj:     projection of the input map geometry array (WKT or 'epsg:1234' or <EPSG_int>)
        :param src_extent:  extent coordinates of input map geometry array (LL_x, LL_y, UR_x, UR_y) in the src_prj
        """
778
779
        proj4_args = proj4_to_dict(get_proj4info(proj=src_prj))

780
        # get area_definition
781
        self.area_definition = AreaDefinition('', '', '', proj4_args, data.shape[1], data.shape[0],
782
783
                                              src_extent)

784
        # resample
785
        data_sensorgeo = self._resample(data, self.area_definition, self.swath_definition)
Daniel Scheffler's avatar
Daniel Scheffler committed
786
787
788
789
790
791
792
793

        # output validation
        if not data_sensorgeo.shape == self.lats.shape:
            raise RuntimeError('The computed sensor geometry output does not have the same size like the coordinates '
                               'array. Coordinates array: %s; output array: %s.'
                               % (self.lats.shape, data_sensorgeo.shape))

        return data_sensorgeo
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839


class SensorMapGeometryTransformer3D(object):
    def __init__(self, lons, lats, resamp_alg='nearest', radius_of_influence=30, **opts):
        # type: (np.ndarray, np.ndarray, str, int, Any) -> None
        """Get an instance of SensorMapGeometryTransformer.

        :param lons:    3D longitude array corresponding to the 3D sensor geometry array
        :param lats:    3D latitude array corresponding to the 3D sensor geometry array

        :Keyword Arguments:  (further documentation here: https://pyresample.readthedocs.io/en/latest/swath.html)
            - resamp_alg:           resampling algorithm ('nearest', 'bilinear', 'gauss', 'custom')
            - radius_of_influence:  <float> Cut off distance in meters (default: 30)
                                    NOTE: keyword is named 'radius' in case of bilinear resampling
            - sigmas:               <list of floats or float> [ONLY 'gauss'] List of sigmas to use for the gauss
                                    weighting of each channel 1 to k, w_k = exp(-dist^2/sigma_k^2). If only one channel
                                    is resampled sigmas is a single float value.
            - neighbours:           <int> [ONLY 'bilinear', 'gauss'] Number of neighbours to consider for each grid
                                    point when searching the closest corner points
            - epsilon:              <float> Allowed uncertainty in meters. Increasing uncertainty reduces execution time
            - weight_funcs:         <list of function objects or function object> [ONLY 'custom'] List of weight
                                    functions f(dist) to use for the weighting of each channel 1 to k. If only one
                                    channel is resampled weight_funcs is a single function object.
            - fill_value:           <int or None> Set undetermined pixels to this value.
                                    If fill_value is None a masked array is returned with undetermined pixels masked
            - reduce_data:          <bool> Perform initial coarse reduction of source dataset in order to reduce
                                    execution time
            - nprocs:               <int>, Number of processor cores to be used
            - segments:             <int or None> Number of segments to use when resampling.
                                    If set to None an estimate will be calculated
            - with_uncert:          <bool> [ONLY 'gauss' and 'custom'] Calculate uncertainty estimates
                                    NOTE: resampling function has 3 return values instead of 1: result, stddev, count
        """
        # validation
        if lons.ndim != 3:
            raise ValueError('Expected a 3D longitude array. Received a %dD array.' % lons.ndim)
        if lats.ndim != 3:
            raise ValueError('Expected a 3D latitude array. Received a %dD array.' % lats.ndim)
        if lons.shape != lats.shape:
            raise ValueError((lons.shape, lats.shape), "'lons' and 'lats' are expected to have the same shape.")

        self.lats = lats
        self.lons = lons
        self.resamp_alg = resamp_alg
        self.radius_of_influence = radius_of_influence
        self.opts = opts
840
841
842

        # define number of CPUs to use (but avoid sub-multiprocessing)
        #   -> parallelize either over bands or over image tiles
843
844
845
846
        #      bands: multiprocessing uses multiprocessing.Pool, implemented in to_map_geometry / to_sensor_geometry
        #      tiles: multiprocessing uses OpenMP implemented in pykdtree which is used by pyresample
        self.opts['nprocs'] = opts.get('nprocs', multiprocessing.cpu_count())
        self.mp_alg = 'bands' if self.lons.shape[2] >= opts['nprocs'] else 'tiles'
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

    @staticmethod
    def _to_map_geometry_2D(kwargs_dict):
        # type: (dict) -> Tuple[np.ndarray, tuple, str, int]
        SMGT2D = SensorMapGeometryTransformer(lons=kwargs_dict['lons_2D'],
                                              lats=kwargs_dict['lats_2D'],
                                              resamp_alg=kwargs_dict['resamp_alg'],
                                              radius_of_influence=kwargs_dict['radius_of_influence'],
                                              **kwargs_dict['init_opts'])
        data_mapgeo, out_gt, out_prj = SMGT2D.to_map_geometry(data=kwargs_dict['data_sensor_geo_2D'],
                                                              tgt_prj=kwargs_dict['tgt_prj'],
                                                              tgt_extent=kwargs_dict['tgt_extent'],
                                                              tgt_res=kwargs_dict['tgt_res'])

        return data_mapgeo, out_gt, out_prj, kwargs_dict['band_idx']

    def _get_common_target_extent(self, tgt_epsg):
        corner_coords_ll = [[self.lons[0, 0, :].min(), self.lats[0, 0, :].max()],  # common UL_xy
                            [self.lons[0, -1, :].max(), self.lats[0, -1, :].max()],  # common UR_xy
                            [self.lons[-1, 0, :].min(), self.lats[-1, 0, :].min()],  # common LL_xy
                            [self.lons[-1, -1, :].max(), self.lats[-1, -1, :].min()],  # common LR_xy
                            ]
        corner_coords_tgt_prj = [transform_any_prj(EPSG2WKT(4326), EPSG2WKT(tgt_epsg), x, y)
                                 for x, y in corner_coords_ll]
        corner_coords_tgt_prj_np = np.array(corner_coords_tgt_prj)
        x_coords, y_coords = corner_coords_tgt_prj_np[:, 0], corner_coords_tgt_prj_np[:, 1]
        tgt_extent = [np.min(x_coords), np.min(y_coords), np.max(x_coords), np.max(y_coords)]

        return tgt_extent

    def to_map_geometry(self, data, tgt_prj, tgt_extent=None, tgt_res=None):
        # type: (np.ndarray, Union[str, int], Tuple[float, float, float, float], Tuple) -> ...
        """Transform the input sensor geometry array into map geometry.

        :param data:            3D numpy array (representing sensor geometry) to be warped to map geometry
        :param tgt_prj:         target projection (WKT or 'epsg:1234' or <EPSG_int>)
        :param tgt_extent:      extent coordinates of output map geometry array (LL_x, LL_y, UR_x, UR_y) in the tgt_prj
        :param tgt_res:         target X/Y resolution (e.g., (30, 30))
        """
        if data.ndim != 3:
            raise ValueError(data.ndim, "'data' must have 3 dimensions.")

        if data.shape != self.lons.shape:
            raise ValueError(data.shape, 'Expected a sensor geometry data array with %d rows, %d columns and %d bands.'
                             % self.lons.shape)

        # get common target extent
        tgt_epsg = WKT2EPSG(proj4_to_WKT(get_proj4info(proj=tgt_prj)))
        tgt_extent = tgt_extent or self._get_common_target_extent(tgt_epsg)

897
898
899
900
        init_opts = self.opts.copy()
        if self.mp_alg == 'bands':
            del init_opts['nprocs']  # avoid sub-multiprocessing

901
902
903
904
905
        args = [dict(
            lons_2D=self.lons[:, :, band],
            lats_2D=self.lats[:, :, band],
            resamp_alg=self.resamp_alg,
            radius_of_influence=self.radius_of_influence,
906
            init_opts=init_opts,
907
908
909
910
911
912
913
            data_sensor_geo_2D=data[:, :, band],
            tgt_prj=tgt_prj,
            tgt_extent=tgt_extent,
            tgt_res=tgt_res,
            band_idx=band
        ) for band in range(data.shape[2])]

914
915
        if self.mp_alg == 'bands':
            with multiprocessing.Pool(self.opts['nprocs']) as pool:
916
917
918
                result = pool.map(self._to_map_geometry_2D, args)
        else:
            result = [self._to_map_geometry_2D(argsdict) for argsdict in args]
919
920

        band_inds = list(np.array(result)[:, -1])
921
        data_mapgeo = np.dstack([result[band_inds.index(i)][0] for i in range(data.shape[2])])
922
        out_gt = result[0][1]
923
        out_prj = result[0][2]
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

        return data_mapgeo, out_gt, out_prj  # type: Tuple[np.ndarray, tuple, str]

    @staticmethod
    def _to_sensor_geometry_2D(kwargs_dict):
        # type: (dict) -> (np.ndarray, int)
        SMGT2D = SensorMapGeometryTransformer(lons=kwargs_dict['lons_2D'],
                                              lats=kwargs_dict['lats_2D'],
                                              resamp_alg=kwargs_dict['resamp_alg'],
                                              radius_of_influence=kwargs_dict['radius_of_influence'],
                                              **kwargs_dict['init_opts'])
        data_sensorgeo = SMGT2D.to_sensor_geometry(data=kwargs_dict['data_map_geo_2D'],
                                                   src_prj=kwargs_dict['src_prj'],
                                                   src_extent=kwargs_dict['src_extent'])

        return data_sensorgeo, kwargs_dict['band_idx']

    def to_sensor_geometry(self, data, src_prj, src_extent):
        # type: (np.ndarray, Union[str, int], List[float, float, float, float]) -> np.ndarray
        """Transform the input map geometry array into sensor geometry

        :param data:        3D numpy array (representing map geometry) to be warped to sensor geometry
        :param src_prj:     projection of the input map geometry array (WKT or 'epsg:1234' or <EPSG_int>)
        :param src_extent:  extent coordinates of input map geometry array (LL_x, LL_y, UR_x, UR_y) in the src_prj
        """
        if data.ndim != 3:
            raise ValueError(data.ndim, "'data' must have 3 dimensions.")

952
953
954
955
        init_opts = self.opts.copy()
        if self.mp_alg == 'bands':
            del init_opts['nprocs']  # avoid sub-multiprocessing

956
957
958
959
960
        args = [dict(
            lons_2D=self.lons[:, :, band],
            lats_2D=self.lats[:, :, band],
            resamp_alg=self.resamp_alg,
            radius_of_influence=self.radius_of_influence,
961
            init_opts=init_opts,
962
963
964
965
966
967
            data_map_geo_2D=data[:, :, band],
            src_prj=src_prj,
            src_extent=src_extent,
            band_idx=band
        ) for band in range(data.shape[2])]

968
969
        if self.mp_alg == 'bands':
            with multiprocessing.Pool(self.opts['nprocs']) as pool:
970
971
972
                result = pool.map(self._to_sensor_geometry_2D, args)
        else:
            result = [self._to_sensor_geometry_2D(argsdict) for argsdict in args]
973
974

        band_inds = list(np.array(result)[:, -1])
975
        data_sensorgeo = np.dstack([result[band_inds.index(i)][0] for i in range(data.shape[2])])
976
977

        return data_sensorgeo