CoReg.py 75.7 KB
Newer Older
1
2
3
4
5
# -*- coding: utf-8 -*-

import os
import time
import warnings
6
from copy import copy
7
from typing import Iterable
8
9

# custom
10
11
12
13
try:
    import gdal
except ImportError:
    from osgeo import gdal
14
import numpy as np
15

16
17
18
try:
    import pyfftw
except ImportError:
19
    pyfftw = None
20
from shapely.geometry import Point, Polygon
21
from skimage.exposure import rescale_intensity
22
23

# internal modules
24
from .DeShifter import DESHIFTER, _dict_rspAlg_rsp_Int
25
26
from . import geometry as GEO
from . import plotting as PLT
27

28
from geoarray import GeoArray
29
from py_tools_ds.convenience.object_oriented import alias_property
30
from py_tools_ds.geo.coord_calc import get_corner_coordinates
31
32
33
34
from py_tools_ds.geo.vector.topology import get_overlap_polygon, get_smallest_boxImYX_that_contains_boxMapYX
from py_tools_ds.geo.projection import prj_equal, get_proj4info
from py_tools_ds.geo.vector.geometry import boxObj, round_shapelyPoly_coords
from py_tools_ds.geo.coord_grid import move_shapelyPoly_to_image_grid
35
from py_tools_ds.geo.coord_trafo import reproject_shapelyGeometry, mapXY2imXY, imXY2mapXY
36
37
38
from py_tools_ds.geo.raster.reproject import warp_ndarray
from py_tools_ds.geo.map_info import geotransform2mapinfo
from py_tools_ds.similarity.raster import calc_ssim
39
from py_tools_ds.io.vector.writer import write_shp
40

41
__author__ = 'Daniel Scheffler'
42
43


44
class GeoArray_CoReg(GeoArray):
45
    def __init__(self, CoReg_params, imID):
46
47
        # type: (dict, str) -> None

48
        assert imID in ['ref', 'shift']
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
49

50
51
        # run GeoArray init
        path_or_geoArr = CoReg_params['im_ref'] if imID == 'ref' else CoReg_params['im_tgt']
52
53
54
        nodata = CoReg_params['nodata'][0 if imID == 'ref' else 1]
        progress = CoReg_params['progress']
        q = CoReg_params['q'] if not CoReg_params['v'] else False
55

56
        super(GeoArray_CoReg, self).__init__(path_or_geoArr, nodata=nodata, progress=progress, q=q)
57

58
        self.imID = imID
59
        self.imName = 'reference image' if imID == 'ref' else 'image to be shifted'
60
        self.v = CoReg_params['v']
61
62

        assert isinstance(self, GeoArray), \
63
            'Something went wrong with the creation of GeoArray instance for the %s. The created ' \
64
            'instance does not seem to belong to the GeoArray class. If you are working in Jupyter Notebook, reset ' \
65
            'the kernel and try again.' % self.imName
66

67
        # set title to be used in plots
68
        self.title = os.path.basename(self.filePath) if self.filePath else self.imName
69
70

        # validate params
71
72
        # assert self.prj, 'The %s has no projection.' % self.imName # TODO
        # assert not re.search('LOCAL_CS', self.prj), 'The %s is not georeferenced.' % self.imName # TODO
73
74
75
        assert self.gt, 'The %s has no map information.' % self.imName

        # set band4match
76
77
78
79
80
        self.band4match = (CoReg_params['r_b4match'] if imID == 'ref' else CoReg_params['s_b4match']) - 1
        assert self.bands >= self.band4match + 1 >= 1, \
            "The %s has %s %s. So its band number to match must be %s%s. Got %s." \
            % (self.imName, self.bands, 'bands' if self.bands > 1 else
               'band', 'between 1 and ' if self.bands > 1 else '', self.bands, self.band4match)
81

82
83
        # set footprint_poly
        given_footprint_poly = CoReg_params['footprint_poly_%s' % ('ref' if imID == 'ref' else 'tgt')]
84
        given_corner_coord = CoReg_params['data_corners_%s' % ('ref' if imID == 'ref' else 'tgt')]
85
86

        if given_footprint_poly:
87
            self.footprint_poly = given_footprint_poly
88
        elif given_corner_coord is not None:
89
            self.footprint_poly = Polygon(given_corner_coord)
90
91
        elif not CoReg_params['calc_corners']:
            # use the image extent
92
            self.footprint_poly = Polygon(get_corner_coordinates(gt=self.gt, cols=self.cols, rows=self.rows))
93
        else:
94
95
96
            # footprint_poly is calculated automatically by GeoArray
            if not CoReg_params['q']:
                print('Calculating actual data corner coordinates for %s...' % self.imName)
97
            self.calc_mask_nodata(fromBand=self.band4match)  # this avoids that all bands have to be read
98

99
100
101
102
        # validate footprint poly
        if not self.footprint_poly.is_valid:
            self.footprint_poly = self.footprint_poly.buffer(0)

103
        if not self.q:
Daniel Scheffler's avatar
Daniel Scheffler committed
104
            print('Bounding box of calculated footprint for %s:\n\t%s' % (self.imName, self.footprint_poly.bounds))
105

106
107
108
        # add bad data mask
        given_mask = CoReg_params['mask_baddata_%s' % ('ref' if imID == 'ref' else 'tgt')]
        if given_mask:
109
            self.mask_baddata = given_mask  # runs GeoArray.mask_baddata.setter -> sets it to BadDataMask()
Daniel Scheffler's avatar
Daniel Scheffler committed
110

111
    poly = alias_property('footprint_poly')  # ensures that self.poly is updated if self.footprint_poly is updated
Daniel Scheffler's avatar
Daniel Scheffler committed
112
113


114
class COREG(object):
115
116
    """See help(COREG) for documentation!"""

117
    def __init__(self, im_ref, im_tgt, path_out=None, fmt_out='ENVI', out_crea_options=None, r_b4match=1, s_b4match=1,
118
                 wp=(None, None), ws=(256, 256), max_iter=5, max_shift=5, align_grids=False, match_gsd=False,
119
120
                 out_gsd=None, target_xyGrid=None, resamp_alg_deshift='cubic', resamp_alg_calc='cubic',
                 footprint_poly_ref=None, footprint_poly_tgt=None, data_corners_ref=None, data_corners_tgt=None,
121
                 nodata=(None, None), calc_corners=True, binary_ws=True, mask_baddata_ref=None, mask_baddata_tgt=None,
Daniel Scheffler's avatar
Daniel Scheffler committed
122
                 CPUs=None, force_quadratic_win=True, progress=True, v=False, path_verbose_out=None, q=False,
123
                 ignore_errors=False):
124
125
126
127

        """Detects and corrects global X/Y shifts between a target and refernce image. Geometric shifts are calculated
        at a specific (adjustable) image position. Correction performs a global shifting in X- or Y direction.

128
129
130
131
        :param im_ref(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of reference image
        :param im_tgt(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of image to be shifted
132
        :param path_out(str):           target path of the coregistered image
133
134
135
                                            - if None (default), the method correct_shifts() does not write to disk
                                            - if 'auto': /dir/of/im1/<im1>__shifted_to__<im0>.bsq
        :param fmt_out(str):            raster file format for output file. ignored if path_out is None. can be any GDAL
136
137
                                        compatible raster file format (e.g. 'ENVI', 'GeoTIFF'; default: ENVI). Refer to
                                        http://www.gdal.org/formats_list.html to get a full list of supported formats.
138
139
        :param out_crea_options(list):  GDAL creation options for the output image,
                                        e.g. ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
140
141
142
143
        :param r_b4match(int):          band of reference image to be used for matching (starts with 1; default: 1)
        :param s_b4match(int):          band of shift image to be used for matching (starts with 1; default: 1)
        :param wp(tuple):               custom matching window position as map values in the same projection like the
                                        reference image (default: central position of image overlap)
Daniel Scheffler's avatar
Daniel Scheffler committed
144
        :param ws(tuple):               custom matching window size [pixels] (default: (256,256))
145
146
        :param max_iter(int):           maximum number of iterations for matching (default: 5)
        :param max_shift(int):          maximum shift distance in reference image pixel units (default: 5 px)
147
148
        :param align_grids(bool):       align the coordinate grids of the image to be and the reference image
                                        (default: 0)
149
150
151
        :param match_gsd(bool):         match the output pixel size to pixel size of the reference image (default: 0)
        :param out_gsd(tuple):          xgsd ygsd: set the output pixel size in map units
                                        (default: original pixel size of the image to be shifted)
152
153
        :param target_xyGrid(list):     a list with a target x-grid and a target y-grid like [[15,45], [15,45]]
                                        This overrides 'out_gsd', 'align_grids' and 'match_gsd'.
154
        :param resamp_alg_deshift(str)  the resampling algorithm to be used for shift correction (if neccessary)
155
156
                                        valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                          mode, max, min, med, q1, q3
157
158
159
                                        default: cubic
        :param resamp_alg_calc(str)     the resampling algorithm to be used for all warping processes during calculation
                                        of spatial shifts
160
161
                                        (valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                           mode, max, min, med, q1, q3)
162
                                        default: cubic (highly recommended)
163
164
        :param footprint_poly_ref(str): footprint polygon of the reference image (WKT string or
                                        shapely.geometry.Polygon),
165
166
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
167
168
        :param footprint_poly_tgt(str): footprint polygon of the image to be shifted (WKT string or
                                        shapely.geometry.Polygon)
169
170
171
172
173
174
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param data_corners_ref(list):  map coordinates of data corners within reference image.
                                        ignored if footprint_poly_ref is given.
        :param data_corners_tgt(list):  map coordinates of data corners within image to be shifted.
                                        ignored if footprint_poly_tgt is given.
175
176
177
178
179
        :param nodata(tuple):           no data values for reference image and image to be shifted
        :param calc_corners(bool):      calculate true positions of the dataset corners in order to get a useful
                                        matching window position within the actual image overlap
                                        (default: 1; deactivated if '-cor0' and '-cor1' are given
        :param binary_ws(bool):         use binary X/Y dimensions for the matching window (default: 1)
180
181
182
183
184
185
186
187
188
189
190
191
        :param mask_baddata_ref(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                reference image where all bad data pixels (e.g. clouds) are marked with
                                                True and the remaining pixels with False. Must have the same geographic
                                                extent and projection like 'im_ref'. The mask is used to check if the
                                                chosen matching window position is valid in the sense of useful data.
                                                Otherwise this window position is rejected.
        :param mask_baddata_tgt(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                image to be shifted where all bad data pixels (e.g. clouds) are marked
                                                with True and the remaining pixels with False. Must have the same
                                                geographic extent and projection like 'im_ref'. The mask is used to
                                                check if the chosen matching window position is valid in the sense of
                                                useful data. Otherwise this window position is rejected.
Daniel Scheffler's avatar
Daniel Scheffler committed
192
193
        :param CPUs(int):               number of CPUs to use during pixel grid equalization
                                        (default: None, which means 'all CPUs available')
194
        :param force_quadratic_win(bool):   force a quadratic matching window (default: 1)
195
        :param progress(bool):          show progress bars (default: True)
196
        :param v(bool):                 verbose mode (default: False)
197
198
        :param path_verbose_out(str):   an optional output directory for intermediate results
                                        (if not given, no intermediate results are written to disk)
199
200
        :param q(bool):                 quiet mode (default: False)
        :param ignore_errors(bool):     Useful for batch processing. (default: False)
201
202
203
204
                                        In case of error COREG.success == False and COREG.x_shift_px/COREG.y_shift_px
                                        is None
        """

205
        self.params = dict([x for x in locals().items() if x[0] != "self"])
206

207
        # assertions
208
        assert gdal.GetDriverByName(fmt_out), "'%s' is not a supported GDAL driver." % fmt_out
209
210
211
212
213
214
        if match_gsd and out_gsd:
            warnings.warn("'-out_gsd' is ignored because '-match_gsd' is set.\n")
        if out_gsd:
            assert isinstance(out_gsd, list) and len(out_gsd) == 2, 'out_gsd must be a list with two values.'
        if data_corners_ref and not isinstance(data_corners_ref[0],
                                               list):  # group if not [[x,y],[x,y]..] but [x,y,x,y,]
215
            data_corners_ref = [data_corners_ref[i:i + 2] for i in range(0, len(data_corners_ref), 2)]
216
        if data_corners_tgt and not isinstance(data_corners_tgt[0], list):  # group if not [[x,y],[x,y]..]
217
            data_corners_tgt = [data_corners_tgt[i:i + 2] for i in range(0, len(data_corners_tgt), 2)]
218
        if nodata:
219
220
            assert isinstance(nodata, Iterable) and len(nodata) == 2, \
                "'nodata' must be an iterable with two values. Got %s with length %s." % (type(nodata), len(nodata))
221
        for rspAlg in [resamp_alg_deshift, resamp_alg_calc]:
222
            assert rspAlg in _dict_rspAlg_rsp_Int.keys(), "'%s' is not a supported resampling algorithm." % rspAlg
223
        if resamp_alg_calc in ['average', 5] and (v or not q):
224
            warnings.warn("The resampling algorithm 'average' causes sinus-shaped patterns in fft images that will "
225
226
                          "affect the precision of the calculated spatial shifts! It is highly recommended to "
                          "choose another resampling algorithm.")
227

228
229
230
231
232
233
234
235
236
237
238
239
        self.path_out = path_out  # updated by self.set_outpathes
        self.fmt_out = fmt_out
        self.out_creaOpt = out_crea_options
        self.win_pos_XY = wp  # updated by self.get_opt_winpos_winsize()
        self.win_size_XY = ws  # updated by self.get_opt_winpos_winsize()
        self.max_iter = max_iter
        self.max_shift = max_shift
        self.align_grids = align_grids
        self.match_gsd = match_gsd
        self.out_gsd = out_gsd
        self.target_xyGrid = target_xyGrid
        self.rspAlg_DS = resamp_alg_deshift \
240
            if isinstance(resamp_alg_deshift, str) else _dict_rspAlg_rsp_Int[resamp_alg_deshift]
241
        self.rspAlg_calc = resamp_alg_calc \
242
            if isinstance(resamp_alg_calc, str) else _dict_rspAlg_rsp_Int[resamp_alg_calc]
243
244
245
        self.calc_corners = calc_corners
        self.CPUs = CPUs
        self.bin_ws = binary_ws
246
        self.force_quadratic_win = force_quadratic_win
247
248
249
250
251
252
253
        self.v = v
        self.path_verbose_out = path_verbose_out
        self.q = q if not v else False  # overridden by v
        self.progress = progress if not q else False  # overridden by q

        self.ignErr = ignore_errors
        self.max_win_sz_changes = 3  # TODO: änderung der window size, falls nach max_iter kein valider match gefunden
254
255
256
257
258
259
        self.ref = None  # type: GeoArray_CoReg # set by self.get_image_params
        self.shift = None  # type: GeoArray_CoReg # set by self.get_image_params
        self.matchBox = None  # type: boxObj # set by self.get_clip_window_properties()
        self.otherBox = None  # type: boxObj # set by self.get_clip_window_properties()
        self.matchWin = None  # type: GeoArray # set by self._get_image_windows_to_match()
        self.otherWin = None  # type: GeoArray # set by self._get_image_windows_to_match()
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        self.overlap_poly = None  # set by self._get_overlap_properties()
        self.overlap_percentage = None  # set by self._get_overlap_properties()
        self.overlap_area = None  # set by self._get_overlap_properties()
        self.imfft_gsd = None  # set by self.get_clip_window_properties()
        self.fftw_works = None  # set by self._calc_shifted_cross_power_spectrum()
        self.fftw_win_size_YX = None  # set by calc_shifted_cross_power_spectrum()

        self.x_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.y_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.x_shift_map = None  # set by self.get_updated_map_info()
        self.y_shift_map = None  # set by self.get_updated_map_info()
        self.vec_length_map = None
        self.vec_angle_deg = None
        self.updated_map_info = None  # set by self.get_updated_map_info()
        self.ssim_orig = None  # set by self._validate_ssim_improvement()
        self.ssim_deshifted = None  # set by self._validate_ssim_improvement()
        self._ssim_improved = None  # private attribute to be filled by self.ssim_improved
        self.shift_reliability = None  # set by self.calculate_spatial_shifts()

        self.tracked_errors = []  # expanded each time an error occurs
        self.success = None  # default
        self.deshift_results = None  # set by self.correct_shifts()
282
283
284
285

        gdal.AllRegister()
        self._get_image_params()
        self._set_outpathes(im_ref, im_tgt)
286
        self.grid2use = 'ref' if self.shift.xgsd <= self.ref.xgsd else 'shift'
287
288
        if self.v:
            print('resolutions: ', self.ref.xgsd, self.shift.xgsd)
289

290
        self._get_overlap_properties()
291
292

        if self.v and self.path_verbose_out:
293
294
295
            write_shp(os.path.join(self.path_verbose_out, 'poly_imref.shp'), self.ref.poly, self.ref.prj)
            write_shp(os.path.join(self.path_verbose_out, 'poly_im2shift.shp'), self.shift.poly, self.shift.prj)
            write_shp(os.path.join(self.path_verbose_out, 'overlap_poly.shp'), self.overlap_poly, self.ref.prj)
296

297
298
        # FIXME: transform_mapPt1_to_mapPt2(im2shift_center_map, ds_imref.GetProjection(), ds_im2shift.GetProjection())
        # FIXME später basteln für den fall, dass projektionen nicht gleich sind
299
300
301

        # get_clip_window_properties
        self._get_opt_winpos_winsize()
302
303
304
        if not self.q:
            print('Matching window position (X,Y): %s/%s' % (self.win_pos_XY[0], self.win_pos_XY[1]))
        self._get_clip_window_properties()  # sets self.matchBox, self.otherBox and much more
305

306
        if self.v and self.path_verbose_out and self.matchBox.mapPoly and self.success is not False:
307
308
            write_shp(os.path.join(self.path_verbose_out, 'poly_matchWin.shp'),
                      self.matchBox.mapPoly, self.matchBox.prj)
309

310
311
        self.success = False if self.success is False or not self.matchBox.boxMapYX else None
        self._coreg_info = None  # private attribute to be filled by self.coreg_info property
312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    def _handle_error(self, error, warn=False, warnMsg=None):
        """Appends the given error to self.tracked_errors, sets self.success to False and raises the error in case
        self.ignore_errors = True.

        :param error:   instance of an error
        :param warn:    whether to give a warning in case error would be ignored otherwise
        :param warnMsg: a custom message for the warning
        :return:
        """

        warn = warn or warnMsg is not None or self.v

        self.tracked_errors.append(error)
        self.success = False

        if self.ignErr and warn:
            warnMsg = repr(error) if not warnMsg else warnMsg
330
            print('\nWARNING: ' + warnMsg)
331
332
333
334

        if not self.ignErr:
            raise error

335
    def _set_outpathes(self, im_ref, im_tgt):
336
        assert isinstance(im_ref, (GeoArray, str)) and isinstance(im_tgt, (GeoArray, str)), \
337
            'COREG._set_outpathes() expects two file pathes (string) or two instances of the ' \
338
            'GeoArray class. Received %s and %s.' % (type(im_ref), type(im_tgt))
339

340
        def get_baseN(path): return os.path.splitext(os.path.basename(path))[0]
341
342
343
344
345

        # get input pathes
        path_im_ref = im_ref.filePath if isinstance(im_ref, GeoArray) else im_ref
        path_im_tgt = im_tgt.filePath if isinstance(im_tgt, GeoArray) else im_tgt

346
        if self.path_out:  # this also applies to self.path_out='auto'
347
348
349
350

            if self.path_out == 'auto':
                dir_out, fName_out = os.path.dirname(path_im_tgt), ''
            else:
351
                dir_out, fName_out = os.path.split(self.path_out)
352
353
354
355
356
357
358
359
360
361
362
363
364
365

            if dir_out and fName_out:
                # a valid output path is given => do nothing
                pass

            else:
                # automatically create an output directory and filename if not given
                if not dir_out:
                    if not path_im_ref:
                        dir_out = os.path.abspath(os.path.curdir)
                    else:
                        dir_out = os.path.dirname(path_im_ref)

                if not fName_out:
366
367
368
369
370
                    ext = 'bsq' if self.fmt_out == 'ENVI' else \
                        gdal.GetDriverByName(self.fmt_out).GetMetadataItem(gdal.DMD_EXTENSION)
                    fName_out = fName_out if fName_out not in ['.', ''] else \
                        '%s__shifted_to__%s' % (get_baseN(path_im_tgt), get_baseN(path_im_ref))
                    fName_out = fName_out + '.%s' % ext if ext else fName_out
371

372
                self.path_out = os.path.abspath(os.path.join(dir_out, fName_out))
373
374
375
376

                assert ' ' not in self.path_out, \
                    "The path of the output image contains whitespaces. This is not supported by GDAL."
        else:
377
            # this only happens if COREG is not instanced from within Python and self.path_out is explicitly set to None
378
379
380
381
382
383
384
385
386
387
388
            # => DESHIFTER will return an array
            pass

        if self.v:
            if self.path_verbose_out:
                dir_out, dirname_out = os.path.split(self.path_verbose_out)

                if not dir_out:
                    if self.path_out:
                        self.path_verbose_out = os.path.dirname(self.path_out)
                    else:
389
390
391
                        self.path_verbose_out = \
                            os.path.abspath(os.path.join(os.path.curdir, 'CoReg_verboseOut__%s__shifted_to__%s'
                                                         % (get_baseN(path_im_tgt), get_baseN(path_im_ref))))
392
393
394
395
396
397
398
399
400
                elif dirname_out and not dir_out:
                    self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir, dirname_out))

                assert ' ' not in self.path_verbose_out, \
                    "'path_verbose_out' contains whitespaces. This is not supported by GDAL."

        else:
            self.path_verbose_out = None

401
402
        if self.path_verbose_out and not os.path.isdir(self.path_verbose_out):
            os.makedirs(self.path_verbose_out)
403
404

    def _get_image_params(self):
405
406
        self.ref = GeoArray_CoReg(self.params, 'ref')
        self.shift = GeoArray_CoReg(self.params, 'shift')
407
        assert prj_equal(self.ref.prj, self.shift.prj), \
408
409
            'Input projections are not equal. Different projections are currently not supported. Got %s / %s.' \
            % (get_proj4info(proj=self.ref.prj), get_proj4info(proj=self.shift.prj))
410

411
    def _get_overlap_properties(self):
412
413
414
415
        overlap_tmp = get_overlap_polygon(self.ref.poly, self.shift.poly, self.v)
        self.overlap_poly = overlap_tmp['overlap poly']  # has to be in reference projection
        self.overlap_percentage = overlap_tmp['overlap percentage']
        self.overlap_area = overlap_tmp['overlap area']
416
417
418
419

        assert self.overlap_poly, 'The input images have no spatial overlap.'

        # overlap are must at least cover 16*16 pixels
420
421
422
423
        px_area = self.ref.xgsd * self.ref.ygsd if self.grid2use == 'ref' else self.shift.xgsd * self.shift.ygsd
        px_covered = self.overlap_area / px_area
        assert px_covered > 16 * 16, \
            'Overlap area covers only %s pixels. At least 16*16 pixels are needed.' % px_covered
424

425
426
427
428
    def equalize_pixGrids(self):
        """
        Equalize image grids and projections of reference and target image (align target to reference).
        """
429
430
431
        if not (prj_equal(self.ref.prj, self.shift.prj) and self.ref.xygrid_specs == self.shift.xygrid_specs):
            if not self.q:
                print("Equalizing pixel grids and projections of reference and target image...")
Daniel Scheffler's avatar
Daniel Scheffler committed
432

433
            if self.grid2use == 'ref':
434
                # resample target image to refernce image
435
                self.shift.arr = self.shift[:, :, self.shift.band4match]  # resample the needed band only
436
                self.shift.reproject_to_new_grid(prototype=self.ref, CPUs=self.CPUs)
437
                self.shift.band4match = 0  # after resampling there is only one band in the GeoArray
438
439
440
            else:
                # resample reference image to target image
                # FIXME in case of different projections this will change the projection of the reference image!
441
                self.ref.arr = self.ref[:, :, self.ref.band4match]  # resample the needed band only
442
                self.ref.reproject_to_new_grid(prototype=self.shift, CPUs=self.CPUs)
Daniel Scheffler's avatar
Daniel Scheffler committed
443
                self.ref.band4match = 0  # after resampling there is only one band in the GeoArray
444

445
446
447
448
449
450
451
    def show_image_footprints(self):
        """This method is intended to be called from Jupyter Notebook and shows a web map containing the calculated
        footprints of the input images as well as the corresponding overlap area."""
        # TODO different colors for polygons
        assert self.overlap_poly, 'Please calculate the overlap polygon first.'

        try:
452
453
            import folium
            import geojson
454
        except ImportError:
455
456
            folium, geojson = None, None
        if not folium or not geojson:
457
458
459
            raise ImportError("This method requires the libraries 'folium' and 'geojson'. They can be installed with "
                              "the shell command 'pip install folium geojson'.")

460
461
462
        refPoly = reproject_shapelyGeometry(self.ref.poly, self.ref.epsg, 4326)
        shiftPoly = reproject_shapelyGeometry(self.shift.poly, self.shift.epsg, 4326)
        overlapPoly = reproject_shapelyGeometry(self.overlap_poly, self.shift.epsg, 4326)
463
        matchBoxPoly = reproject_shapelyGeometry(self.matchBox.mapPoly, self.shift.epsg, 4326)
464
465

        m = folium.Map(location=tuple(np.array(overlapPoly.centroid.coords.xy).flatten())[::-1])
466
        for poly in [refPoly, shiftPoly, overlapPoly, matchBoxPoly]:
467
468
469
470
            gjs = geojson.Feature(geometry=poly, properties={})
            folium.GeoJson(gjs).add_to(m)
        return m

471
    def show_matchWin(self, figsize=(15, 15), interactive=True, after_correction=None, pmin=2, pmax=98):
472
        """Show the image content within the matching window.
473

474
475
        :param figsize:             <tuple> figure size
        :param interactive:         <bool> whether to return an interactive figure based on 'holoviews' library
476
477
478
479
480
        :param after_correction:    True/False: show the image content AFTER shift correction or before
                                    None: show both states - before and after correction (default)
        :param pmin:                percentage to be used for excluding the darkest pixels from stretching (default: 2)
        :param pmax:                percentage to be used for excluding the brightest pixels from stretching
                                    (default: 98)
481
482
        :return:
        """
483
484
485
486
487
        if interactive:
            # use Holoviews
            try:
                import holoviews as hv
            except ImportError:
488
                hv = None
489
490
491
492
493
494
            if not hv:
                raise ImportError(
                    "This method requires the library 'holoviews'. It can be installed for Anaconda with "
                    "the shell command 'conda install -c ioam holoviews bokeh'.")
            warnings.filterwarnings('ignore')
            hv.notebook_extension('matplotlib')
495
496
497
498
499
500
501
502
503
504
            hv.Store.add_style_opts(hv.Image, ['vmin', 'vmax'])

            # hv.Store.option_setters.options().Image = hv.Options('style', cmap='gnuplot2')
            # hv.Store.add_style_opts(hv.Image, ['cmap'])
            # renderer = hv.Store.renderers['matplotlib'].instance(fig='svg', holomap='gif')
            # RasterPlot = renderer.plotting_class(hv.Image)
            # RasterPlot.cmap = 'gray'
            otherWin_corr = self._get_deshifted_otherWin()
            xmin, xmax, ymin, ymax = self.matchBox.boundsMap

505
            def get_hv_image(geoArr):
506
507
508
509
510
511
                arr_masked = np.ma.masked_equal(geoArr[:], geoArr.nodata)
                vmin = np.nanpercentile(arr_masked.compressed(), pmin)
                vmax = np.nanpercentile(arr_masked.compressed(), pmax)
                arr2plot = rescale_intensity(arr_masked, in_range=(vmin, vmax), out_range='int8')

                return hv.Image(arr2plot, bounds=(xmin, ymin, xmax, ymax))(
512
                    style={'cmap': 'gray',
513
                           'vmin': vmin, 'vmax': vmax,
514
515
516
                           'interpolation': 'none'},
                    plot={'fig_inches': figsize, 'show_grid': True})
                #     plot={'fig_size':100, 'show_grid':True})
517

518
519
520
            hvIm_matchWin = get_hv_image(self.matchWin)
            hvIm_otherWin_orig = get_hv_image(self.otherWin)
            hvIm_otherWin_corr = get_hv_image(otherWin_corr)
521

522
523
524
            if after_correction is None:
                # view both states
                print('Matching window before and after correction (above and below): ')
525

526
527
528
                # get layouts (docs on options: http://build.holoviews.org/Tutorials/Options.html)
                layout_before = (hvIm_matchWin + hvIm_matchWin)(plot=dict(fig_inches=figsize))
                layout_after = (hvIm_otherWin_orig + hvIm_otherWin_corr)(plot=dict(fig_inches=figsize))
529

530
531
532
533
534
535
536
537
538
539
                # plot!
                imgs = {1: layout_before, 2: layout_after}
                hmap = hv.HoloMap(imgs, kdims=['image']).collate().cols(1)

            else:
                # view state before or after correction
                imgs = {1: hvIm_matchWin, 2: hvIm_otherWin_corr if after_correction else hvIm_otherWin_orig}
                hmap = hv.HoloMap(imgs, kdims=['image'])

            # Construct a HoloMap by evaluating the function over all the keys
540
            # hmap = hv.HoloMap(imgs_corr, kdims=['image']) +  hv.HoloMap(imgs_corr, kdims=['image'])
541

542
543
            # Construct a HoloMap by defining the sampling on the Dimension
            # dmap = hv.DynamicMap(image_slice, kdims=[hv.Dimension('z_axis', values=keys)])
544
545
            warnings.filterwarnings('default')

546
            return hmap
547

548
549
550
        else:
            # TODO add titles
            self.matchWin.show(figsize=figsize)
551
            if after_correction:
552
                self._get_deshifted_otherWin().show(figsize=figsize, pmin=pmin, pmax=pmax)
553
            else:
554
                self.otherWin.show(figsize=figsize, pmin=pmin, pmax=pmax)
555
556
557
558
559
560
561
562
563
564
565
566
567

    def show_cross_power_spectrum(self, interactive=False):
        """
        Shows a 3D surface of the cross power spectrum resulting from phase correlating the reference and target
        image within the matching window.

        :param interactive:  whether to return an interactice 3D surface plot based on 'plotly' library
        :return:
        """

        if interactive:
            # create plotly 3D surface

568
            # import plotly.plotly as py # online mode -> every plot is uploaded into online plotly account
569
570
571
572
573
574
            from plotly.offline import iplot, init_notebook_mode
            import plotly.graph_objs as go

            init_notebook_mode(connected=True)

            z_data = self._calc_shifted_cross_power_spectrum()
575
            data = [go.Surface(z=z_data)]
576
577
578
579
580
            layout = go.Layout(
                title='cross power spectrum',
                autosize=False,
                width=1000,
                height=1000,
581
                margin={'l': 65, 'r': 50, 'b': 65, 't': 90})
582
            fig = go.Figure(data=data, layout=layout)
583
584
585
586
587
588
589
590

            return iplot(fig, filename='SCPS')

        else:
            # use matplotlib
            scps = self._calc_shifted_cross_power_spectrum()
            PLT.subplot_3dsurface(scps.astype(np.float32))

591
    def _get_opt_winpos_winsize(self):
592
        # type: (tuple,tuple) -> None
593
594
595
596
        """
        Calculates optimal window position and size in reference image units according to DGM, cloud_mask and
        trueCornerLonLat.
        """
597
598
599
600
        # dummy algorithm: get center position of overlap instead of searching ideal window position in whole overlap
        # TODO automatischer Algorithmus zur Bestimmung der optimalen Window Position

        wp = tuple(self.win_pos_XY)
601
602
        assert type(self.win_pos_XY) in [tuple, list, np.ndarray], \
            'The window position must be a tuple of two elements. Got %s with %s elements.' % (type(wp), len(wp))
603
604
605
        wp = tuple(wp)

        if None in wp:
606
            # use centroid point if possible
607
608
609
            overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.centroid.coords.xy
            wp = (wp[0] if wp[0] else overlap_center_pos_x[0]), (wp[1] if wp[1] else overlap_center_pos_y[0])

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
            # validate window position
            if not self.overlap_poly.contains(Point(wp)):
                # in case the centroid point is not within overlap area
                if not self.q:
                    warnings.warn("The centroid point of the two input images could not be used as matching window "
                                  "position since it is outside of the overlap area. Instead the so called "
                                  "'representative point' is used. Alternatively you can provide your own window "
                                  "position as input parameter.")

                # -> use representative point: a point that is garanteed to be within overlap polygon
                overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.representative_point().coords.xy
                wp = overlap_center_pos_x[0], overlap_center_pos_y[0]

            assert self.overlap_poly.contains(Point(wp))

        else:
            # validate window position
            if not self.overlap_poly.contains(Point(wp)):
628
                self._handle_error(ValueError('The provided window position %s/%s is outside of the overlap '
629
                                              'area of the two input images. Check the coordinates.' % wp))
630
631
632
633
634
635

        # check if window position is within bad data area if a respective mask has been provided
        for im in [self.ref, self.shift]:
            if im.mask_baddata is not None:
                imX, imY = mapXY2imXY(wp, im.mask_baddata.gt)

636
                if im.mask_baddata[int(imY), int(imX)] is True:
637
                    self._handle_error(
638
                        RuntimeError('According to the provided bad data mask for the %s the chosen window position '
639
640
641
                                     '%s / %s is within a bad data area. Using this window position for coregistration '
                                     'is not reasonable. Please provide a better window position!'
                                     % (im.imName, wp[0], wp[1])))
642

643
644
        self.win_pos_XY = wp
        self.win_size_XY = (int(self.win_size_XY[0]), int(self.win_size_XY[1])) if self.win_size_XY else (512, 512)
645
646
647
648
649
650
651
652

    def _get_clip_window_properties(self):
        """Calculate all properties of the matching window and the other window. These windows are used to read the
        corresponding image positions in the reference and the target image.
        hint: Even if X- and Y-dimension of the target window is equal, the output window can be NOT quadratic!
        """
        # FIXME image sizes like 10000*256 are still possible

653
654
655
656
657
658
659
660
661
        wpX, wpY = self.win_pos_XY
        wsX, wsY = self.win_size_XY
        ref_wsX, ref_wsY = (wsX * self.ref.xgsd, wsY * self.ref.ygsd)  # image units -> map units
        shift_wsX, shift_wsY = (wsX * self.shift.xgsd, wsY * self.shift.ygsd)  # image units -> map units
        ref_box_kwargs = {'wp': (wpX, wpY), 'ws': (ref_wsX, ref_wsY), 'gt': self.ref.gt}
        shift_box_kwargs = {'wp': (wpX, wpY), 'ws': (shift_wsX, shift_wsY), 'gt': self.shift.gt}
        matchBox = boxObj(**ref_box_kwargs) if self.grid2use == 'ref' else boxObj(**shift_box_kwargs)
        otherBox = boxObj(**shift_box_kwargs) if self.grid2use == 'ref' else boxObj(**ref_box_kwargs)
        overlapWin = boxObj(mapPoly=self.overlap_poly, gt=self.ref.gt)
662
663

        # clip matching window to overlap area
664
665
        matchBox.mapPoly = matchBox.mapPoly.intersection(overlapWin.mapPoly)

666
        # check if matchBox extent touches no data area of the image -> if yes: shrink it
667
668
        overlapPoly_within_matchWin = matchBox.mapPoly.intersection(self.overlap_poly)
        if overlapPoly_within_matchWin.area < matchBox.mapPoly.area:
669
670
            wsX_start, wsY_start = 1 if wsX >= wsY else wsX / wsY, 1 if wsY >= wsX else wsY / wsX
            box = boxObj(**dict(wp=(wpX, wpY), ws=(wsX_start, wsY_start), gt=matchBox.gt))
671
            while True:
672
                box.buffer_imXY(1, 1)
673
674
675
676
                if not box.mapPoly.within(overlapPoly_within_matchWin):
                    box.buffer_imXY(-1, -1)
                    matchBox = box
                    break
677
678

        # move matching window to imref grid or im2shift grid
679
680
        mW_rows, mW_cols = (self.ref.rows, self.ref.cols) if self.grid2use == 'ref' else \
            (self.shift.rows, self.shift.cols)
681
        matchBox.mapPoly = move_shapelyPoly_to_image_grid(matchBox.mapPoly, matchBox.gt, mW_rows, mW_cols, 'NW')
682

683
684
        # check, ob durch Verschiebung auf Grid die matchBox außerhalb von overlap_poly geschoben wurde
        if not matchBox.mapPoly.within(overlapWin.mapPoly):
685
            # matchPoly weiter verkleinern # 1 px buffer reicht, weil window nur auf das Grid verschoben wurde
686
            xLarger, yLarger = matchBox.is_larger_DimXY(overlapWin.boundsIm)
687
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
688
689

        # matching_win direkt auf grid2use (Rundungsfehler bei Koordinatentrafo beseitigen)
690
        matchBox.imPoly = round_shapelyPoly_coords(matchBox.imPoly, precision=0, out_dtype=int)
691
692

        # Check, ob match Fenster größer als anderes Fenster
693
        if not (matchBox.mapPoly.within(otherBox.mapPoly) or matchBox.mapPoly == otherBox.mapPoly):
694
            # dann für anderes Fenster kleinstes Fenster finden, das match-Fenster umgibt
695
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX, otherBox.gt)
696
697

        # evtl. kann es sein, dass bei Shift-Fenster-Vergrößerung das shift-Fenster zu groß für den overlap wird
Daniel Scheffler's avatar
Daniel Scheffler committed
698
        t_start = time.time()
699
        while not otherBox.mapPoly.within(overlapWin.mapPoly):
Daniel Scheffler's avatar
Daniel Scheffler committed
700
            # -> match Fenster verkleinern und neues otherBox berechnen
701
702
            xLarger, yLarger = otherBox.is_larger_DimXY(overlapWin.boundsIm)
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
703
704
            previous_area = otherBox.mapPoly.area
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX, otherBox.gt)
705

706
            if previous_area == otherBox.mapPoly.area or time.time() - t_start > 1.5:
Daniel Scheffler's avatar
Daniel Scheffler committed
707
708
                # happens e.g in case of a triangular footprint
                # NOTE: first condition is not always fulfilled -> therefore added timeout of 1.5 sec
709
                self._handle_error(
710
711
                    RuntimeError('Matching window in target image is larger than overlap area but further shrinking '
                                 'the matching window is not possible. Check if the footprints of the input data have '
712
                                 'been computed correctly.' +
713
714
                                 (' Matching window shrinking timed out.' if time.time() - t_start > 5 else '')))
                break  # break out of while loop in order to avoid that code gets stuck here
715

Daniel Scheffler's avatar
Daniel Scheffler committed
716
717
718
719
720
721
722
        # output validation
        for winBox in [matchBox, otherBox]:
            if winBox.imDimsYX[0] < 16 or winBox.imDimsYX[1] < 16:
                self._handle_error(
                    RuntimeError("One of the input images does not have sufficient gray value information "
                                 "(non-no-data values) for placing a matching window at the position %s. "
                                 "Matching failed." % str((wpX, wpY))))
Daniel Scheffler's avatar
Daniel Scheffler committed
723

724
        if self.success is not False:
Daniel Scheffler's avatar
Daniel Scheffler committed
725
            # check result -> ProgrammingError if not fulfilled
726
            def within_equal(inner, outer): return inner.within(outer) or inner.equals(outer)
Daniel Scheffler's avatar
Daniel Scheffler committed
727
728
            assert within_equal(matchBox.mapPoly, otherBox.mapPoly)
            assert within_equal(otherBox.mapPoly, overlapWin.mapPoly)
729

730
731
732
733
734
735
            self.imfft_gsd = self.ref.xgsd if self.grid2use == 'ref' else self.shift.xgsd
            self.ref.win, self.shift.win = (matchBox, otherBox) if self.grid2use == 'ref' else (otherBox, matchBox)
            self.matchBox, self.otherBox = matchBox, otherBox
            self.ref.win.size_YX = tuple([int(i) for i in self.ref.win.imDimsYX])
            self.shift.win.size_YX = tuple([int(i) for i in self.shift.win.imDimsYX])
            match_win_size_XY = tuple(reversed([int(i) for i in matchBox.imDimsYX]))
736

737
738
            if not self.q and match_win_size_XY != self.win_size_XY:
                print('Target window size %s not possible due to too small overlap area or window position too close '
739
                      'to an image edge. New matching window size: %s.' % (self.win_size_XY, match_win_size_XY))
740

741
742
                # write_shp('/misc/hy5/scheffler/Temp/matchMapPoly.shp', matchBox.mapPoly,matchBox.prj)
                # write_shp('/misc/hy5/scheffler/Temp/otherMapPoly.shp', otherBox.mapPoly,otherBox.prj)
743
744
745
746
747
748

    def _get_image_windows_to_match(self):
        """Reads the matching window and the other window using subset read, and resamples the other window to the
        resolution and the pixel grid of the matching window. The result consists of two images with the same
        dimensions and exactly the same corner coordinates."""

749
750
        match_fullGeoArr = self.ref if self.grid2use == 'ref' else self.shift
        other_fullGeoArr = self.shift if self.grid2use == 'ref' else self.ref
751
752

        # matchWin per subset-read einlesen -> self.matchWin.data
753
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.matchBox.boxImYX)
754
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
755
            rE <= match_fullGeoArr.rows and cE <= match_fullGeoArr.cols, \
756
757
758
759
760
            'Requested area is not completely within the input array for %s.' % match_fullGeoArr.imName
        self.matchWin = GeoArray(match_fullGeoArr[rS:rE + 1, cS:cE + 1, match_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(match_fullGeoArr.gt, self.matchBox.boxImYX),
                                 projection=copy(match_fullGeoArr.prj),
                                 nodata=copy(match_fullGeoArr.nodata))
761
        self.matchWin.imID = match_fullGeoArr.imID
762
763

        # otherWin per subset-read einlesen
764
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.otherBox.boxImYX)
765
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
766
            rE <= other_fullGeoArr.rows and cE <= other_fullGeoArr.cols, \
767
768
769
770
771
            'Requested area is not completely within the input array for %s.' % other_fullGeoArr.imName
        self.otherWin = GeoArray(other_fullGeoArr[rS:rE + 1, cS:cE + 1, other_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(other_fullGeoArr.gt, self.otherBox.boxImYX),
                                 projection=copy(other_fullGeoArr.prj),
                                 nodata=copy(other_fullGeoArr.nodata))
772
        self.otherWin.imID = other_fullGeoArr.imID
773

774
775
        # self.matchWin.deepcopy_array()
        # self.otherWin.deepcopy_array()
776
777
778

        if self.v:
            print('Original matching windows:')
779
780
781
            ref_data, shift_data = (self.matchWin[:], self.otherWin[:]) if self.grid2use == 'ref' else \
                (self.otherWin[:], self.matchWin[:])
            PLT.subplot_imshow([ref_data, shift_data], [self.ref.title, self.shift.title], grid=True)
782

783
        # resample otherWin.arr to the resolution of matchWin AND make sure the pixel edges are identical
784
        # (in order to make each image show the same window with the same coordinates)
785
786
787
788
        # TODO replace cubic resampling by PSF resampling - average resampling leads to sinus like distortions in the
        # TODO fft image that make a precise coregistration impossible. Thats why there is currently no way around
        # TODO cubic resampling.
        tgt_xmin, tgt_xmax, tgt_ymin, tgt_ymax = self.matchBox.boundsMap
789
790

        # equalize pixel grids and projection of matchWin and otherWin (ONLY if grids are really different)
791
792
        if not (self.matchWin.xygrid_specs == self.otherWin.xygrid_specs and
                prj_equal(self.matchWin.prj, self.otherWin.prj)):
793
794
795
796
            self.otherWin.arr, self.otherWin.gt = warp_ndarray(self.otherWin.arr,
                                                               self.otherWin.gt,
                                                               self.otherWin.prj,
                                                               self.matchWin.prj,
797
798
799
800
801
802
                                                               out_gsd=(self.imfft_gsd, self.imfft_gsd),
                                                               out_bounds=([tgt_xmin, tgt_ymin, tgt_xmax, tgt_ymax]),
                                                               rspAlg=_dict_rspAlg_rsp_Int[self.rspAlg_calc],
                                                               in_nodata=self.otherWin.nodata,
                                                               CPUs=self.CPUs,
                                                               progress=False)[:2]
803
804

        if self.matchWin.shape != self.otherWin.shape:
805
806
807
            self._handle_error(
                RuntimeError('Catched a possible ProgrammingError at window position %s: Bad output of '
                             'get_image_windows_to_match. Reference image shape is %s whereas shift '
808
                             'image shape is %s.' % (str(self.matchBox.wp), self.matchWin.shape, self.otherWin.shape)),
809
810
                warn=True)

Daniel Scheffler's avatar
Daniel Scheffler committed
811
        # check of odd dimensions of output images
812
813
        rows, cols = [i if i % 2 == 0 else i - 1 for i in self.matchWin.shape]
        self.matchWin.arr, self.otherWin.arr = self.matchWin.arr[:rows, :cols], self.otherWin.arr[:rows, :cols]
Daniel Scheffler's avatar
Daniel Scheffler committed
814
        if self.matchWin.box.imDimsYX != self.matchBox.imDimsYX:
815
816
            self.matchBox = self.matchWin.box  # update matchBox
            self.otherBox = self.otherWin.box  # update otherBox
817

818
        assert self.matchWin.arr is not None and self.otherWin.arr is not None, 'Creation of matching windows failed.'
819
820
821

    @staticmethod
    def _shrink_winsize_to_binarySize(win_shape_YX, target_size=None):
822
        # type: (tuple, tuple, int , int) -> any
823
824
825
826
827
828
829
        """Shrinks a given window size to the closest binary window size (a power of 2) -
        separately for X- and Y-dimension.

        :param win_shape_YX:    <tuple> source window shape as pixel units (rows,colums)
        :param target_size:     <tuple> source window shape as pixel units (rows,colums)
        """

830
        binarySizes = [2 ** i for i in range(3, 14)]  # [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
831
832
833
        possibSizes_X = [i for i in binarySizes if i <= win_shape_YX[1]]
        possibSizes_Y = [i for i in binarySizes if i <= win_shape_YX[0]]
        if possibSizes_X and possibSizes_Y:
834
835
836
837
            tgt_size_X, tgt_size_Y = target_size if target_size else (max(possibSizes_X), max(possibSizes_Y))
            closest_to_target_X = int(min(possibSizes_X, key=lambda x: abs(x - tgt_size_X)))
            closest_to_target_Y = int(min(possibSizes_Y, key=lambda y: abs(y - tgt_size_Y)))
            return closest_to_target_Y, closest_to_target_X
838
839
840
841
842
843
        else:
            return None

    def _calc_shifted_cross_power_spectrum(self, im0=None, im1=None, precision=np.complex64):
        """Calculates shifted cross power spectrum for quantifying x/y-shifts.

844
845
846
847
        :param im0:         reference image
        :param im1:         subject image to shift
        :param precision:   to be quantified as a datatype
        :return:            2D-numpy-array of the shifted cross power spectrum
848
849
        """

850
851
        im0 = im0 if im0 is not None else self.matchWin[:] if self.matchWin.imID == 'ref' else self.otherWin[:]
        im1 = im1 if im1 is not None else self.otherWin[:] if self.otherWin.imID == 'shift' else self.matchWin[:]
852

853
        assert im0.shape == im1.shape, 'The reference and the target image must have the same dimensions.'
854
855
856
857
        if im0.shape[0] % 2 != 0:
            warnings.warn('Odd row count in one of the match images!')
        if im1.shape[1] % 2 != 0:
            warnings.warn('Odd column count in one of the match images!')
858

859
860
        wsYX = self._shrink_winsize_to_binarySize(im0.shape) if self.bin_ws else im0.shape
        wsYX = ((min(wsYX),) * 2 if self.force_quadratic_win else wsYX) if wsYX else None
861

862
        if wsYX not in [None, (0, 0)]:
863
            time0 = time.time()
864
865
866
867
868
            if self.v:
                print('final window size: %s/%s (X/Y)' % (wsYX[1], wsYX[0]))
                # FIXME size of self.matchWin is not updated
                # FIXME CoRegPoints_grid.WIN_SZ is taken from self.matchBox.imDimsYX but this is not updated

869
            center_YX = np.array(im0.shape) / 2
870
871
            xmin, xmax = int(center_YX[1] - wsYX[1] / 2), int(center_YX[1] + wsYX[1] / 2)
            ymin, ymax = int(center_YX[0] - wsYX[0] / 2), int(center_YX[0] + wsYX[0] / 2)
872

873
874
            in_arr0 = im0[ymin:ymax, xmin:xmax].astype(precision)
            in_arr1 = im1[ymin:ymax, xmin:xmax].astype(precision)
875
876

            if self.v:
877
                PLT.subplot_imshow([np.real(in_arr0).astype(np.float32), np.real(in_arr1).astype(np.float32)],
878
                                   ['FFTin ' + self.ref.title, 'FFTin ' + self.shift.title], grid=True)
879

880
881
882
            if pyfftw and self.fftw_works is not False:  # if module is installed and working
                fft_arr0 = pyfftw.FFTW(in_arr0, np.empty_like(in_arr0), axes=(0, 1))()
                fft_arr1 = pyfftw.FFTW(in_arr1, np.empty_like(in_arr1), axes=(0, 1))()
883
884

                # catch empty output arrays (for some reason this happens sometimes..) -> use numpy fft
885
886
                # => this is caused by the call of pyfftw.FFTW. Exactly in that moment the input array in_arr0 is
                #    overwritten with zeros (maybe this is a bug in pyFFTW?)
887
                if self.fftw_works in [None, True] and (np.std(fft_arr0) == 0 or np.std(fft_arr1) == 0):
888
889
890
891
892
893
                    self.fftw_works = False
                    # recreate input arrays and use numpy fft as fallback
                    in_arr0 = im0[ymin:ymax, xmin:xmax].astype(precision)
                    in_arr1 = im1[ymin:ymax, xmin:xmax].astype(precision)
                    fft_arr0 = np.fft.fft2(in_arr0)
                    fft_arr1 = np.fft.fft2(in_arr1)
894
895
                else:
                    self.fftw_works = True
896
897
898
            else:
                fft_arr0 = np.fft.fft2(in_arr0)
                fft_arr1 = np.fft.fft2(in_arr1)
899

900
901
            # GeoArray(fft_arr0.astype(np.float32)).show(figsize=(15,15))
            # GeoArray(fft_arr1.astype(np.float32)).show(figsize=(15,15))
902

903
904
            if self.v:
                print('forward FFTW: %.2fs' % (time.time() - time0))
905
906
907
908

            eps = np.abs(fft_arr1).max() * 1e-15
            # cps == cross-power spectrum of im0 and im2

909
            temp = np.array(fft_arr0 * fft_arr1.conjugate()) / (np.abs(fft_arr0) * np.abs(fft_arr1) + eps)
910
911
912

            time0 = time.time()
            if 'pyfft' in globals():
913
                ifft_arr = pyfftw.FFTW(temp, np.empty_like(temp), axes=(0, 1), direction='FFTW_BACKWARD')()
914
915
            else:
                ifft_arr = np.fft.ifft2(temp)
916
917
            if self.v:
                print('backward FFTW: %.2fs' % (time.time() - time0))
918
919

            cps = np.abs(ifft_arr)
920
            # scps = shifted cps  => shift the zero-frequency component to the center of the spectrum
921
922
            scps = np.fft.fftshift(cps)
            if self.v:
923
924
925
926
927
                PLT.subplot_imshow([np.real(in_arr0).astype(np.uint16), np.real(in_arr1).astype(np.uint16),
                                    np.real(fft_arr0).astype(np.uint8), np.real(fft_arr1).astype(np.uint8), scps],
                                   titles=['matching window im0', 'matching window im1',
                                           "fft result im0", "fft result im1", "cross power spectrum"], grid=True)
                PLT.subplot_3dsurface(np.real(scps).astype(np.float32))
928
        else:
929
930
            scps = None
            self._handle_error(
931
932
933
934
935
936
937
                RuntimeError('The matching window became too small for calculating a reliable match. Matching failed.'))

        self.fftw_win_size_YX = wsYX
        return scps

    @staticmethod
    def _get_peakpos(scps):