CoReg.py 83.8 KB
Newer Older
1
2
3
4
5
6
7
8
# -*- coding: utf-8 -*-

import os
import re
import shutil
import subprocess
import time
import warnings
9
from copy import copy
10
11

# custom
12
13
14
15
try:
    import gdal
except ImportError:
    from osgeo import gdal
16
import numpy as np
17

18
19
20
try:
    import pyfftw
except ImportError:
21
    pyfftw = None
22
from shapely.geometry import Point, Polygon
23
from skimage.exposure import rescale_intensity
24
25

# internal modules
26
from .DeShifter import DESHIFTER, _dict_rspAlg_rsp_Int
27
28
29
from . import geometry as GEO
from . import io as IO
from . import plotting as PLT
30

31
from geoarray import GeoArray
32
33
34
35
36
37
from py_tools_ds.convenience.object_oriented import alias_property
from py_tools_ds.geo.coord_calc import corner_coord_to_minmax, get_corner_coordinates
from py_tools_ds.geo.vector.topology import get_overlap_polygon, get_smallest_boxImYX_that_contains_boxMapYX
from py_tools_ds.geo.projection import prj_equal, get_proj4info
from py_tools_ds.geo.vector.geometry import boxObj, round_shapelyPoly_coords
from py_tools_ds.geo.coord_grid import move_shapelyPoly_to_image_grid
38
from py_tools_ds.geo.coord_trafo import pixelToMapYX, reproject_shapelyGeometry, mapXY2imXY, imXY2mapXY
39
40
41
42
from py_tools_ds.geo.raster.reproject import warp_ndarray
from py_tools_ds.geo.map_info import geotransform2mapinfo
from py_tools_ds.numeric.vector import find_nearest
from py_tools_ds.similarity.raster import calc_ssim
43

44
__author__ = 'Daniel Scheffler'
45
46


47
class GeoArray_CoReg(GeoArray):
48
    def __init__(self, CoReg_params, imID):
49
50
        # type: (dict, str) -> None

51
        assert imID in ['ref', 'shift']
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
52

53
54
        # run GeoArray init
        path_or_geoArr = CoReg_params['im_ref'] if imID == 'ref' else CoReg_params['im_tgt']
55
56
57
        nodata = CoReg_params['nodata'][0 if imID == 'ref' else 1]
        progress = CoReg_params['progress']
        q = CoReg_params['q'] if not CoReg_params['v'] else False
58

59
        super(GeoArray_CoReg, self).__init__(path_or_geoArr, nodata=nodata, progress=progress, q=q)
60

61
        self.imID = imID
62
        self.imName = 'reference image' if imID == 'ref' else 'image to be shifted'
63
        self.v = CoReg_params['v']
64
65

        assert isinstance(self, GeoArray), \
66
            'Something went wrong with the creation of GeoArray instance for the %s. The created ' \
67
            'instance does not seem to belong to the GeoArray class. If you are working in Jupyter Notebook, reset ' \
68
            'the kernel and try again.' % self.imName
69

70
        # set title to be used in plots
71
        self.title = os.path.basename(self.filePath) if self.filePath else self.imName
72
73

        # validate params
74
75
        # assert self.prj, 'The %s has no projection.' % self.imName # TODO
        # assert not re.search('LOCAL_CS', self.prj), 'The %s is not georeferenced.' % self.imName # TODO
76
77
78
        assert self.gt, 'The %s has no map information.' % self.imName

        # set band4match
79
80
81
82
83
        self.band4match = (CoReg_params['r_b4match'] if imID == 'ref' else CoReg_params['s_b4match']) - 1
        assert self.bands >= self.band4match + 1 >= 1, \
            "The %s has %s %s. So its band number to match must be %s%s. Got %s." \
            % (self.imName, self.bands, 'bands' if self.bands > 1 else
               'band', 'between 1 and ' if self.bands > 1 else '', self.bands, self.band4match)
84

85
86
        # set footprint_poly
        given_footprint_poly = CoReg_params['footprint_poly_%s' % ('ref' if imID == 'ref' else 'tgt')]
87
        given_corner_coord = CoReg_params['data_corners_%s' % ('ref' if imID == 'ref' else 'tgt')]
88
89

        if given_footprint_poly:
90
            self.footprint_poly = given_footprint_poly
91
        elif given_corner_coord is not None:
92
            self.footprint_poly = Polygon(given_corner_coord)
93
94
        elif not CoReg_params['calc_corners']:
            # use the image extent
95
            self.footprint_poly = Polygon(get_corner_coordinates(gt=self.gt, cols=self.cols, rows=self.rows))
96
        else:
97
98
99
            # footprint_poly is calculated automatically by GeoArray
            if not CoReg_params['q']:
                print('Calculating actual data corner coordinates for %s...' % self.imName)
100
            self.calc_mask_nodata(fromBand=self.band4match)  # this avoids that all bands have to be read
101

102
        if not self.q:
Daniel Scheffler's avatar
Daniel Scheffler committed
103
            print('Bounding box of calculated footprint for %s:\n\t%s' % (self.imName, self.footprint_poly.bounds))
104

105
106
107
        # add bad data mask
        given_mask = CoReg_params['mask_baddata_%s' % ('ref' if imID == 'ref' else 'tgt')]
        if given_mask:
108
            self.mask_baddata = given_mask  # runs GeoArray.mask_baddata.setter -> sets it to BadDataMask()
Daniel Scheffler's avatar
Daniel Scheffler committed
109

110
    poly = alias_property('footprint_poly')  # ensures that self.poly is updated if self.footprint_poly is updated
Daniel Scheffler's avatar
Daniel Scheffler committed
111
112


113
class COREG(object):
114
115
    """See help(COREG) for documentation!"""

116
    def __init__(self, im_ref, im_tgt, path_out=None, fmt_out='ENVI', out_crea_options=None, r_b4match=1, s_b4match=1,
117
                 wp=(None, None), ws=(256, 256), max_iter=5, max_shift=5, align_grids=False, match_gsd=False,
118
119
                 out_gsd=None, target_xyGrid=None, resamp_alg_deshift='cubic', resamp_alg_calc='cubic',
                 footprint_poly_ref=None, footprint_poly_tgt=None, data_corners_ref=None, data_corners_tgt=None,
120
                 nodata=(None, None), calc_corners=True, binary_ws=True, mask_baddata_ref=None, mask_baddata_tgt=None,
Daniel Scheffler's avatar
Daniel Scheffler committed
121
                 CPUs=None, force_quadratic_win=True, progress=True, v=False, path_verbose_out=None, q=False,
122
                 ignore_errors=False):
123
124
125
126

        """Detects and corrects global X/Y shifts between a target and refernce image. Geometric shifts are calculated
        at a specific (adjustable) image position. Correction performs a global shifting in X- or Y direction.

127
128
129
130
        :param im_ref(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of reference image
        :param im_tgt(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of image to be shifted
131
        :param path_out(str):           target path of the coregistered image
132
133
134
                                            - if None (default), the method correct_shifts() does not write to disk
                                            - if 'auto': /dir/of/im1/<im1>__shifted_to__<im0>.bsq
        :param fmt_out(str):            raster file format for output file. ignored if path_out is None. can be any GDAL
135
136
                                        compatible raster file format (e.g. 'ENVI', 'GeoTIFF'; default: ENVI). Refer to
                                        http://www.gdal.org/formats_list.html to get a full list of supported formats.
137
138
        :param out_crea_options(list):  GDAL creation options for the output image,
                                        e.g. ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
139
140
141
142
        :param r_b4match(int):          band of reference image to be used for matching (starts with 1; default: 1)
        :param s_b4match(int):          band of shift image to be used for matching (starts with 1; default: 1)
        :param wp(tuple):               custom matching window position as map values in the same projection like the
                                        reference image (default: central position of image overlap)
Daniel Scheffler's avatar
Daniel Scheffler committed
143
        :param ws(tuple):               custom matching window size [pixels] (default: (256,256))
144
145
        :param max_iter(int):           maximum number of iterations for matching (default: 5)
        :param max_shift(int):          maximum shift distance in reference image pixel units (default: 5 px)
146
147
        :param align_grids(bool):       align the coordinate grids of the image to be and the reference image
                                        (default: 0)
148
149
150
        :param match_gsd(bool):         match the output pixel size to pixel size of the reference image (default: 0)
        :param out_gsd(tuple):          xgsd ygsd: set the output pixel size in map units
                                        (default: original pixel size of the image to be shifted)
151
152
        :param target_xyGrid(list):     a list with a target x-grid and a target y-grid like [[15,45], [15,45]]
                                        This overrides 'out_gsd', 'align_grids' and 'match_gsd'.
153
        :param resamp_alg_deshift(str)  the resampling algorithm to be used for shift correction (if neccessary)
154
155
                                        valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                          mode, max, min, med, q1, q3
156
157
158
                                        default: cubic
        :param resamp_alg_calc(str)     the resampling algorithm to be used for all warping processes during calculation
                                        of spatial shifts
159
160
                                        (valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                           mode, max, min, med, q1, q3)
161
                                        default: cubic (highly recommended)
162
163
        :param footprint_poly_ref(str): footprint polygon of the reference image (WKT string or
                                        shapely.geometry.Polygon),
164
165
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
166
167
        :param footprint_poly_tgt(str): footprint polygon of the image to be shifted (WKT string or
                                        shapely.geometry.Polygon)
168
169
170
171
172
173
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param data_corners_ref(list):  map coordinates of data corners within reference image.
                                        ignored if footprint_poly_ref is given.
        :param data_corners_tgt(list):  map coordinates of data corners within image to be shifted.
                                        ignored if footprint_poly_tgt is given.
174
175
176
177
178
        :param nodata(tuple):           no data values for reference image and image to be shifted
        :param calc_corners(bool):      calculate true positions of the dataset corners in order to get a useful
                                        matching window position within the actual image overlap
                                        (default: 1; deactivated if '-cor0' and '-cor1' are given
        :param binary_ws(bool):         use binary X/Y dimensions for the matching window (default: 1)
179
180
181
182
183
184
185
186
187
188
189
190
        :param mask_baddata_ref(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                reference image where all bad data pixels (e.g. clouds) are marked with
                                                True and the remaining pixels with False. Must have the same geographic
                                                extent and projection like 'im_ref'. The mask is used to check if the
                                                chosen matching window position is valid in the sense of useful data.
                                                Otherwise this window position is rejected.
        :param mask_baddata_tgt(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                image to be shifted where all bad data pixels (e.g. clouds) are marked
                                                with True and the remaining pixels with False. Must have the same
                                                geographic extent and projection like 'im_ref'. The mask is used to
                                                check if the chosen matching window position is valid in the sense of
                                                useful data. Otherwise this window position is rejected.
Daniel Scheffler's avatar
Daniel Scheffler committed
191
192
        :param CPUs(int):               number of CPUs to use during pixel grid equalization
                                        (default: None, which means 'all CPUs available')
193
        :param force_quadratic_win(bool):   force a quadratic matching window (default: 1)
194
        :param progress(bool):          show progress bars (default: True)
195
        :param v(bool):                 verbose mode (default: False)
196
197
        :param path_verbose_out(str):   an optional output directory for intermediate results
                                        (if not given, no intermediate results are written to disk)
198
199
        :param q(bool):                 quiet mode (default: False)
        :param ignore_errors(bool):     Useful for batch processing. (default: False)
200
201
202
203
                                        In case of error COREG.success == False and COREG.x_shift_px/COREG.y_shift_px
                                        is None
        """

204
        self.params = dict([x for x in locals().items() if x[0] != "self"])
205

206
        # assertions
207
        assert gdal.GetDriverByName(fmt_out), "'%s' is not a supported GDAL driver." % fmt_out
208
209
210
211
212
213
        if match_gsd and out_gsd:
            warnings.warn("'-out_gsd' is ignored because '-match_gsd' is set.\n")
        if out_gsd:
            assert isinstance(out_gsd, list) and len(out_gsd) == 2, 'out_gsd must be a list with two values.'
        if data_corners_ref and not isinstance(data_corners_ref[0],
                                               list):  # group if not [[x,y],[x,y]..] but [x,y,x,y,]
214
            data_corners_ref = [data_corners_ref[i:i + 2] for i in range(0, len(data_corners_ref), 2)]
215
        if data_corners_tgt and not isinstance(data_corners_tgt[0], list):  # group if not [[x,y],[x,y]..]
216
            data_corners_tgt = [data_corners_tgt[i:i + 2] for i in range(0, len(data_corners_tgt), 2)]
217
218
219
        if nodata:
            assert isinstance(nodata, tuple) and len(nodata) == 2, \
                "'nodata' must be a tuple with two values. Got %s with length %s." % (type(nodata), len(nodata))
220
        for rspAlg in [resamp_alg_deshift, resamp_alg_calc]:
221
            assert rspAlg in _dict_rspAlg_rsp_Int.keys(), "'%s' is not a supported resampling algorithm." % rspAlg
222
        if resamp_alg_calc in ['average', 5] and (v or not q):
223
            warnings.warn("The resampling algorithm 'average' causes sinus-shaped patterns in fft images that will "
224
225
                          "affect the precision of the calculated spatial shifts! It is highly recommended to "
                          "choose another resampling algorithm.")
226

227
228
229
230
231
232
233
234
235
236
237
238
        self.path_out = path_out  # updated by self.set_outpathes
        self.fmt_out = fmt_out
        self.out_creaOpt = out_crea_options
        self.win_pos_XY = wp  # updated by self.get_opt_winpos_winsize()
        self.win_size_XY = ws  # updated by self.get_opt_winpos_winsize()
        self.max_iter = max_iter
        self.max_shift = max_shift
        self.align_grids = align_grids
        self.match_gsd = match_gsd
        self.out_gsd = out_gsd
        self.target_xyGrid = target_xyGrid
        self.rspAlg_DS = resamp_alg_deshift \
239
            if isinstance(resamp_alg_deshift, str) else _dict_rspAlg_rsp_Int[resamp_alg_deshift]
240
        self.rspAlg_calc = resamp_alg_calc \
241
            if isinstance(resamp_alg_calc, str) else _dict_rspAlg_rsp_Int[resamp_alg_calc]
242
243
244
        self.calc_corners = calc_corners
        self.CPUs = CPUs
        self.bin_ws = binary_ws
245
        self.force_quadratic_win = force_quadratic_win
246
247
248
249
250
251
252
        self.v = v
        self.path_verbose_out = path_verbose_out
        self.q = q if not v else False  # overridden by v
        self.progress = progress if not q else False  # overridden by q

        self.ignErr = ignore_errors
        self.max_win_sz_changes = 3  # TODO: änderung der window size, falls nach max_iter kein valider match gefunden
253
254
255
256
257
258
        self.ref = None  # type: GeoArray_CoReg # set by self.get_image_params
        self.shift = None  # type: GeoArray_CoReg # set by self.get_image_params
        self.matchBox = None  # type: boxObj # set by self.get_clip_window_properties()
        self.otherBox = None  # type: boxObj # set by self.get_clip_window_properties()
        self.matchWin = None  # type: GeoArray # set by self._get_image_windows_to_match()
        self.otherWin = None  # type: GeoArray # set by self._get_image_windows_to_match()
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        self.overlap_poly = None  # set by self._get_overlap_properties()
        self.overlap_percentage = None  # set by self._get_overlap_properties()
        self.overlap_area = None  # set by self._get_overlap_properties()
        self.imfft_gsd = None  # set by self.get_clip_window_properties()
        self.fftw_works = None  # set by self._calc_shifted_cross_power_spectrum()
        self.fftw_win_size_YX = None  # set by calc_shifted_cross_power_spectrum()

        self.x_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.y_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.x_shift_map = None  # set by self.get_updated_map_info()
        self.y_shift_map = None  # set by self.get_updated_map_info()
        self.vec_length_map = None
        self.vec_angle_deg = None
        self.updated_map_info = None  # set by self.get_updated_map_info()
        self.ssim_orig = None  # set by self._validate_ssim_improvement()
        self.ssim_deshifted = None  # set by self._validate_ssim_improvement()
        self._ssim_improved = None  # private attribute to be filled by self.ssim_improved
        self.shift_reliability = None  # set by self.calculate_spatial_shifts()

        self.tracked_errors = []  # expanded each time an error occurs
        self.success = None  # default
        self.deshift_results = None  # set by self.correct_shifts()
281
282
283
284

        gdal.AllRegister()
        self._get_image_params()
        self._set_outpathes(im_ref, im_tgt)
285
        self.grid2use = 'ref' if self.shift.xgsd <= self.ref.xgsd else 'shift'
286
287
        if self.v:
            print('resolutions: ', self.ref.xgsd, self.shift.xgsd)
288

289
        self._get_overlap_properties()
290
291

        if self.v and self.path_verbose_out:
292
293
294
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_imref.shp'), self.ref.poly, self.ref.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_im2shift.shp'), self.shift.poly, self.shift.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'overlap_poly.shp'), self.overlap_poly, self.ref.prj)
295

296
297
        # FIXME: transform_mapPt1_to_mapPt2(im2shift_center_map, ds_imref.GetProjection(), ds_im2shift.GetProjection())
        # FIXME später basteln für den fall, dass projektionen nicht gleich sind
298
299
300

        # get_clip_window_properties
        self._get_opt_winpos_winsize()
301
302
303
        if not self.q:
            print('Matching window position (X,Y): %s/%s' % (self.win_pos_XY[0], self.win_pos_XY[1]))
        self._get_clip_window_properties()  # sets self.matchBox, self.otherBox and much more
304

305
        if self.v and self.path_verbose_out and self.matchBox.mapPoly and self.success is not False:
306
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_matchWin.shp'),
307
                         self.matchBox.mapPoly, self.matchBox.prj)
308

309
310
        self.success = False if self.success is False or not self.matchBox.boxMapYX else None
        self._coreg_info = None  # private attribute to be filled by self.coreg_info property
311

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    def _handle_error(self, error, warn=False, warnMsg=None):
        """Appends the given error to self.tracked_errors, sets self.success to False and raises the error in case
        self.ignore_errors = True.

        :param error:   instance of an error
        :param warn:    whether to give a warning in case error would be ignored otherwise
        :param warnMsg: a custom message for the warning
        :return:
        """

        warn = warn or warnMsg is not None or self.v

        self.tracked_errors.append(error)
        self.success = False

        if self.ignErr and warn:
            warnMsg = repr(error) if not warnMsg else warnMsg
329
            print('\nWARNING: ' + warnMsg)
330
331
332
333

        if not self.ignErr:
            raise error

334
    def _set_outpathes(self, im_ref, im_tgt):
335
        assert isinstance(im_ref, (GeoArray, str)) and isinstance(im_tgt, (GeoArray, str)), \
336
            'COREG._set_outpathes() expects two file pathes (string) or two instances of the ' \
337
            'GeoArray class. Received %s and %s.' % (type(im_ref), type(im_tgt))
338

339
        def get_baseN(path): return os.path.splitext(os.path.basename(path))[0]
340
341
342
343
344

        # get input pathes
        path_im_ref = im_ref.filePath if isinstance(im_ref, GeoArray) else im_ref
        path_im_tgt = im_tgt.filePath if isinstance(im_tgt, GeoArray) else im_tgt

345
        if self.path_out:  # this also applies to self.path_out='auto'
346
347
348
349

            if self.path_out == 'auto':
                dir_out, fName_out = os.path.dirname(path_im_tgt), ''
            else:
350
                dir_out, fName_out = os.path.split(self.path_out)
351
352
353
354
355
356
357
358
359
360
361
362
363
364

            if dir_out and fName_out:
                # a valid output path is given => do nothing
                pass

            else:
                # automatically create an output directory and filename if not given
                if not dir_out:
                    if not path_im_ref:
                        dir_out = os.path.abspath(os.path.curdir)
                    else:
                        dir_out = os.path.dirname(path_im_ref)

                if not fName_out:
365
366
367
368
369
                    ext = 'bsq' if self.fmt_out == 'ENVI' else \
                        gdal.GetDriverByName(self.fmt_out).GetMetadataItem(gdal.DMD_EXTENSION)
                    fName_out = fName_out if fName_out not in ['.', ''] else \
                        '%s__shifted_to__%s' % (get_baseN(path_im_tgt), get_baseN(path_im_ref))
                    fName_out = fName_out + '.%s' % ext if ext else fName_out
370

371
                self.path_out = os.path.abspath(os.path.join(dir_out, fName_out))
372
373
374
375

                assert ' ' not in self.path_out, \
                    "The path of the output image contains whitespaces. This is not supported by GDAL."
        else:
376
            # this only happens if COREG is not instanced from within Python and self.path_out is explicitly set to None
377
378
379
380
381
382
383
384
385
386
387
            # => DESHIFTER will return an array
            pass

        if self.v:
            if self.path_verbose_out:
                dir_out, dirname_out = os.path.split(self.path_verbose_out)

                if not dir_out:
                    if self.path_out:
                        self.path_verbose_out = os.path.dirname(self.path_out)
                    else:
388
389
390
                        self.path_verbose_out = \
                            os.path.abspath(os.path.join(os.path.curdir, 'CoReg_verboseOut__%s__shifted_to__%s'
                                                         % (get_baseN(path_im_tgt), get_baseN(path_im_ref))))
391
392
393
394
395
396
397
398
399
                elif dirname_out and not dir_out:
                    self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir, dirname_out))

                assert ' ' not in self.path_verbose_out, \
                    "'path_verbose_out' contains whitespaces. This is not supported by GDAL."

        else:
            self.path_verbose_out = None

400
401
        if self.path_verbose_out and not os.path.isdir(self.path_verbose_out):
            os.makedirs(self.path_verbose_out)
402
403

    def _get_image_params(self):
404
405
        self.ref = GeoArray_CoReg(self.params, 'ref')
        self.shift = GeoArray_CoReg(self.params, 'shift')
406
        assert prj_equal(self.ref.prj, self.shift.prj), \
407
408
            'Input projections are not equal. Different projections are currently not supported. Got %s / %s.' \
            % (get_proj4info(proj=self.ref.prj), get_proj4info(proj=self.shift.prj))
409

410
    def _get_overlap_properties(self):
411
412
413
414
        overlap_tmp = get_overlap_polygon(self.ref.poly, self.shift.poly, self.v)
        self.overlap_poly = overlap_tmp['overlap poly']  # has to be in reference projection
        self.overlap_percentage = overlap_tmp['overlap percentage']
        self.overlap_area = overlap_tmp['overlap area']
415
416
417
418

        assert self.overlap_poly, 'The input images have no spatial overlap.'

        # overlap are must at least cover 16*16 pixels
419
420
421
422
        px_area = self.ref.xgsd * self.ref.ygsd if self.grid2use == 'ref' else self.shift.xgsd * self.shift.ygsd
        px_covered = self.overlap_area / px_area
        assert px_covered > 16 * 16, \
            'Overlap area covers only %s pixels. At least 16*16 pixels are needed.' % px_covered
423

424
425
426
427
    def equalize_pixGrids(self):
        """
        Equalize image grids and projections of reference and target image (align target to reference).
        """
428
429
430
        if not (prj_equal(self.ref.prj, self.shift.prj) and self.ref.xygrid_specs == self.shift.xygrid_specs):
            if not self.q:
                print("Equalizing pixel grids and projections of reference and target image...")
Daniel Scheffler's avatar
Daniel Scheffler committed
431

432
            if self.grid2use == 'ref':
433
                # resample target image to refernce image
434
                self.shift.arr = self.shift[:, :, self.shift.band4match]  # resample the needed band only
435
                self.shift.reproject_to_new_grid(prototype=self.ref, CPUs=self.CPUs)
436
                self.shift.band4match = 0  # after resampling there is only one band in the GeoArray
437
438
439
            else:
                # resample reference image to target image
                # FIXME in case of different projections this will change the projection of the reference image!
440
                self.ref.arr = self.ref[:, :, self.ref.band4match]  # resample the needed band only
441
                self.ref.reproject_to_new_grid(prototype=self.shift, CPUs=self.CPUs)
Daniel Scheffler's avatar
Daniel Scheffler committed
442
                self.ref.band4match = 0  # after resampling there is only one band in the GeoArray
443

444
445
446
447
448
449
450
    def show_image_footprints(self):
        """This method is intended to be called from Jupyter Notebook and shows a web map containing the calculated
        footprints of the input images as well as the corresponding overlap area."""
        # TODO different colors for polygons
        assert self.overlap_poly, 'Please calculate the overlap polygon first.'

        try:
451
452
            import folium
            import geojson
453
        except ImportError:
454
455
            folium, geojson = None, None
        if not folium or not geojson:
456
457
458
            raise ImportError("This method requires the libraries 'folium' and 'geojson'. They can be installed with "
                              "the shell command 'pip install folium geojson'.")

459
460
461
        refPoly = reproject_shapelyGeometry(self.ref.poly, self.ref.epsg, 4326)
        shiftPoly = reproject_shapelyGeometry(self.shift.poly, self.shift.epsg, 4326)
        overlapPoly = reproject_shapelyGeometry(self.overlap_poly, self.shift.epsg, 4326)
462
        matchBoxPoly = reproject_shapelyGeometry(self.matchBox.mapPoly, self.shift.epsg, 4326)
463
464

        m = folium.Map(location=tuple(np.array(overlapPoly.centroid.coords.xy).flatten())[::-1])
465
        for poly in [refPoly, shiftPoly, overlapPoly, matchBoxPoly]:
466
467
468
469
            gjs = geojson.Feature(geometry=poly, properties={})
            folium.GeoJson(gjs).add_to(m)
        return m

470
    def show_matchWin(self, figsize=(15, 15), interactive=True, after_correction=None, pmin=2, pmax=98):
471
        """Show the image content within the matching window.
472

473
474
        :param figsize:             <tuple> figure size
        :param interactive:         <bool> whether to return an interactive figure based on 'holoviews' library
475
476
477
478
479
        :param after_correction:    True/False: show the image content AFTER shift correction or before
                                    None: show both states - before and after correction (default)
        :param pmin:                percentage to be used for excluding the darkest pixels from stretching (default: 2)
        :param pmax:                percentage to be used for excluding the brightest pixels from stretching
                                    (default: 98)
480
481
        :return:
        """
482
483
484
485
486
        if interactive:
            # use Holoviews
            try:
                import holoviews as hv
            except ImportError:
487
                hv = None
488
489
490
491
492
493
            if not hv:
                raise ImportError(
                    "This method requires the library 'holoviews'. It can be installed for Anaconda with "
                    "the shell command 'conda install -c ioam holoviews bokeh'.")
            warnings.filterwarnings('ignore')
            hv.notebook_extension('matplotlib')
494
495
496
497
498
499
500
501
502
503
            hv.Store.add_style_opts(hv.Image, ['vmin', 'vmax'])

            # hv.Store.option_setters.options().Image = hv.Options('style', cmap='gnuplot2')
            # hv.Store.add_style_opts(hv.Image, ['cmap'])
            # renderer = hv.Store.renderers['matplotlib'].instance(fig='svg', holomap='gif')
            # RasterPlot = renderer.plotting_class(hv.Image)
            # RasterPlot.cmap = 'gray'
            otherWin_corr = self._get_deshifted_otherWin()
            xmin, xmax, ymin, ymax = self.matchBox.boundsMap

504
            def get_hv_image(geoArr):
505
506
507
508
509
510
                arr_masked = np.ma.masked_equal(geoArr[:], geoArr.nodata)
                vmin = np.nanpercentile(arr_masked.compressed(), pmin)
                vmax = np.nanpercentile(arr_masked.compressed(), pmax)
                arr2plot = rescale_intensity(arr_masked, in_range=(vmin, vmax), out_range='int8')

                return hv.Image(arr2plot, bounds=(xmin, ymin, xmax, ymax))(
511
                    style={'cmap': 'gray',
512
                           'vmin': vmin, 'vmax': vmax,
513
514
515
                           'interpolation': 'none'},
                    plot={'fig_inches': figsize, 'show_grid': True})
                #     plot={'fig_size':100, 'show_grid':True})
516

517
518
519
            hvIm_matchWin = get_hv_image(self.matchWin)
            hvIm_otherWin_orig = get_hv_image(self.otherWin)
            hvIm_otherWin_corr = get_hv_image(otherWin_corr)
520

521
522
523
            if after_correction is None:
                # view both states
                print('Matching window before and after correction (above and below): ')
524

525
526
527
                # get layouts (docs on options: http://build.holoviews.org/Tutorials/Options.html)
                layout_before = (hvIm_matchWin + hvIm_matchWin)(plot=dict(fig_inches=figsize))
                layout_after = (hvIm_otherWin_orig + hvIm_otherWin_corr)(plot=dict(fig_inches=figsize))
528

529
530
531
532
533
534
535
536
537
538
                # plot!
                imgs = {1: layout_before, 2: layout_after}
                hmap = hv.HoloMap(imgs, kdims=['image']).collate().cols(1)

            else:
                # view state before or after correction
                imgs = {1: hvIm_matchWin, 2: hvIm_otherWin_corr if after_correction else hvIm_otherWin_orig}
                hmap = hv.HoloMap(imgs, kdims=['image'])

            # Construct a HoloMap by evaluating the function over all the keys
539
            # hmap = hv.HoloMap(imgs_corr, kdims=['image']) +  hv.HoloMap(imgs_corr, kdims=['image'])
540

541
542
            # Construct a HoloMap by defining the sampling on the Dimension
            # dmap = hv.DynamicMap(image_slice, kdims=[hv.Dimension('z_axis', values=keys)])
543
544
            warnings.filterwarnings('default')

545
            return hmap
546

547
548
549
        else:
            # TODO add titles
            self.matchWin.show(figsize=figsize)
550
            if after_correction:
551
                self._get_deshifted_otherWin().show(figsize=figsize, pmin=pmin, pmax=pmax)
552
            else:
553
                self.otherWin.show(figsize=figsize, pmin=pmin, pmax=pmax)
554
555
556
557
558
559
560
561
562
563
564
565
566

    def show_cross_power_spectrum(self, interactive=False):
        """
        Shows a 3D surface of the cross power spectrum resulting from phase correlating the reference and target
        image within the matching window.

        :param interactive:  whether to return an interactice 3D surface plot based on 'plotly' library
        :return:
        """

        if interactive:
            # create plotly 3D surface

567
            # import plotly.plotly as py # online mode -> every plot is uploaded into online plotly account
568
569
570
571
572
573
            from plotly.offline import iplot, init_notebook_mode
            import plotly.graph_objs as go

            init_notebook_mode(connected=True)

            z_data = self._calc_shifted_cross_power_spectrum()
574
            data = [go.Surface(z=z_data)]
575
576
577
578
579
            layout = go.Layout(
                title='cross power spectrum',
                autosize=False,
                width=1000,
                height=1000,
580
                margin={'l': 65, 'r': 50, 'b': 65, 't': 90})
581
            fig = go.Figure(data=data, layout=layout)
582
583
584
585
586
587
588
589

            return iplot(fig, filename='SCPS')

        else:
            # use matplotlib
            scps = self._calc_shifted_cross_power_spectrum()
            PLT.subplot_3dsurface(scps.astype(np.float32))

590
    def _get_opt_winpos_winsize(self):
591
        # type: (tuple,tuple) -> None
592
593
594
595
        """
        Calculates optimal window position and size in reference image units according to DGM, cloud_mask and
        trueCornerLonLat.
        """
596
597
598
599
        # dummy algorithm: get center position of overlap instead of searching ideal window position in whole overlap
        # TODO automatischer Algorithmus zur Bestimmung der optimalen Window Position

        wp = tuple(self.win_pos_XY)
600
601
        assert type(self.win_pos_XY) in [tuple, list, np.ndarray], \
            'The window position must be a tuple of two elements. Got %s with %s elements.' % (type(wp), len(wp))
602
603
604
        wp = tuple(wp)

        if None in wp:
605
            # use centroid point if possible
606
607
608
            overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.centroid.coords.xy
            wp = (wp[0] if wp[0] else overlap_center_pos_x[0]), (wp[1] if wp[1] else overlap_center_pos_y[0])

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
            # validate window position
            if not self.overlap_poly.contains(Point(wp)):
                # in case the centroid point is not within overlap area
                if not self.q:
                    warnings.warn("The centroid point of the two input images could not be used as matching window "
                                  "position since it is outside of the overlap area. Instead the so called "
                                  "'representative point' is used. Alternatively you can provide your own window "
                                  "position as input parameter.")

                # -> use representative point: a point that is garanteed to be within overlap polygon
                overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.representative_point().coords.xy
                wp = overlap_center_pos_x[0], overlap_center_pos_y[0]

            assert self.overlap_poly.contains(Point(wp))

        else:
            # validate window position
            if not self.overlap_poly.contains(Point(wp)):
627
                self._handle_error(ValueError('The provided window position %s/%s is outside of the overlap '
628
                                              'area of the two input images. Check the coordinates.' % wp))
629
630
631
632
633
634

        # check if window position is within bad data area if a respective mask has been provided
        for im in [self.ref, self.shift]:
            if im.mask_baddata is not None:
                imX, imY = mapXY2imXY(wp, im.mask_baddata.gt)

635
                if im.mask_baddata[int(imY), int(imX)] is True:
636
                    self._handle_error(
637
                        RuntimeError('According to the provided bad data mask for the %s the chosen window position '
638
639
640
                                     '%s / %s is within a bad data area. Using this window position for coregistration '
                                     'is not reasonable. Please provide a better window position!'
                                     % (im.imName, wp[0], wp[1])))
641

642
643
        self.win_pos_XY = wp
        self.win_size_XY = (int(self.win_size_XY[0]), int(self.win_size_XY[1])) if self.win_size_XY else (512, 512)
644
645
646
647
648
649
650
651

    def _get_clip_window_properties(self):
        """Calculate all properties of the matching window and the other window. These windows are used to read the
        corresponding image positions in the reference and the target image.
        hint: Even if X- and Y-dimension of the target window is equal, the output window can be NOT quadratic!
        """
        # FIXME image sizes like 10000*256 are still possible

652
653
654
655
656
657
658
659
660
        wpX, wpY = self.win_pos_XY
        wsX, wsY = self.win_size_XY
        ref_wsX, ref_wsY = (wsX * self.ref.xgsd, wsY * self.ref.ygsd)  # image units -> map units
        shift_wsX, shift_wsY = (wsX * self.shift.xgsd, wsY * self.shift.ygsd)  # image units -> map units
        ref_box_kwargs = {'wp': (wpX, wpY), 'ws': (ref_wsX, ref_wsY), 'gt': self.ref.gt}
        shift_box_kwargs = {'wp': (wpX, wpY), 'ws': (shift_wsX, shift_wsY), 'gt': self.shift.gt}
        matchBox = boxObj(**ref_box_kwargs) if self.grid2use == 'ref' else boxObj(**shift_box_kwargs)
        otherBox = boxObj(**shift_box_kwargs) if self.grid2use == 'ref' else boxObj(**ref_box_kwargs)
        overlapWin = boxObj(mapPoly=self.overlap_poly, gt=self.ref.gt)
661
662

        # clip matching window to overlap area
663
664
        matchBox.mapPoly = matchBox.mapPoly.intersection(overlapWin.mapPoly)

665
        # check if matchBox extent touches no data area of the image -> if yes: shrink it
666
667
        overlapPoly_within_matchWin = matchBox.mapPoly.intersection(self.overlap_poly)
        if overlapPoly_within_matchWin.area < matchBox.mapPoly.area:
668
669
            wsX_start, wsY_start = 1 if wsX >= wsY else wsX / wsY, 1 if wsY >= wsX else wsY / wsX
            box = boxObj(**dict(wp=(wpX, wpY), ws=(wsX_start, wsY_start), gt=matchBox.gt))
670
            while True:
671
                box.buffer_imXY(1, 1)
672
673
674
675
                if not box.mapPoly.within(overlapPoly_within_matchWin):
                    box.buffer_imXY(-1, -1)
                    matchBox = box
                    break
676
677

        # move matching window to imref grid or im2shift grid
678
679
        mW_rows, mW_cols = (self.ref.rows, self.ref.cols) if self.grid2use == 'ref' else \
            (self.shift.rows, self.shift.cols)
680
        matchBox.mapPoly = move_shapelyPoly_to_image_grid(matchBox.mapPoly, matchBox.gt, mW_rows, mW_cols, 'NW')
681

682
683
        # check, ob durch Verschiebung auf Grid die matchBox außerhalb von overlap_poly geschoben wurde
        if not matchBox.mapPoly.within(overlapWin.mapPoly):
684
            # matchPoly weiter verkleinern # 1 px buffer reicht, weil window nur auf das Grid verschoben wurde
685
            xLarger, yLarger = matchBox.is_larger_DimXY(overlapWin.boundsIm)
686
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
687
688

        # matching_win direkt auf grid2use (Rundungsfehler bei Koordinatentrafo beseitigen)
689
        matchBox.imPoly = round_shapelyPoly_coords(matchBox.imPoly, precision=0, out_dtype=int)
690
691

        # Check, ob match Fenster größer als anderes Fenster
692
        if not (matchBox.mapPoly.within(otherBox.mapPoly) or matchBox.mapPoly == otherBox.mapPoly):
693
            # dann für anderes Fenster kleinstes Fenster finden, das match-Fenster umgibt
694
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX, otherBox.gt)
695
696

        # evtl. kann es sein, dass bei Shift-Fenster-Vergrößerung das shift-Fenster zu groß für den overlap wird
Daniel Scheffler's avatar
Daniel Scheffler committed
697
        t_start = time.time()
698
        while not otherBox.mapPoly.within(overlapWin.mapPoly):
Daniel Scheffler's avatar
Daniel Scheffler committed
699
            # -> match Fenster verkleinern und neues otherBox berechnen
700
701
            xLarger, yLarger = otherBox.is_larger_DimXY(overlapWin.boundsIm)
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
702
703
            previous_area = otherBox.mapPoly.area
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX, otherBox.gt)
704

705
            if previous_area == otherBox.mapPoly.area or time.time() - t_start > 1.5:
Daniel Scheffler's avatar
Daniel Scheffler committed
706
707
                # happens e.g in case of a triangular footprint
                # NOTE: first condition is not always fulfilled -> therefore added timeout of 1.5 sec
708
                self._handle_error(
709
710
                    RuntimeError('Matching window in target image is larger than overlap area but further shrinking '
                                 'the matching window is not possible. Check if the footprints of the input data have '
711
                                 'been computed correctly.' +
712
713
                                 (' Matching window shrinking timed out.' if time.time() - t_start > 5 else '')))
                break  # break out of while loop in order to avoid that code gets stuck here
714

Daniel Scheffler's avatar
Daniel Scheffler committed
715
716
717
718
719
720
721
        # output validation
        for winBox in [matchBox, otherBox]:
            if winBox.imDimsYX[0] < 16 or winBox.imDimsYX[1] < 16:
                self._handle_error(
                    RuntimeError("One of the input images does not have sufficient gray value information "
                                 "(non-no-data values) for placing a matching window at the position %s. "
                                 "Matching failed." % str((wpX, wpY))))
Daniel Scheffler's avatar
Daniel Scheffler committed
722

723
        if self.success is not False:
Daniel Scheffler's avatar
Daniel Scheffler committed
724
            # check result -> ProgrammingError if not fulfilled
725
            def within_equal(inner, outer): return inner.within(outer) or inner.equals(outer)
Daniel Scheffler's avatar
Daniel Scheffler committed
726
727
            assert within_equal(matchBox.mapPoly, otherBox.mapPoly)
            assert within_equal(otherBox.mapPoly, overlapWin.mapPoly)
728

729
730
731
732
733
734
            self.imfft_gsd = self.ref.xgsd if self.grid2use == 'ref' else self.shift.xgsd
            self.ref.win, self.shift.win = (matchBox, otherBox) if self.grid2use == 'ref' else (otherBox, matchBox)
            self.matchBox, self.otherBox = matchBox, otherBox
            self.ref.win.size_YX = tuple([int(i) for i in self.ref.win.imDimsYX])
            self.shift.win.size_YX = tuple([int(i) for i in self.shift.win.imDimsYX])
            match_win_size_XY = tuple(reversed([int(i) for i in matchBox.imDimsYX]))
735

736
737
            if not self.q and match_win_size_XY != self.win_size_XY:
                print('Target window size %s not possible due to too small overlap area or window position too close '
738
                      'to an image edge. New matching window size: %s.' % (self.win_size_XY, match_win_size_XY))
739

740
741
                # IO.write_shp('/misc/hy5/scheffler/Temp/matchMapPoly.shp', matchBox.mapPoly,matchBox.prj)
                # IO.write_shp('/misc/hy5/scheffler/Temp/otherMapPoly.shp', otherBox.mapPoly,otherBox.prj)
742
743
744
745
746
747

    def _get_image_windows_to_match(self):
        """Reads the matching window and the other window using subset read, and resamples the other window to the
        resolution and the pixel grid of the matching window. The result consists of two images with the same
        dimensions and exactly the same corner coordinates."""

748
749
        match_fullGeoArr = self.ref if self.grid2use == 'ref' else self.shift
        other_fullGeoArr = self.shift if self.grid2use == 'ref' else self.ref
750
751

        # matchWin per subset-read einlesen -> self.matchWin.data
752
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.matchBox.boxImYX)
753
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
754
            rE <= match_fullGeoArr.rows and cE <= match_fullGeoArr.cols, \
755
756
757
758
759
            'Requested area is not completely within the input array for %s.' % match_fullGeoArr.imName
        self.matchWin = GeoArray(match_fullGeoArr[rS:rE + 1, cS:cE + 1, match_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(match_fullGeoArr.gt, self.matchBox.boxImYX),
                                 projection=copy(match_fullGeoArr.prj),
                                 nodata=copy(match_fullGeoArr.nodata))
760
        self.matchWin.imID = match_fullGeoArr.imID
761
762

        # otherWin per subset-read einlesen
763
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.otherBox.boxImYX)
764
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
765
            rE <= other_fullGeoArr.rows and cE <= other_fullGeoArr.cols, \
766
767
768
769
770
            'Requested area is not completely within the input array for %s.' % other_fullGeoArr.imName
        self.otherWin = GeoArray(other_fullGeoArr[rS:rE + 1, cS:cE + 1, other_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(other_fullGeoArr.gt, self.otherBox.boxImYX),
                                 projection=copy(other_fullGeoArr.prj),
                                 nodata=copy(other_fullGeoArr.nodata))
771
        self.otherWin.imID = other_fullGeoArr.imID
772

773
774
        # self.matchWin.deepcopy_array()
        # self.otherWin.deepcopy_array()
775
776
777

        if self.v:
            print('Original matching windows:')
778
779
780
            ref_data, shift_data = (self.matchWin[:], self.otherWin[:]) if self.grid2use == 'ref' else \
                (self.otherWin[:], self.matchWin[:])
            PLT.subplot_imshow([ref_data, shift_data], [self.ref.title, self.shift.title], grid=True)
781

782
        # resample otherWin.arr to the resolution of matchWin AND make sure the pixel edges are identical
783
        # (in order to make each image show the same window with the same coordinates)
784
785
786
787
        # TODO replace cubic resampling by PSF resampling - average resampling leads to sinus like distortions in the
        # TODO fft image that make a precise coregistration impossible. Thats why there is currently no way around
        # TODO cubic resampling.
        tgt_xmin, tgt_xmax, tgt_ymin, tgt_ymax = self.matchBox.boundsMap
788
789

        # equalize pixel grids and projection of matchWin and otherWin (ONLY if grids are really different)
790
791
        if not (self.matchWin.xygrid_specs == self.otherWin.xygrid_specs and
                prj_equal(self.matchWin.prj, self.otherWin.prj)):
792
793
794
795
            self.otherWin.arr, self.otherWin.gt = warp_ndarray(self.otherWin.arr,
                                                               self.otherWin.gt,
                                                               self.otherWin.prj,
                                                               self.matchWin.prj,
796
797
798
799
800
801
                                                               out_gsd=(self.imfft_gsd, self.imfft_gsd),
                                                               out_bounds=([tgt_xmin, tgt_ymin, tgt_xmax, tgt_ymax]),
                                                               rspAlg=_dict_rspAlg_rsp_Int[self.rspAlg_calc],
                                                               in_nodata=self.otherWin.nodata,
                                                               CPUs=self.CPUs,
                                                               progress=False)[:2]
802
803

        if self.matchWin.shape != self.otherWin.shape:
804
805
806
            self._handle_error(
                RuntimeError('Catched a possible ProgrammingError at window position %s: Bad output of '
                             'get_image_windows_to_match. Reference image shape is %s whereas shift '
807
                             'image shape is %s.' % (str(self.matchBox.wp), self.matchWin.shape, self.otherWin.shape)),
808
809
                warn=True)

Daniel Scheffler's avatar
Daniel Scheffler committed
810
        # check of odd dimensions of output images
811
812
        rows, cols = [i if i % 2 == 0 else i - 1 for i in self.matchWin.shape]
        self.matchWin.arr, self.otherWin.arr = self.matchWin.arr[:rows, :cols], self.otherWin.arr[:rows, :cols]
Daniel Scheffler's avatar
Daniel Scheffler committed
813
        if self.matchWin.box.imDimsYX != self.matchBox.imDimsYX:
814
815
            self.matchBox = self.matchWin.box  # update matchBox
            self.otherBox = self.otherWin.box  # update otherBox
816

817
        assert self.matchWin.arr is not None and self.otherWin.arr is not None, 'Creation of matching windows failed.'
818
819
820

    @staticmethod
    def _shrink_winsize_to_binarySize(win_shape_YX, target_size=None):
821
        # type: (tuple, tuple, int , int) -> any
822
823
824
825
826
827
828
        """Shrinks a given window size to the closest binary window size (a power of 2) -
        separately for X- and Y-dimension.

        :param win_shape_YX:    <tuple> source window shape as pixel units (rows,colums)
        :param target_size:     <tuple> source window shape as pixel units (rows,colums)
        """

829
        binarySizes = [2 ** i for i in range(3, 14)]  # [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
830
831
832
        possibSizes_X = [i for i in binarySizes if i <= win_shape_YX[1]]
        possibSizes_Y = [i for i in binarySizes if i <= win_shape_YX[0]]
        if possibSizes_X and possibSizes_Y:
833
834
835
836
            tgt_size_X, tgt_size_Y = target_size if target_size else (max(possibSizes_X), max(possibSizes_Y))
            closest_to_target_X = int(min(possibSizes_X, key=lambda x: abs(x - tgt_size_X)))
            closest_to_target_Y = int(min(possibSizes_Y, key=lambda y: abs(y - tgt_size_Y)))
            return closest_to_target_Y, closest_to_target_X
837
838
839
840
841
842
        else:
            return None

    def _calc_shifted_cross_power_spectrum(self, im0=None, im1=None, precision=np.complex64):
        """Calculates shifted cross power spectrum for quantifying x/y-shifts.

843
844
845
846
        :param im0:         reference image
        :param im1:         subject image to shift
        :param precision:   to be quantified as a datatype
        :return:            2D-numpy-array of the shifted cross power spectrum
847
848
        """

849
850
        im0 = im0 if im0 is not None else self.matchWin[:] if self.matchWin.imID == 'ref' else self.otherWin[:]
        im1 = im1 if im1 is not None else self.otherWin[:] if self.otherWin.imID == 'shift' else self.matchWin[:]
851

852
        assert im0.shape == im1.shape, 'The reference and the target image must have the same dimensions.'
853
854
855
856
        if im0.shape[0] % 2 != 0:
            warnings.warn('Odd row count in one of the match images!')
        if im1.shape[1] % 2 != 0:
            warnings.warn('Odd column count in one of the match images!')
857

858
859
        wsYX = self._shrink_winsize_to_binarySize(im0.shape) if self.bin_ws else im0.shape
        wsYX = ((min(wsYX),) * 2 if self.force_quadratic_win else wsYX) if wsYX else None
860

861
        if wsYX not in [None, (0, 0)]:
862
            time0 = time.time()
863
864
865
866
867
            if self.v:
                print('final window size: %s/%s (X/Y)' % (wsYX[1], wsYX[0]))
                # FIXME size of self.matchWin is not updated
                # FIXME CoRegPoints_grid.WIN_SZ is taken from self.matchBox.imDimsYX but this is not updated

868
            center_YX = np.array(im0.shape) / 2
869
870
            xmin, xmax = int(center_YX[1] - wsYX[1] / 2), int(center_YX[1] + wsYX[1] / 2)
            ymin, ymax = int(center_YX[0] - wsYX[0] / 2), int(center_YX[0] + wsYX[0] / 2)
871

872
873
            in_arr0 = im0[ymin:ymax, xmin:xmax].astype(precision)
            in_arr1 = im1[ymin:ymax, xmin:xmax].astype(precision)
874
875

            if self.v:
876
                PLT.subplot_imshow([np.real(in_arr0).astype(np.float32), np.real(in_arr1).astype(np.float32)],
877
                                   ['FFTin ' + self.ref.title, 'FFTin ' + self.shift.title], grid=True)
878

879
880
881
            if pyfftw and self.fftw_works is not False:  # if module is installed and working
                fft_arr0 = pyfftw.FFTW(in_arr0, np.empty_like(in_arr0), axes=(0, 1))()
                fft_arr1 = pyfftw.FFTW(in_arr1, np.empty_like(in_arr1), axes=(0, 1))()
882
883

                # catch empty output arrays (for some reason this happens sometimes..) -> use numpy fft
884
885
                # => this is caused by the call of pyfftw.FFTW. Exactly in that moment the input array in_arr0 is
                #    overwritten with zeros (maybe this is a bug in pyFFTW?)
886
                if self.fftw_works in [None, True] and (np.std(fft_arr0) == 0 or np.std(fft_arr1) == 0):
887
888
889
890
891
892
                    self.fftw_works = False
                    # recreate input arrays and use numpy fft as fallback
                    in_arr0 = im0[ymin:ymax, xmin:xmax].astype(precision)
                    in_arr1 = im1[ymin:ymax, xmin:xmax].astype(precision)
                    fft_arr0 = np.fft.fft2(in_arr0)
                    fft_arr1 = np.fft.fft2(in_arr1)
893
894
                else:
                    self.fftw_works = True
895
896
897
            else:
                fft_arr0 = np.fft.fft2(in_arr0)
                fft_arr1 = np.fft.fft2(in_arr1)
898

899
900
            # GeoArray(fft_arr0.astype(np.float32)).show(figsize=(15,15))
            # GeoArray(fft_arr1.astype(np.float32)).show(figsize=(15,15))
901

902
903
            if self.v:
                print('forward FFTW: %.2fs' % (time.time() - time0))
904
905
906
907

            eps = np.abs(fft_arr1).max() * 1e-15
            # cps == cross-power spectrum of im0 and im2

908
            temp = np.array(fft_arr0 * fft_arr1.conjugate()) / (np.abs(fft_arr0) * np.abs(fft_arr1) + eps)
909
910
911

            time0 = time.time()
            if 'pyfft' in globals():
912
                ifft_arr = pyfftw.FFTW(temp, np.empty_like(temp), axes=(0, 1), direction='FFTW_BACKWARD')()
913
914
            else:
                ifft_arr = np.fft.ifft2(temp)
915
916
            if self.v:
                print('backward FFTW: %.2fs' % (time.time() - time0))
917
918

            cps = np.abs(ifft_arr)
919
            # scps = shifted cps  => shift the zero-frequency component to the center of the spectrum
920
921
            scps = np.fft.fftshift(cps)
            if self.v:
922
923
924
925
926
                PLT.subplot_imshow([np.real(in_arr0).astype(np.uint16), np.real(in_arr1).astype(np.uint16),
                                    np.real(fft_arr0).astype(np.uint8), np.real(fft_arr1).astype(np.uint8), scps],
                                   titles=['matching window im0', 'matching window im1',
                                           "fft result im0", "fft result im1", "cross power spectrum"], grid=True)
                PLT.subplot_3dsurface(np.real(scps).astype(np.float32))
927
        else:
928
929
            scps = None
            self._handle_error(
930
931
932
933
934
935
936
                RuntimeError('The matching window became too small for calculating a reliable match. Matching failed.'))

        self.fftw_win_size_YX = wsYX
        return scps

    @staticmethod
    def _get_peakpos(scps):
937
938
939
        """Returns the row/column position of the peak within the given cross power spectrum.

        :param scps: <np.ndarray> shifted cross power spectrum
Daniel Scheffler's avatar
Daniel Scheffler committed
940
        :return:     <np.ndarray> [row, column]
941
        """
942
        max_flat_idx = np.argmax(scps)
943
        return np.array(np.unravel_index(max_flat_idx, scps.shape))