CoReg.py 72.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
# -*- coding: utf-8 -*-
__author__='Daniel Scheffler'

import os
import re
import shutil
import subprocess
import time
import warnings
10
from copy import copy
11
12

# custom
13
14
15
16
try:
    import gdal
except ImportError:
    from osgeo import gdal
17
import numpy as np
18
19
20
try:
    import pyfftw
except ImportError:
21
    pyfftw = None
22
from shapely.geometry import Point, Polygon
23
from skimage.exposure import rescale_intensity
24
25

# internal modules
26
from .DeShifter import DESHIFTER, _dict_rspAlg_rsp_Int
27
28
29
30
31
32
from .          import geometry  as GEO
from .          import io        as IO
from .          import plotting  as PLT

from py_tools_ds.ptds                      import GeoArray
from py_tools_ds.ptds.geo.coord_calc       import corner_coord_to_minmax, get_corner_coordinates
33
from py_tools_ds.ptds.geo.vector.topology  import get_overlap_polygon, get_smallest_boxImYX_that_contains_boxMapYX
34
from py_tools_ds.ptds.geo.projection       import prj_equal, get_proj4info
35
36
from py_tools_ds.ptds.geo.vector.geometry  import boxObj, round_shapelyPoly_coords
from py_tools_ds.ptds.geo.coord_grid       import move_shapelyPoly_to_image_grid
37
from py_tools_ds.ptds.geo.coord_trafo      import pixelToMapYX, reproject_shapelyGeometry, mapXY2imXY
38
39
40
from py_tools_ds.ptds.geo.raster.reproject import warp_ndarray
from py_tools_ds.ptds.geo.map_info         import geotransform2mapinfo
from py_tools_ds.ptds.numeric.vector       import find_nearest
41
from py_tools_ds.ptds.similarity.raster    import calc_ssim
42
43
44
45
46
47
48
49





class imParamObj(object):
    def __init__(self, CoReg_params, imID):
        assert imID in ['ref', 'shift']
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
50

51
        self.imName = 'reference image' if imID == 'ref' else 'image to be shifted'
52
53
        self.v = CoReg_params['v']
        self.q = CoReg_params['q'] if not self.v else False
54
55

        # set GeoArray
56
        get_geoArr    = lambda p: GeoArray(p) if not isinstance(p,GeoArray) else p
57
        self.GeoArray = get_geoArr(CoReg_params['im_ref']) if imID == 'ref' else get_geoArr(CoReg_params['im_tgt'])
58
59
60
61
        init_nodata   = CoReg_params['nodata'][0 if imID == 'ref' else 1]
        self.GeoArray.nodata   = init_nodata if init_nodata is not None else self.GeoArray.nodata
        self.GeoArray.progress = CoReg_params['progress']
        self.GeoArray.q        = CoReg_params['q']
62

63
64
65
66
67
        assert isinstance(self.GeoArray, GeoArray), \
            'Something went wrong with the creation of GeoArray instance for the %s. The created ' \
            'instance does not seem to belong to the GeoArray class. If you are working in Jupyter Notebook, reset the ' \
            'kernel and try again.' %self.imName

68
69
70
71
        # set title to be used in plots
        self.title = os.path.basename(self.GeoArray.filePath) if self.GeoArray.filePath else self.imName

        # set params
72
73
74
75
76
77
78
79
        self.prj          = self.GeoArray.projection
        self.gt           = self.GeoArray.geotransform
        self.xgsd         = self.GeoArray.xgsd
        self.ygsd         = self.GeoArray.ygsd
        self.xygrid_specs = self.GeoArray.xygrid_specs
        self.rows         = self.GeoArray.rows
        self.cols         = self.GeoArray.cols
        self.bands        = self.GeoArray.bands
80
81
82
83
84
85
86

        # validate params
        assert self.prj, 'The %s has no projection.' % self.imName
        assert not re.search('LOCAL_CS', self.prj), 'The %s is not georeferenced.' % self.imName
        assert self.gt, 'The %s has no map information.' % self.imName

        # set band4match
87
        self.band4match = (CoReg_params['r_b4match'] if imID == 'ref' else CoReg_params['s_b4match'])-1
88
89
90
        assert self.bands >= self.band4match+1 >= 1, "The %s has %s %s. So its band number to match must be %s%s. " \
            "Got %s." % (self.imName, self.bands, 'bands' if self.bands > 1 else 'band', 'between 1 and '
            if self.bands > 1 else '', self.bands, self.band4match)
91
92

        # set nodata
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
93
        if CoReg_params['nodata'][0 if imID == 'ref' else 1] is not None:
94
            self.nodata = CoReg_params['nodata'][0 if imID == 'ref' else 1]
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
95
        else:
96
            self.nodata = self.GeoArray.nodata
97

98
99
100
101
102
103
104
105
106
107
108
109
        # set footprint_poly
        given_footprint_poly = CoReg_params['footprint_poly_%s' % ('ref' if imID == 'ref' else 'tgt')]
        given_corner_coord   = CoReg_params['data_corners_%s'   % ('ref' if imID == 'ref' else 'tgt')]

        if given_footprint_poly:
            self.GeoArray.footprint_poly = given_footprint_poly
        elif given_corner_coord is not None:
            self.GeoArray.footprint_poly = Polygon(given_corner_coord)
        elif not CoReg_params['calc_corners']:
            # use the image extent
            self.GeoArray.footprint_poly = Polygon(get_corner_coordinates(gt=self.GeoArray.geotransform,
                                                                          cols=self.cols,rows=self.rows))
110
        else:
111
112
113
114
            # footprint_poly is calculated automatically by GeoArray
            if not CoReg_params['q']:
                print('Calculating actual data corner coordinates for %s...' % self.imName)
            self.GeoArray.calc_mask_nodata(fromBand=self.band4match)  # this avoids that all bands have to be read
115

116
        self.poly = self.GeoArray.footprint_poly  # returns a shapely geometry
117

118
119
        if not CoReg_params['q']:
            print('Bounding box of calculated footprint for %s:\n\t%s' % (self.imName, self.poly.bounds))
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        # add bad data mask
        given_mask = CoReg_params['mask_baddata_%s' % ('ref' if imID == 'ref' else 'tgt')]
        self.mask_baddata = None
        if given_mask:
            self.add_mask_bad_data(given_mask)


    def add_mask_bad_data(self, path_or_geoArr):
        """Adds a bad data mask. This method is separated from __init__() in order to allow explicit adding of the mask.

        :param path_or_geoArr:
        """
        geoArr_mask = path_or_geoArr if isinstance(path_or_geoArr, GeoArray) else GeoArray(path_or_geoArr)

        assert geoArr_mask.bands == 1, \
            'Expected one single band as bad data mask for %s. Got %s bands.' % (self.imName, geoArr_mask.bands)
        pixelVals_in_mask = sorted(list(np.unique(geoArr_mask[:])))
        assert len(pixelVals_in_mask) <= 2, 'Bad data mask must have only two pixel values (boolean) - 0 and 1 or ' \
                                            'False and True! The given mask for %s contains the values %s.' % (
                                            self.imName, pixelVals_in_mask)
        assert pixelVals_in_mask in [[0, 1], [False, True]], 'Found unsupported pixel values in the given bad data ' \
                                                             'mask for %s: %s Only the values True, False, 0 and 1 ' \
                                                             'are supported. ' % (self.imName, pixelVals_in_mask)

        self.mask_baddata = GeoArray(geoArr_mask[:].astype(np.bool), geoArr_mask.gt, geoArr_mask.prj)


148
149
150


class COREG(object):
151
152
    """See help(COREG) for documentation!"""

153
154
    def __init__(self, im_ref, im_tgt, path_out=None, fmt_out='ENVI', out_crea_options=None, r_b4match=1, s_b4match=1,
                 wp=(None,None), ws=(512, 512), max_iter=5, max_shift=5, align_grids=False, match_gsd=False,
155
156
                 out_gsd=None, target_xyGrid=None, resamp_alg_deshift='cubic', resamp_alg_calc='cubic',
                 footprint_poly_ref=None, footprint_poly_tgt=None, data_corners_ref=None, data_corners_tgt=None,
157
158
159
                 nodata=(None,None), calc_corners=True, binary_ws=True, mask_baddata_ref=None, mask_baddata_tgt=None,
                 multiproc=True, force_quadratic_win=True, progress=True, v=False, path_verbose_out=None, q=False,
                 ignore_errors=False):
160
161
162
163

        """Detects and corrects global X/Y shifts between a target and refernce image. Geometric shifts are calculated
        at a specific (adjustable) image position. Correction performs a global shifting in X- or Y direction.

164
165
166
167
        :param im_ref(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of reference image
        :param im_tgt(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of image to be shifted
168
        :param path_out(str):           target path of the coregistered image
169
170
171
172
                                            - if None (default), the method correct_shifts() does not write to disk
                                            - if 'auto': /dir/of/im1/<im1>__shifted_to__<im0>.bsq
        :param fmt_out(str):            raster file format for output file. ignored if path_out is None. can be any GDAL
                                        compatible raster file format (e.g. 'ENVI', 'GeoTIFF'; default: ENVI)
173
174
        :param out_crea_options(list):  GDAL creation options for the output image,
                                        e.g. ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
175
176
177
178
179
180
181
182
183
184
185
        :param r_b4match(int):          band of reference image to be used for matching (starts with 1; default: 1)
        :param s_b4match(int):          band of shift image to be used for matching (starts with 1; default: 1)
        :param wp(tuple):               custom matching window position as map values in the same projection like the
                                        reference image (default: central position of image overlap)
        :param ws(tuple):               custom matching window size [pixels] (default: (512,512))
        :param max_iter(int):           maximum number of iterations for matching (default: 5)
        :param max_shift(int):          maximum shift distance in reference image pixel units (default: 5 px)
        :param align_grids(bool):       align the coordinate grids of the image to be and the reference image (default: 0)
        :param match_gsd(bool):         match the output pixel size to pixel size of the reference image (default: 0)
        :param out_gsd(tuple):          xgsd ygsd: set the output pixel size in map units
                                        (default: original pixel size of the image to be shifted)
186
187
        :param target_xyGrid(list):     a list with a target x-grid and a target y-grid like [[15,45], [15,45]]
                                        This overrides 'out_gsd', 'align_grids' and 'match_gsd'.
188
189
190
191
192
193
194
195
196
        :param resamp_alg_deshift(str)  the resampling algorithm to be used for shift correction (if neccessary)
                                        valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average, mode,
                                                          max, min, med, q1, q3
                                        default: cubic
        :param resamp_alg_calc(str)     the resampling algorithm to be used for all warping processes during calculation
                                        of spatial shifts
                                        (valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average, mode,
                                                       max, min, med, q1, q3)
                                        default: cubic (highly recommended)
197
198
199
200
201
202
203
204
205
206
        :param footprint_poly_ref(str): footprint polygon of the reference image (WKT string or shapely.geometry.Polygon),
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param footprint_poly_tgt(str): footprint polygon of the image to be shifted (WKT string or shapely.geometry.Polygon)
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param data_corners_ref(list):  map coordinates of data corners within reference image.
                                        ignored if footprint_poly_ref is given.
        :param data_corners_tgt(list):  map coordinates of data corners within image to be shifted.
                                        ignored if footprint_poly_tgt is given.
207
208
209
210
211
        :param nodata(tuple):           no data values for reference image and image to be shifted
        :param calc_corners(bool):      calculate true positions of the dataset corners in order to get a useful
                                        matching window position within the actual image overlap
                                        (default: 1; deactivated if '-cor0' and '-cor1' are given
        :param binary_ws(bool):         use binary X/Y dimensions for the matching window (default: 1)
212
213
214
215
216
217
218
219
220
221
222
223
224
        :param mask_baddata_ref(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                reference image where all bad data pixels (e.g. clouds) are marked with
                                                True and the remaining pixels with False. Must have the same geographic
                                                extent and projection like 'im_ref'. The mask is used to check if the
                                                chosen matching window position is valid in the sense of useful data.
                                                Otherwise this window position is rejected.
        :param mask_baddata_tgt(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                image to be shifted where all bad data pixels (e.g. clouds) are marked
                                                with True and the remaining pixels with False. Must have the same
                                                geographic extent and projection like 'im_ref'. The mask is used to
                                                check if the chosen matching window position is valid in the sense of
                                                useful data. Otherwise this window position is rejected.
        :param multiproc(bool):         enable multiprocessing (default: 1)
225
        :param force_quadratic_win(bool):   force a quadratic matching window (default: 1)
226
        :param progress(bool):          show progress bars (default: True)
227
        :param v(bool):                 verbose mode (default: False)
228
229
        :param path_verbose_out(str):   an optional output directory for intermediate results
                                        (if not given, no intermediate results are written to disk)
230
231
        :param q(bool):                 quiet mode (default: False)
        :param ignore_errors(bool):     Useful for batch processing. (default: False)
232
233
234
235
236
237
                                        In case of error COREG.success == False and COREG.x_shift_px/COREG.y_shift_px
                                        is None
        """

        self.params              = dict([x for x in locals().items() if x[0] != "self"])

238
239
        # assertions
        assert fmt_out, "'%s' is not a valid GDAL driver code." %fmt_out
240
241
        if match_gsd and out_gsd: warnings.warn("'-out_gsd' is ignored because '-match_gsd' is set.\n")
        if out_gsd:  assert isinstance(out_gsd, list) and len(out_gsd) == 2, 'out_gsd must be a list with two values.'
242
243
244
245
        if data_corners_ref and not isinstance(data_corners_ref[0], list): # group if not [[x,y],[x,y]..] but [x,y,x,y,]
            data_corners_ref = [data_corners_ref[i:i + 2] for i in range(0, len(data_corners_ref), 2)]
        if data_corners_tgt and not isinstance(data_corners_tgt[0], list): # group if not [[x,y],[x,y]..]
            data_corners_tgt = [data_corners_tgt[i:i + 2] for i in range(0, len(data_corners_tgt), 2)]
246
247
        if nodata: assert isinstance(nodata, tuple) and len(nodata) == 2, "'nodata' must be a tuple with two values." \
                                                                          "Got %s with length %s." %(type(nodata),len(nodata))
248
        for rspAlg in [resamp_alg_deshift, resamp_alg_calc]:
249
            assert rspAlg in _dict_rspAlg_rsp_Int.keys(), "'%s' is not a supported resampling algorithm." % rspAlg
250
        if resamp_alg_calc=='average' and (v or not q):
251
            warnings.warn("The resampling algorithm 'average' causes sinus-shaped patterns in fft images that will "
252
253
                          "affect the precision of the calculated spatial shifts! It is highly recommended to "
                          "choose another resampling algorithm.")
254
255

        self.path_out            = path_out            # updated by self.set_outpathes
256
        self.fmt_out             = fmt_out
257
        self.out_creaOpt         = out_crea_options
258
259
260
261
262
263
264
        self.win_pos_XY          = wp                  # updated by self.get_opt_winpos_winsize()
        self.win_size_XY         = ws                  # updated by self.get_opt_winpos_winsize()
        self.max_iter            = max_iter
        self.max_shift           = max_shift
        self.align_grids         = align_grids
        self.match_gsd           = match_gsd
        self.out_gsd             = out_gsd
265
        self.target_xyGrid       = target_xyGrid
266
267
        self.rspAlg_DS           = resamp_alg_deshift
        self.rspAlg_calc         = resamp_alg_calc
268
269
270
271
272
273
        self.calc_corners        = calc_corners
        self.mp                  = multiproc
        self.bin_ws              = binary_ws
        self.force_quadratic_win = force_quadratic_win
        self.v                   = v
        self.path_verbose_out    = path_verbose_out
274
275
276
        self.q                   = q if not v else False # overridden by v
        self.progress            = progress if not q else False  # overridden by q

277
278
279
280
281
282
283
284
285
286
287
288
289
        self.ignErr              = ignore_errors
        self.max_win_sz_changes  = 3                   # TODO: änderung der window size, falls nach max_iter kein valider match gefunden
        self.ref                 = None                # set by self.get_image_params
        self.shift               = None                # set by self.get_image_params
        self.matchWin            = None                # set by self.get_clip_window_properties()
        self.otherWin            = None                # set by self.get_clip_window_properties()
        self.imfft_gsd           = None                # set by self.get_clip_window_properties()
        self.fftw_win_size_YX    = None                # set by calc_shifted_cross_power_spectrum

        self.x_shift_px          = None                # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.y_shift_px          = None                # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.x_shift_map         = None                # set by self.get_updated_map_info()
        self.y_shift_map         = None                # set by self.get_updated_map_info()
290
291
        self.vec_length_map      = None
        self.vec_angle_deg       = None
292
        self.updated_map_info    = None                # set by self.get_updated_map_info()
293
294
295
        self.ssim_orig           = None                # set by self._validate_ssim_improvement()
        self.ssim_deshifted      = None                # set by self._validate_ssim_improvement()
        self._ssim_improved      = None                # private attribute to be filled by self.ssim_improved
296
297

        self.tracked_errors      = []                  # expanded each time an error occurs
298
        self.success             = None                # default
299
        self.deshift_results     = None                # set by self.correct_shifts()
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

        gdal.AllRegister()
        self._get_image_params()
        self._set_outpathes(im_ref, im_tgt)
        self.grid2use                 = 'ref' if self.shift.xgsd <= self.ref.xgsd else 'shift'
        if self.v: print('resolutions: ', self.ref.xgsd, self.shift.xgsd)

        overlap_tmp                   = get_overlap_polygon(self.ref.poly, self.shift.poly, self.v)
        self.overlap_poly             = overlap_tmp['overlap poly'] # has to be in reference projection
        assert self.overlap_poly, 'The input images have no spatial overlap.'
        self.overlap_percentage       = overlap_tmp['overlap percentage']
        self.overlap_area             = overlap_tmp['overlap area']

        if self.v and self.path_verbose_out:
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_imref.shp'),    self.ref.poly,     self.ref.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_im2shift.shp'), self.shift.poly,   self.shift.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'overlap_poly.shp'),  self.overlap_poly, self.ref.prj)

        ### FIXME: transform_mapPt1_to_mapPt2(im2shift_center_map, ds_imref.GetProjection(), ds_im2shift.GetProjection()) # später basteln für den fall, dass projektionen nicht gleich sind

        # get_clip_window_properties
        self._get_opt_winpos_winsize()
        if not self.q: print('Matching window position (X,Y): %s/%s' % (self.win_pos_XY[0], self.win_pos_XY[1]))
        self._get_clip_window_properties()

325
        if self.v and self.path_verbose_out and self.matchWin.mapPoly and self.success is not False:
326
327
328
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_matchWin.shp'),
                         self.matchWin.mapPoly, self.matchWin.prj)

329
        self.success     = False if self.success is False or not self.matchWin.boxMapYX else None
330
        self._coreg_info = None # private attribute to be filled by self.coreg_info property
331
332
333


    def _set_outpathes(self, im_ref, im_tgt):
334
335
336
337
        assert isinstance(im_ref, (GeoArray, str)) and isinstance(im_tgt, (GeoArray, str)),\
            'COREG._set_outpathes() expects two file pathes (string) or two instances of the ' \
            'GeoArray class. Received %s and %s.' %(type(im_ref), type(im_tgt))

338
339
340
341
342
343
        get_baseN = lambda path: os.path.splitext(os.path.basename(path))[0]

        # get input pathes
        path_im_ref = im_ref.filePath if isinstance(im_ref, GeoArray) else im_ref
        path_im_tgt = im_tgt.filePath if isinstance(im_tgt, GeoArray) else im_tgt

344
345
346
347
348
349
        if self.path_out: # this also applies to self.path_out='auto'

            if self.path_out == 'auto':
                dir_out, fName_out = os.path.dirname(path_im_tgt), ''
            else:
                dir_out, fName_out = os.path.split(path_im_tgt)
350
351
352
353
354
355
356
357
358
359
360
361
362
363

            if dir_out and fName_out:
                # a valid output path is given => do nothing
                pass

            else:
                # automatically create an output directory and filename if not given
                if not dir_out:
                    if not path_im_ref:
                        dir_out = os.path.abspath(os.path.curdir)
                    else:
                        dir_out = os.path.dirname(path_im_ref)

                if not fName_out:
364
365
366
367
368
                    ext         = 'bsq' if self.fmt_out=='ENVI' else \
                                    gdal.GetDriverByName(self.fmt_out).GetMetadataItem(gdal.DMD_EXTENSION)
                    fName_out   = fName_out if not fName_out in ['.',''] else '%s__shifted_to__%s' \
                                    %(get_baseN(path_im_tgt), get_baseN(path_im_ref))
                    fName_out   = fName_out+'.%s'%ext if ext else fName_out
369

370
                self.path_out   = os.path.abspath(os.path.join(dir_out,fName_out))
371
372
373
374

                assert ' ' not in self.path_out, \
                    "The path of the output image contains whitespaces. This is not supported by GDAL."
        else:
375
            # this only happens if COREG is not instanced from within Python and self.path_out is explicitly set to None
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
            # => DESHIFTER will return an array
            pass

        if self.v:
            if self.path_verbose_out:
                dir_out, dirname_out = os.path.split(self.path_verbose_out)

                if not dir_out:
                    if self.path_out:
                        self.path_verbose_out = os.path.dirname(self.path_out)
                    else:
                        self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir,
                            'CoReg_verboseOut__%s__shifted_to__%s' % (get_baseN(path_im_tgt), get_baseN(path_im_ref))))
                elif dirname_out and not dir_out:
                    self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir, dirname_out))

                assert ' ' not in self.path_verbose_out, \
                    "'path_verbose_out' contains whitespaces. This is not supported by GDAL."

        else:
            self.path_verbose_out = None

        if self.path_verbose_out and not os.path.isdir(self.path_verbose_out): os.makedirs(self.path_verbose_out)


    def _get_image_params(self):
        self.ref   = imParamObj(self.params,'ref')
        self.shift = imParamObj(self.params,'shift')
        assert prj_equal(self.ref.prj, self.shift.prj), \
405
406
            'Input projections are not equal. Different projections are currently not supported. Got %s / %s.'\
            %(get_proj4info(proj=self.ref.prj), get_proj4info(proj=self.shift.prj))
407
408


409
410
411
412
413
414
415
416
417
    def show_image_footprints(self):
        """This method is intended to be called from Jupyter Notebook and shows a web map containing the calculated
        footprints of the input images as well as the corresponding overlap area."""
        # TODO different colors for polygons
        assert self.overlap_poly, 'Please calculate the overlap polygon first.'

        try:
            import folium, geojson
        except ImportError:
418
419
            folium, geojson = None, None
        if not folium or not geojson:
420
421
422
            raise ImportError("This method requires the libraries 'folium' and 'geojson'. They can be installed with "
                              "the shell command 'pip install folium geojson'.")

423
424
425
        refPoly      = reproject_shapelyGeometry(self.ref  .poly      , self.ref  .GeoArray.epsg, 4326)
        shiftPoly    = reproject_shapelyGeometry(self.shift.poly      , self.shift.GeoArray.epsg, 4326)
        overlapPoly  = reproject_shapelyGeometry(self.overlap_poly    , self.shift.GeoArray.epsg, 4326)
426
427
428
429
430
431
432
433
434
        matchWinPoly = reproject_shapelyGeometry(self.matchWin.mapPoly, self.shift.GeoArray.epsg, 4326)

        m = folium.Map(location=tuple(np.array(overlapPoly.centroid.coords.xy).flatten())[::-1])
        for poly in [refPoly, shiftPoly, overlapPoly, matchWinPoly]:
            gjs = geojson.Feature(geometry=poly, properties={})
            folium.GeoJson(gjs).add_to(m)
        return m


435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    def show_matchWin(self, interactive=True, deshifted=False):

        if interactive:
            warnings.warn(UserWarning('This function is still under construction and may not work as expected!'))
            # use Holoviews
            try:
                import holoviews as hv
            except ImportError:
                hv =None
            if not hv:
                raise ImportError(
                    "This method requires the library 'holoviews'. It can be installed for Anaconda with "
                    "the shell command 'conda install -c ioam holoviews bokeh'.")
            warnings.filterwarnings('ignore')
            hv.notebook_extension('matplotlib')
            hv.Store.add_style_opts(hv.Image, ['vmin','vmax'])

            #hv.Store.option_setters.options().Image = hv.Options('style', cmap='gnuplot2')
            #hv.Store.add_style_opts(hv.Image, ['cmap'])
            #renderer = hv.Store.renderers['matplotlib'].instance(fig='svg', holomap='gif')
            #RasterPlot = renderer.plotting_class(hv.Image)
            #RasterPlot.cmap = 'gray'
            matchWin_orig = self.matchWin.data
            otherWin_orig = self.otherWin.data
            otherWin_corr = self._get_deshifted_otherWin()[:]
            xmin,xmax,ymin,ymax = self.matchWin.boundsMap


            get_vmin     = lambda arr: np.percentile(arr, 2)
            get_vmax     = lambda arr: np.percentile(arr, 98)
            get_arr      = lambda arr: rescale_intensity(arr, in_range=(get_vmin(arr), get_vmax(arr)))
            get_hv_image = lambda arr: hv.Image(get_arr(arr), bounds=(xmin,ymin,xmax,ymax))(
                style={'cmap':'gray',
                       'vmin':get_vmin(arr), 'vmax':get_vmax(arr), # does not work
                       'interpolation':'none'},
                plot={'fig_inches':(15,15), 'show_grid':True})
                #plot={'fig_size':100, 'show_grid':True})


            imgs_orig = {1 : get_hv_image(matchWin_orig),
                         2 : get_hv_image(otherWin_orig)
                        }
            imgs_corr = {1: get_hv_image(matchWin_orig),
                         2: get_hv_image(otherWin_corr)
                         }
            #layout = get_hv_image(matchWin_orig) + get_hv_image(matchWin_orig)

            imgs = {1 : get_hv_image(matchWin_orig) + get_hv_image(matchWin_orig),
                    2 : get_hv_image(otherWin_orig) + get_hv_image(otherWin_corr)
                        }

            # Construct a HoloMap by evaluating the function over all the keys
            hmap_orig = hv.HoloMap(imgs_orig, kdims=['image'])
            hmap_corr = hv.HoloMap(imgs_corr, kdims=['image'])

            hmap      = hv.HoloMap(imgs, kdims=['image']).collate().cols(1) # displaying this results in a too small figure
            #hmap = hv.HoloMap(imgs_corr, kdims=['image']) +  hv.HoloMap(imgs_corr, kdims=['image'])

            ## Construct a HoloMap by defining the sampling on the Dimension
            #dmap = hv.DynamicMap(image_slice, kdims=[hv.Dimension('z_axis', values=keys)])
            warnings.filterwarnings('default')
            #return hmap

            return hmap_orig if not deshifted else hmap_corr


501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    def _get_opt_winpos_winsize(self):
        # type: (tuple,tuple) -> tuple,tuple
        """Calculates optimal window position and size in reference image units according to DGM, cloud_mask and
        trueCornerLonLat."""
        # dummy algorithm: get center position of overlap instead of searching ideal window position in whole overlap
        # TODO automatischer Algorithmus zur Bestimmung der optimalen Window Position

        wp = tuple(self.win_pos_XY)
        assert type(self.win_pos_XY) in [tuple,list,np.ndarray],\
            'The window position must be a tuple of two elements. Got %s with %s elements.' %(type(wp),len(wp))
        wp = tuple(wp)

        if None in wp:
            overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.centroid.coords.xy
            wp = (wp[0] if wp[0] else overlap_center_pos_x[0]), (wp[1] if wp[1] else overlap_center_pos_y[0])

517
        # validate window position
518
519
520
521
522
523
        if not self.overlap_poly.contains(Point(wp)):
            self.success=False
            self.tracked_errors.append(ValueError('The provided window position %s/%s is outside of the overlap ' \
                                                  'area of the two input images. Check the coordinates.' %wp))
            if not self.ignErr:
                raise self.tracked_errors[-1]
524
525
526
527
528
529
530
531
532
533
534
535
536
537

        # check if window position is within bad data area if a respective mask has been provided
        for im in [self.ref, self.shift]:
            if im.mask_baddata is not None:
                imX, imY = mapXY2imXY(wp, im.mask_baddata.gt)

                if not im.mask_baddata[imY, imX]:
                    self.tracked_errors.append(
                        RuntimeError('According to the provided bad data mask for the %s the chosen window position '
                            '%s / %s is within a bad data area. Using this window position for coregistration '
                            'is not reasonable. Please provide a better window position!' %(im.imName, wp[0], wp[1])))
                    self.success = False
                    if not self.ignErr:
                        raise self.tracked_errors[-1]
538

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
        self.win_pos_XY  = wp
        self.win_size_XY = (int(self.win_size_XY[0]), int(self.win_size_XY[1])) if self.win_size_XY else (512,512)


    def _get_clip_window_properties(self):
        """Calculate all properties of the matching window and the other window. These windows are used to read the
        corresponding image positions in the reference and the target image.
        hint: Even if X- and Y-dimension of the target window is equal, the output window can be NOT quadratic!
        """
        # FIXME image sizes like 10000*256 are still possible

        wpX,wpY             = self.win_pos_XY
        wsX,wsY             = self.win_size_XY
        ref_wsX, ref_wsY    = (wsX*self.ref.xgsd  , wsY*self.ref.ygsd)   # image units -> map units
        shift_wsX,shift_wsY = (wsX*self.shift.xgsd, wsY*self.shift.ygsd) # image units -> map units
        ref_box_kwargs      = {'wp':(wpX,wpY),'ws':(ref_wsX,ref_wsY)    ,'gt':self.ref.gt  }
        shift_box_kwargs    = {'wp':(wpX,wpY),'ws':(shift_wsX,shift_wsY),'gt':self.shift.gt}
        matchWin            = boxObj(**ref_box_kwargs)   if self.grid2use=='ref' else boxObj(**shift_box_kwargs)
        otherWin            = boxObj(**shift_box_kwargs) if self.grid2use=='ref' else boxObj(**ref_box_kwargs)
        overlapWin          = boxObj(mapPoly=self.overlap_poly,gt=self.ref.gt)

        # clip matching window to overlap area
        matchWin.mapPoly = matchWin.mapPoly.intersection(overlapWin.mapPoly)

        # move matching window to imref grid or im2shift grid
        mW_rows, mW_cols = (self.ref.rows, self.ref.cols) if self.grid2use == 'ref' else (self.shift.rows, self.shift.cols)
        matchWin.mapPoly = move_shapelyPoly_to_image_grid(matchWin.mapPoly, matchWin.gt, mW_rows, mW_cols, 'NW')

        # check, ob durch Verschiebung auf Grid das matchWin außerhalb von overlap_poly geschoben wurde
        if not matchWin.mapPoly.within(overlapWin.mapPoly):
            # matchPoly weiter verkleinern # 1 px buffer reicht, weil window nur auf das Grid verschoben wurde
            xLarger,yLarger = matchWin.is_larger_DimXY(overlapWin.boundsIm)
            matchWin.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)

        # matching_win direkt auf grid2use (Rundungsfehler bei Koordinatentrafo beseitigen)
        matchWin.imPoly = round_shapelyPoly_coords(matchWin.imPoly, precision=0, out_dtype=int)

        # Check, ob match Fenster größer als anderes Fenster
        if not (matchWin.mapPoly.within(otherWin.mapPoly) or matchWin.mapPoly==otherWin.mapPoly):
            # dann für anderes Fenster kleinstes Fenster finden, das match-Fenster umgibt
            otherWin.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchWin.boxMapYX,otherWin.gt)

        # evtl. kann es sein, dass bei Shift-Fenster-Vergrößerung das shift-Fenster zu groß für den overlap wird
        while not otherWin.mapPoly.within(overlapWin.mapPoly):
            # -> match Fenster verkleinern und neues anderes Fenster berechnen
            xLarger, yLarger = otherWin.is_larger_DimXY(overlapWin.boundsIm)
            matchWin.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
586
            previous_area    = otherWin.mapPoly.area
587
588
            otherWin.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchWin.boxMapYX,otherWin.gt)

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
            if previous_area == otherWin.mapPoly.area:
                self.tracked_errors.append(
                    RuntimeError('Matching window in target image is larger than overlap area but further shrinking '
                                 'the matching window is not possible. Check if the footprints of the input data have '
                                 'been computed correctly. '))
                if not self.ignErr:
                    raise self.tracked_errors[-1]
                break # break out of while loop in order to avoid that code gets stuck here

        if self.tracked_errors:
            self.success = False
        else:
            # check results
            assert matchWin.mapPoly.within(otherWin.mapPoly)
            assert otherWin.mapPoly.within(overlapWin.mapPoly)

            self.imfft_gsd              = self.ref.xgsd       if self.grid2use =='ref' else self.shift.xgsd
            self.ref.win,self.shift.win = (matchWin,otherWin) if self.grid2use =='ref' else (otherWin,matchWin)
            self.matchWin,self.otherWin = matchWin, otherWin
            self.ref.  win.size_YX      = tuple([int(i) for i in self.ref.  win.imDimsYX])
            self.shift.win.size_YX      = tuple([int(i) for i in self.shift.win.imDimsYX])
            match_win_size_XY           = tuple(reversed([int(i) for i in matchWin.imDimsYX]))
            if not self.q and match_win_size_XY != self.win_size_XY:
                print('Target window size %s not possible due to too small overlap area or window position too close '
                      'to an image edge. New matching window size: %s.' %(self.win_size_XY,match_win_size_XY))
            #IO.write_shp('/misc/hy5/scheffler/Temp/matchMapPoly.shp', matchWin.mapPoly,matchWin.prj)
            #IO.write_shp('/misc/hy5/scheffler/Temp/otherMapPoly.shp', otherWin.mapPoly,otherWin.prj)
616
617
618
619
620
621
622
623
624
625
626
627
628
629


    def _get_image_windows_to_match(self):
        """Reads the matching window and the other window using subset read, and resamples the other window to the
        resolution and the pixel grid of the matching window. The result consists of two images with the same
        dimensions and exactly the same corner coordinates."""

        self.matchWin.imParams = self.ref   if self.grid2use=='ref' else self.shift
        self.otherWin.imParams = self.shift if self.grid2use=='ref' else self.ref

        # matchWin per subset-read einlesen -> self.matchWin.data
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.matchWin.boxImYX)
        assert np.array_equal(np.abs(np.array([rS,rE,cS,cE])), np.array([rS,rE,cS,cE])), \
            'Got negative values in gdalReadInputs for %s.' %self.matchWin.imParams.imName
630
        self.matchWin.data = self.matchWin.imParams.GeoArray[rS:rE,cS:cE, self.matchWin.imParams.band4match]
631
632
633
634
635

        # otherWin per subset-read einlesen
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.otherWin.boxImYX)
        assert np.array_equal(np.abs(np.array([rS,rE,cS,cE])), np.array([rS,rE,cS,cE])), \
            'Got negative values in gdalReadInputs for %s.' %self.otherWin.imParams.imName
636
        self.otherWin.data = self.otherWin.imParams.GeoArray[rS:rE, cS:cE, self.otherWin.imParams.band4match]
637
638
639
640
641
642
643
644
645
646
647
648
649

        if self.v:
            print('Original matching windows:')
            ref_data, shift_data =  (self.matchWin.data, self.otherWin.data) if self.grid2use=='ref' else \
                                    (self.otherWin.data, self.matchWin.data)
            PLT.subplot_imshow([ref_data, shift_data],[self.ref.title,self.shift.title], grid=True)

        otherWin_subgt = GEO.get_subset_GeoTransform(self.otherWin.gt, self.otherWin.boxImYX)

        # resample otherWin.data to the resolution of matchWin AND make sure the pixel edges are identical
        # (in order to make each image show the same window with the same coordinates)
        # TODO replace cubic resampling by PSF resampling - average resampling leads to sinus like distortions in the fft image that make a precise coregistration impossible. Thats why there is currently no way around cubic resampling.
        tgt_xmin,tgt_xmax,tgt_ymin,tgt_ymax = self.matchWin.boundsMap
650
651
652
653
654
655
        self.otherWin.data = warp_ndarray(self.otherWin.data,
                                          otherWin_subgt,
                                          self.otherWin.imParams.prj,
                                          self.matchWin.imParams.prj,
                                          out_gsd    = (self.imfft_gsd, self.imfft_gsd),
                                          out_bounds = ([tgt_xmin, tgt_ymin, tgt_xmax, tgt_ymax]),
656
                                          rspAlg     = _dict_rspAlg_rsp_Int[self.rspAlg_calc],
657
                                          in_nodata  = self.otherWin.imParams.nodata,
658
                                          CPUs       = None if self.mp else 1,
659
                                          progress   = False) [0]
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

        if self.matchWin.data.shape != self.otherWin.data.shape:
            self.tracked_errors.append(
                RuntimeError('Bad output of get_image_windows_to_match. Reference image shape is %s whereas shift '
                             'image shape is %s.' % (self.matchWin.data.shape, self.otherWin.data.shape)))
            raise self.tracked_errors[-1]
        rows, cols = [i if i % 2 == 0 else i - 1 for i in self.matchWin.data.shape]
        self.matchWin.data, self.otherWin.data = self.matchWin.data[:rows, :cols], self.otherWin.data[:rows, :cols]

        assert self.matchWin.data is not None and self.otherWin.data is not None, 'Creation of matching windows failed.'


    @staticmethod
    def _shrink_winsize_to_binarySize(win_shape_YX, target_size=None):
        # type: (tuple, tuple, int , int) -> tuple
        """Shrinks a given window size to the closest binary window size (a power of 2) -
        separately for X- and Y-dimension.

        :param win_shape_YX:    <tuple> source window shape as pixel units (rows,colums)
        :param target_size:     <tuple> source window shape as pixel units (rows,colums)
        """

        binarySizes   = [2**i for i in range(3,14)] # [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
        possibSizes_X = [i for i in binarySizes if i <= win_shape_YX[1]]
        possibSizes_Y = [i for i in binarySizes if i <= win_shape_YX[0]]
        if possibSizes_X and possibSizes_Y:
            tgt_size_X,tgt_size_Y = target_size if target_size else (max(possibSizes_X),max(possibSizes_Y))
            closest_to_target_X = int(min(possibSizes_X, key=lambda x:abs(x-tgt_size_X)))
            closest_to_target_Y = int(min(possibSizes_Y, key=lambda y:abs(y-tgt_size_Y)))
            return closest_to_target_Y,closest_to_target_X
        else:
            return None


    def _calc_shifted_cross_power_spectrum(self, im0=None, im1=None, precision=np.complex64):
        """Calculates shifted cross power spectrum for quantifying x/y-shifts.

            :param im0:         reference image
            :param im1:         subject image to shift
            :param precision:   to be quantified as a datatype
            :return:            2D-numpy-array of the shifted cross power spectrum
        """

        im0 = im0 if im0 is not None else self.ref.win.data
        im1 = im1 if im1 is not None else self.shift.win.data
        assert im0.shape == im1.shape, 'The reference and the target image must have the same dimensions.'
        if im0.shape[0]%2!=0: warnings.warn('Odd row count in one of the match images!')
        if im1.shape[1]%2!=0: warnings.warn('Odd column count in one of the match images!')

        wsYX = self._shrink_winsize_to_binarySize(im0.shape) if self.bin_ws              else im0.shape
        wsYX = ((min(wsYX),) * 2                            if self.force_quadratic_win else wsYX) if wsYX else None

        if wsYX:
            time0 = time.time()
            if self.v: print('final window size: %s/%s (X/Y)' % (wsYX[1], wsYX[0]))
            center_YX = np.array(im0.shape)/2
            xmin,xmax,ymin,ymax = int(center_YX[1]-wsYX[1]/2), int(center_YX[1]+wsYX[1]/2),\
                                  int(center_YX[0]-wsYX[0]/2), int(center_YX[0]+wsYX[0]/2)
            in_arr0  = im0[ymin:ymax,xmin:xmax].astype(precision)
            in_arr1  = im1[ymin:ymax,xmin:xmax].astype(precision)

            if self.v:
                PLT.subplot_imshow([in_arr0.astype(np.float32), in_arr1.astype(np.float32)],
                               ['FFTin '+self.ref.title,'FFTin '+self.shift.title], grid=True)

725
            if pyfftw: # if module is installed
726
727
728
729
730
                fft_arr0 = pyfftw.FFTW(in_arr0,np.empty_like(in_arr0), axes=(0,1))()
                fft_arr1 = pyfftw.FFTW(in_arr1,np.empty_like(in_arr1), axes=(0,1))()
            else:
                fft_arr0 = np.fft.fft2(in_arr0)
                fft_arr1 = np.fft.fft2(in_arr1)
731

732
733
734
735
736
            if self.v: print('forward FFTW: %.2fs' %(time.time() -time0))

            eps = np.abs(fft_arr1).max() * 1e-15
            # cps == cross-power spectrum of im0 and im2

737
            temp = np.array(fft_arr0 * fft_arr1.conjugate()) / (np.abs(fft_arr0) * np.abs(fft_arr1) + eps)
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768

            time0 = time.time()
            if 'pyfft' in globals():
                ifft_arr = pyfftw.FFTW(temp,np.empty_like(temp), axes=(0,1),direction='FFTW_BACKWARD')()
            else:
                ifft_arr = np.fft.ifft2(temp)
            if self.v: print('backward FFTW: %.2fs' %(time.time() -time0))

            cps = np.abs(ifft_arr)
            # scps = shifted cps
            scps = np.fft.fftshift(cps)
            if self.v:
                PLT.subplot_imshow([in_arr0.astype(np.uint16), in_arr1.astype(np.uint16), fft_arr0.astype(np.uint8),
                                fft_arr1.astype(np.uint8), scps], titles=['matching window im0', 'matching window im1',
                                "fft result im0", "fft result im1", "cross power spectrum"], grid=True)
                PLT.subplot_3dsurface(scps.astype(np.float32))
        else:
            self.tracked_errors.append(
                RuntimeError('The matching window became too small for calculating a reliable match. Matching failed.'))
            if self.ignErr:
                scps = None
            else:
                raise self.tracked_errors[-1]

        self.fftw_win_size_YX = wsYX
        return scps


    @staticmethod
    def _get_peakpos(scps):
        max_flat_idx = np.argmax(scps)
769
        return np.array(np.unravel_index(max_flat_idx, scps.shape))
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872


    @staticmethod
    def _get_shifts_from_peakpos(peakpos, arr_shape):
        y_shift = peakpos[0]-arr_shape[0]//2
        x_shift = peakpos[1]-arr_shape[1]//2
        return x_shift,y_shift


    @staticmethod
    def _clip_image(im, center_YX, winSzYX): # TODO this is also implemented in GeoArray
        get_bounds = lambda YX,wsY,wsX: (int(YX[1]-(wsX/2)),int(YX[1]+(wsX/2)),int(YX[0]-(wsY/2)),int(YX[0]+(wsY/2)))
        wsY,wsX    = winSzYX
        xmin,xmax,ymin,ymax = get_bounds(center_YX,wsY,wsX)
        return im[ymin:ymax,xmin:xmax]


    def _get_grossly_deshifted_images(self, im0, im1, x_intshift, y_intshift): # TODO this is also implemented in GeoArray # this should update ref.win.data and shift.win.data
        # get_grossly_deshifted_im0
        old_center_YX = np.array(im0.shape)/2
        new_center_YX = [old_center_YX[0]+y_intshift, old_center_YX[1]+x_intshift]

        x_left  = new_center_YX[1]
        x_right = im0.shape[1]-new_center_YX[1]
        y_above = new_center_YX[0]
        y_below = im0.shape[0]-new_center_YX[0]
        maxposs_winsz = 2*min(x_left,x_right,y_above,y_below)

        gdsh_im0 = self._clip_image(im0, new_center_YX, [maxposs_winsz, maxposs_winsz])

        # get_corresponding_im1_clip
        crsp_im1  = self._clip_image(im1, np.array(im1.shape) / 2, gdsh_im0.shape)

        if self.v:
            PLT.subplot_imshow([self._clip_image(im0, old_center_YX, gdsh_im0.shape), crsp_im1],
                               titles=['reference original', 'target'], grid=True)
            PLT.subplot_imshow([gdsh_im0, crsp_im1], titles=['reference virtually shifted', 'target'], grid=True)
        return gdsh_im0,crsp_im1


    @staticmethod
    def _find_side_maximum(scps, v=0):
        centerpos = [scps.shape[0]//2, scps.shape[1]//2]
        profile_left  = scps[ centerpos [0]  ,:centerpos[1]+1]
        profile_right = scps[ centerpos [0]  , centerpos[1]:]
        profile_above = scps[:centerpos [0]+1, centerpos[1]]
        profile_below = scps[ centerpos [0]: , centerpos[1]]

        if v:
            max_count_vals = 10
            PLT.subplot_2dline([[range(len(profile_left)) [-max_count_vals:], profile_left[-max_count_vals:]],
                                [range(len(profile_right))[:max_count_vals] , profile_right[:max_count_vals]],
                                [range(len(profile_above))[-max_count_vals:], profile_above[-max_count_vals:]],
                                [range(len(profile_below))[:max_count_vals:], profile_below[:max_count_vals]]],
                                titles =['Profile left', 'Profile right', 'Profile above', 'Profile below'],
                                shapetuple=(2,2))

        get_sidemaxVal_from_profile = lambda pf: np.array(pf)[::-1][1] if pf[0]<pf[-1] else np.array(pf)[1]
        sm_dicts_lr  = [{'side':si, 'value': get_sidemaxVal_from_profile(pf)} \
                        for pf,si in zip([profile_left,profile_right],['left','right'])]
        sm_dicts_ab  = [{'side':si, 'value': get_sidemaxVal_from_profile(pf)} \
                        for pf,si in zip([profile_above,profile_below],['above','below'])]
        sm_maxVal_lr = max([i['value'] for i in sm_dicts_lr])
        sm_maxVal_ab = max([i['value'] for i in sm_dicts_ab])
        sidemax_lr   = [sm for sm in sm_dicts_lr if sm['value'] is sm_maxVal_lr][0]
        sidemax_ab   = [sm for sm in sm_dicts_ab if sm['value'] is sm_maxVal_ab][0]
        sidemax_lr['direction_factor'] = {'left':-1, 'right':1} [sidemax_lr['side']]
        sidemax_ab['direction_factor'] = {'above':-1,'below':1} [sidemax_ab['side']]

        if v:
            print('Horizontal side maximum found %s. value: %s' %(sidemax_lr['side'],sidemax_lr['value']))
            print('Vertical side maximum found %s. value: %s' %(sidemax_ab['side'],sidemax_ab['value']))

        return sidemax_lr, sidemax_ab


    def _calc_integer_shifts(self, scps):
        peakpos = self._get_peakpos(scps)
        x_intshift, y_intshift = self._get_shifts_from_peakpos(peakpos, scps.shape)
        return x_intshift, y_intshift


    def _validate_integer_shifts(self, im0, im1, x_intshift, y_intshift):

        if (x_intshift, y_intshift)!=(0,0):
            # temporalily deshift images on the basis of calculated integer shifts
            gdsh_im0, crsp_im1 = self._get_grossly_deshifted_images(im0, im1, x_intshift, y_intshift)

            # check if integer shifts are now gone (0/0)
            scps = self._calc_shifted_cross_power_spectrum(gdsh_im0, crsp_im1)
            if scps is not None:
                peakpos = self._get_peakpos(scps)
                x_shift, y_shift = self._get_shifts_from_peakpos(peakpos, scps.shape)
                if (x_shift, y_shift) == (0,0):
                    return 'valid', 0, 0, scps
                else:
                    return 'invalid', x_shift, y_shift, scps
            else:
                return 'invalid', None, None, scps
        else:
            return 'valid', 0, 0, None


873
    def _calc_subpixel_shifts(self, scps):
874
875
876
877
878
879
880
881
882
883
884
        sidemax_lr, sidemax_ab = self._find_side_maximum(scps, self.v)
        x_subshift = (sidemax_lr['direction_factor']*sidemax_lr['value'])/(np.max(scps)+sidemax_lr['value'])
        y_subshift = (sidemax_ab['direction_factor']*sidemax_ab['value'])/(np.max(scps)+sidemax_ab['value'])
        return x_subshift, y_subshift


    @staticmethod
    def _get_total_shifts(x_intshift, y_intshift, x_subshift, y_subshift):
        return x_intshift+x_subshift, y_intshift+y_subshift


885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
    def _get_deshifted_otherWin(self):
        """Returns a de-shifted version of self.otherWin as a GeoArray instance.The output dimensions and geographic
        bounds are equal to those of self.matchWin and geometric shifts are corrected according to the previously
        computed X/Y shifts within the matching window. This allows direct application of algorithms e.g. measuring
        image similarity.

        The image subset that is resampled in this function is always the same that has been resampled during
        computation of geometric shifts (usually the image with the higher geometric resolution).

        :returns:   GeoArray instance of de-shifted self.otherWin
        """

        # shift vectors have been calculated to fit target image onto reference image
        # -> so the shift vectors have to be inverted if shifts are applied to reference image
        coreg_info = self._get_inverted_coreg_info() if self.otherWin.imParams.imName=='reference image' else \
                     self.coreg_info

        ds_results = DESHIFTER(self.otherWin.imParams.GeoArray, coreg_info,
                               band2process  = self.otherWin.imParams.band4match+1,
                               clipextent    = list(np.array(self.matchWin.boundsMap)[[0,2,1,3]]),
                               target_xyGrid = self.matchWin.imParams.xygrid_specs,
                               q             = True
                               ).correct_shifts()
        return ds_results['GeoArray_shifted']


    def _validate_ssim_improvement(self, v=False):
        """Computes mean structural similarity index between reference and target image before and after correction
        of geometric shifts..

        :param v:   <bool> verbose mode: shows images of the matchWin, otherWin and shifted version of otherWin
        :return:    <tuple> SSIM before an after shift correction
        """

        assert self.success is not None,\
            'Calculate geometric shifts first before trying to measure image similarity improvement!'
        assert self.success in [True, None],\
            'Since calculation of geometric shifts failed, no image similarity improvement can be measured.'

924
925
        # get image dynamic range

926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
        dr = max(self.matchWin.data.max(), self.otherWin.data.max()) - \
             min(self.matchWin.data.min(), self.otherWin.data.min())


        # compute SSIM BEFORE shift correction
        self.ssim_orig = calc_ssim(self.matchWin.data, self.otherWin.data, dynamic_range=dr, gaussian_weights=True)


        # compute SSIM AFTER shift correction

        ## resample otherWin while correcting detected shifts and match geographic bounds of matchWin
        otherWin_deshift_geoArr = self._get_deshifted_otherWin()

        ## get the corresponding matchWin data
        matchWinData = self.matchWin.data

        ## check if shapes of two images are equal (due to bug (?), in some cases otherWin_deshift_geoArr does not have
        ## the exact same dimensions as self.matchWin -> maybe bounds are handled differently by gdal.Warp)
        if not self.matchWin.data.shape == otherWin_deshift_geoArr.shape:
            matchWinData, matchWinGt, matchWinPrj = self.matchWin.imParams.GeoArray.get_mapPos(
                    list(np.array(self.matchWin.boundsMap)[[0, 2, 1, 3]]), self.matchWin.imParams.prj, rspAlg='cubic',
                    band2get=self.matchWin.imParams.band4match)

        self.ssim_deshifted = calc_ssim(otherWin_deshift_geoArr[:], matchWinData, dynamic_range=dr, gaussian_weights=True)


        if v:
            GeoArray(matchWinData).show()
            GeoArray(self.otherWin.data).show()
            otherWin_deshift_geoArr.show()

        if not self.q:
            print('Image similarity within the matching window (SSIM before/after correction): %.4f => %.4f'
                  % (self.ssim_orig, self.ssim_deshifted))

        self.ssim_improved = self.ssim_orig < self.ssim_deshifted

        # write win data to disk
        #outDir = '/home/gfz-fe/scheffler/temp/ssim_debugging/'
        #GeoArray(matchWinData, matchWinGt, matchWinPrj).save(outDir+'matchWinData.bsq')

        #otherWinGt = (self.otherWin.boundsMap[0], self.matchWin.imParams.xgsd, 0, self.otherWin.boundsMap[3], 0, -self.matchWin.imParams.ygsd)
        #GeoArray(self.otherWin.data, therWinGt, self.otherWin.imParams.prj).save(outDir+'otherWin.data.bsq')

        # otherWin_deshift_geoArr.save(outDir+''shifted.bsq')

        return self.ssim_orig, self.ssim_deshifted


    @property
    def ssim_improved(self):
        """Returns True if image similarity within the matching window has been improved by correcting the previously
         computed geometric shifts."""
        if self.success is True:
            if self._ssim_improved is None:
                ssim_orig, ssim_deshifted = self._validate_ssim_improvement()
                self._ssim_improved       = ssim_orig <= ssim_deshifted
            return self._ssim_improved


    @ssim_improved.setter
    def ssim_improved(self, has_improved):
        self._ssim_improved = has_improved
989
990


991
992
993
994
995
996
997
998
999
1000
    def calculate_spatial_shifts(self):
        if self.success is False: return None,None

        if self.q:  warnings.simplefilter('ignore')

        # set self.ref.win.data and self.shift.win.data
        self._get_image_windows_to_match()

        im0,im1 = self.ref.win.data, self.shift.win.data