CoReg.py 78.9 KB
Newer Older
1
2
# -*- coding: utf-8 -*-

3
4
# AROSICS - Automated and Robust Open-Source Image Co-Registration Software
#
5
# Copyright (C) 2017-2020  Daniel Scheffler (GFZ Potsdam, daniel.scheffler@gfz-potsdam.de)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# This software was developed within the context of the GeoMultiSens project funded
# by the German Federal Ministry of Education and Research
# (project grant code: 01 IS 14 010 A-C).
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program.  If not, see <http://www.gnu.org/licenses/>.

24
25
26
import os
import time
import warnings
27
from copy import copy
28
from typing import Iterable, Union, Tuple  # noqa F401
29
30

# custom
31
from osgeo import gdal
32
import numpy as np
33

34
35
36
try:
    import pyfftw
except ImportError:
37
    pyfftw = None
38
from shapely.geometry import Point, Polygon
39
40

# internal modules
41
from .DeShifter import DESHIFTER, _dict_rspAlg_rsp_Int
42
43
from . import geometry as GEO
from . import plotting as PLT
44

45
from geoarray import GeoArray
46
from py_tools_ds.convenience.object_oriented import alias_property
47
from py_tools_ds.geo.coord_calc import get_corner_coordinates
48
49
50
from py_tools_ds.geo.vector.topology import get_overlap_polygon, get_smallest_boxImYX_that_contains_boxMapYX
from py_tools_ds.geo.projection import prj_equal, get_proj4info
from py_tools_ds.geo.vector.geometry import boxObj, round_shapelyPoly_coords
51
from py_tools_ds.geo.coord_grid import move_shapelyPoly_to_image_grid, is_coord_grid_equal
52
from py_tools_ds.geo.coord_trafo import reproject_shapelyGeometry, mapXY2imXY, imXY2mapXY
53
54
55
from py_tools_ds.geo.raster.reproject import warp_ndarray
from py_tools_ds.geo.map_info import geotransform2mapinfo
from py_tools_ds.similarity.raster import calc_ssim
56
from py_tools_ds.io.vector.writer import write_shp
57

58
__author__ = 'Daniel Scheffler'
59
60


61
class GeoArray_CoReg(GeoArray):
62
    def __init__(self, CoReg_params, imID):
63
64
        # type: (dict, str) -> None

65
        assert imID in ['ref', 'shift']
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
66

67
68
        # run GeoArray init
        path_or_geoArr = CoReg_params['im_ref'] if imID == 'ref' else CoReg_params['im_tgt']
69
70
71
        nodata = CoReg_params['nodata'][0 if imID == 'ref' else 1]
        progress = CoReg_params['progress']
        q = CoReg_params['q'] if not CoReg_params['v'] else False
72

73
        super(GeoArray_CoReg, self).__init__(path_or_geoArr, nodata=nodata, progress=progress, q=q)
74

75
        self.imID = imID
76
        self.imName = 'reference image' if imID == 'ref' else 'image to be shifted'
77
        self.v = CoReg_params['v']
78
79

        assert isinstance(self, GeoArray), \
80
            'Something went wrong with the creation of GeoArray instance for the %s. The created ' \
81
            'instance does not seem to belong to the GeoArray class. If you are working in Jupyter Notebook, reset ' \
82
            'the kernel and try again.' % self.imName
83

84
        # set title to be used in plots
85
        self.title = os.path.basename(self.filePath) if self.filePath else self.imName
86
87

        # validate params
88
89
        # assert self.prj, 'The %s has no projection.' % self.imName # TODO
        # assert not re.search('LOCAL_CS', self.prj), 'The %s is not georeferenced.' % self.imName # TODO
90
91
92
        assert self.gt, 'The %s has no map information.' % self.imName

        # set band4match
93
94
95
96
97
        self.band4match = (CoReg_params['r_b4match'] if imID == 'ref' else CoReg_params['s_b4match']) - 1
        assert self.bands >= self.band4match + 1 >= 1, \
            "The %s has %s %s. So its band number to match must be %s%s. Got %s." \
            % (self.imName, self.bands, 'bands' if self.bands > 1 else
               'band', 'between 1 and ' if self.bands > 1 else '', self.bands, self.band4match)
98

99
100
        # set footprint_poly
        given_footprint_poly = CoReg_params['footprint_poly_%s' % ('ref' if imID == 'ref' else 'tgt')]
101
        given_corner_coord = CoReg_params['data_corners_%s' % ('ref' if imID == 'ref' else 'tgt')]
102
103

        if given_footprint_poly:
104
            self.footprint_poly = given_footprint_poly
105
        elif given_corner_coord is not None:
106
            self.footprint_poly = Polygon(given_corner_coord)
107
108
        elif not CoReg_params['calc_corners']:
            # use the image extent
109
            self.footprint_poly = Polygon(get_corner_coordinates(gt=self.gt, cols=self.cols, rows=self.rows))
110
        else:
111
112
113
            # footprint_poly is calculated automatically by GeoArray
            if not CoReg_params['q']:
                print('Calculating actual data corner coordinates for %s...' % self.imName)
114

115
            self.calc_mask_nodata(fromBand=self.band4match)  # this avoids that all bands have to be read
116

117
118
119
120
121
122
123
124
            with warnings.catch_warnings(record=True) as w:
                _ = self.footprint_poly  # execute getter

            if len(w) > 0 and 'disjunct polygone(s) outside' in str(w[-1].message):
                warnings.warn('The footprint of the %s contains multiple separate image parts. '
                              'AROSICS will only process the largest image part.' % self.imName)
                # FIXME use a convex hull as footprint poly

125
126
127
128
        # validate footprint poly
        if not self.footprint_poly.is_valid:
            self.footprint_poly = self.footprint_poly.buffer(0)

129
        if not self.q:
Daniel Scheffler's avatar
Daniel Scheffler committed
130
            print('Bounding box of calculated footprint for %s:\n\t%s' % (self.imName, self.footprint_poly.bounds))
131

132
133
134
        # add bad data mask
        given_mask = CoReg_params['mask_baddata_%s' % ('ref' if imID == 'ref' else 'tgt')]
        if given_mask:
135
            self.mask_baddata = given_mask  # runs GeoArray.mask_baddata.setter -> sets it to BadDataMask()
Daniel Scheffler's avatar
Daniel Scheffler committed
136

137
    poly = alias_property('footprint_poly')  # ensures that self.poly is updated if self.footprint_poly is updated
Daniel Scheffler's avatar
Daniel Scheffler committed
138
139


140
class COREG(object):
141
    """The COREG class detects and corrects global X/Y shifts between a target and reference image.
Daniel Scheffler's avatar
Daniel Scheffler committed
142
143
144
145
146
147

    Geometric shifts are calculated at a specific (adjustable) image position. Correction performs a global shifting
    in X- or Y direction.

    See help(COREG) for documentation!
    """
148

149
    def __init__(self, im_ref, im_tgt, path_out=None, fmt_out='ENVI', out_crea_options=None, r_b4match=1, s_b4match=1,
150
                 wp=(None, None), ws=(256, 256), max_iter=5, max_shift=5, align_grids=False, match_gsd=False,
151
152
                 out_gsd=None, target_xyGrid=None, resamp_alg_deshift='cubic', resamp_alg_calc='cubic',
                 footprint_poly_ref=None, footprint_poly_tgt=None, data_corners_ref=None, data_corners_tgt=None,
153
                 nodata=(None, None), calc_corners=True, binary_ws=True, mask_baddata_ref=None, mask_baddata_tgt=None,
Daniel Scheffler's avatar
Daniel Scheffler committed
154
                 CPUs=None, force_quadratic_win=True, progress=True, v=False, path_verbose_out=None, q=False,
155
                 ignore_errors=False):
Daniel Scheffler's avatar
Daniel Scheffler committed
156
        """Get an instance of the COREG class.
157

158
159
160
161
        :param im_ref(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of reference image
        :param im_tgt(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of image to be shifted
162
        :param path_out(str):           target path of the coregistered image
163
164
165
                                            - if None (default), the method correct_shifts() does not write to disk
                                            - if 'auto': /dir/of/im1/<im1>__shifted_to__<im0>.bsq
        :param fmt_out(str):            raster file format for output file. ignored if path_out is None. can be any GDAL
166
                                        compatible raster file format (e.g. 'ENVI', 'GTIFF'; default: ENVI). Refer to
167
                                        http://www.gdal.org/formats_list.html to get a full list of supported formats.
168
169
        :param out_crea_options(list):  GDAL creation options for the output image,
                                        e.g. ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
170
171
172
173
        :param r_b4match(int):          band of reference image to be used for matching (starts with 1; default: 1)
        :param s_b4match(int):          band of shift image to be used for matching (starts with 1; default: 1)
        :param wp(tuple):               custom matching window position as map values in the same projection like the
                                        reference image (default: central position of image overlap)
Daniel Scheffler's avatar
Daniel Scheffler committed
174
        :param ws(tuple):               custom matching window size [pixels] (default: (256,256))
175
176
        :param max_iter(int):           maximum number of iterations for matching (default: 5)
        :param max_shift(int):          maximum shift distance in reference image pixel units (default: 5 px)
177
178
        :param align_grids(bool):       align the coordinate grids of the image to be and the reference image
                                        (default: 0)
179
180
181
        :param match_gsd(bool):         match the output pixel size to pixel size of the reference image (default: 0)
        :param out_gsd(tuple):          xgsd ygsd: set the output pixel size in map units
                                        (default: original pixel size of the image to be shifted)
182
183
        :param target_xyGrid(list):     a list with a target x-grid and a target y-grid like [[15,45], [15,45]]
                                        This overrides 'out_gsd', 'align_grids' and 'match_gsd'.
184
        :param resamp_alg_deshift(str)  the resampling algorithm to be used for shift correction (if neccessary)
185
186
                                        valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                          mode, max, min, med, q1, q3
187
188
189
                                        default: cubic
        :param resamp_alg_calc(str)     the resampling algorithm to be used for all warping processes during calculation
                                        of spatial shifts
190
191
                                        (valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                           mode, max, min, med, q1, q3)
192
                                        default: cubic (highly recommended)
193
194
        :param footprint_poly_ref(str): footprint polygon of the reference image (WKT string or
                                        shapely.geometry.Polygon),
195
196
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
197
198
        :param footprint_poly_tgt(str): footprint polygon of the image to be shifted (WKT string or
                                        shapely.geometry.Polygon)
199
200
201
202
203
204
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param data_corners_ref(list):  map coordinates of data corners within reference image.
                                        ignored if footprint_poly_ref is given.
        :param data_corners_tgt(list):  map coordinates of data corners within image to be shifted.
                                        ignored if footprint_poly_tgt is given.
205
206
207
208
209
        :param nodata(tuple):           no data values for reference image and image to be shifted
        :param calc_corners(bool):      calculate true positions of the dataset corners in order to get a useful
                                        matching window position within the actual image overlap
                                        (default: 1; deactivated if '-cor0' and '-cor1' are given
        :param binary_ws(bool):         use binary X/Y dimensions for the matching window (default: 1)
210
211
212
213
214
215
216
217
218
219
220
221
        :param mask_baddata_ref(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                reference image where all bad data pixels (e.g. clouds) are marked with
                                                True and the remaining pixels with False. Must have the same geographic
                                                extent and projection like 'im_ref'. The mask is used to check if the
                                                chosen matching window position is valid in the sense of useful data.
                                                Otherwise this window position is rejected.
        :param mask_baddata_tgt(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                image to be shifted where all bad data pixels (e.g. clouds) are marked
                                                with True and the remaining pixels with False. Must have the same
                                                geographic extent and projection like 'im_ref'. The mask is used to
                                                check if the chosen matching window position is valid in the sense of
                                                useful data. Otherwise this window position is rejected.
Daniel Scheffler's avatar
Daniel Scheffler committed
222
223
        :param CPUs(int):               number of CPUs to use during pixel grid equalization
                                        (default: None, which means 'all CPUs available')
224
        :param force_quadratic_win(bool):   force a quadratic matching window (default: 1)
225
        :param progress(bool):          show progress bars (default: True)
226
        :param v(bool):                 verbose mode (default: False)
227
228
        :param path_verbose_out(str):   an optional output directory for intermediate results
                                        (if not given, no intermediate results are written to disk)
229
230
        :param q(bool):                 quiet mode (default: False)
        :param ignore_errors(bool):     Useful for batch processing. (default: False)
231
232
233
                                        In case of error COREG.success == False and COREG.x_shift_px/COREG.y_shift_px
                                        is None
        """
234
        self.params = dict([x for x in locals().items() if x[0] != "self"])
235

236
        # assertions
237
        assert gdal.GetDriverByName(fmt_out), "'%s' is not a supported GDAL driver." % fmt_out
238
239
240
241
242
243
        if match_gsd and out_gsd:
            warnings.warn("'-out_gsd' is ignored because '-match_gsd' is set.\n")
        if out_gsd:
            assert isinstance(out_gsd, list) and len(out_gsd) == 2, 'out_gsd must be a list with two values.'
        if data_corners_ref and not isinstance(data_corners_ref[0],
                                               list):  # group if not [[x,y],[x,y]..] but [x,y,x,y,]
244
            data_corners_ref = [data_corners_ref[i:i + 2] for i in range(0, len(data_corners_ref), 2)]
245
        if data_corners_tgt and not isinstance(data_corners_tgt[0], list):  # group if not [[x,y],[x,y]..]
246
            data_corners_tgt = [data_corners_tgt[i:i + 2] for i in range(0, len(data_corners_tgt), 2)]
247
        if nodata:
248
249
            assert isinstance(nodata, Iterable) and len(nodata) == 2, \
                "'nodata' must be an iterable with two values. Got %s with length %s." % (type(nodata), len(nodata))
250
        for rspAlg in [resamp_alg_deshift, resamp_alg_calc]:
251
            assert rspAlg in _dict_rspAlg_rsp_Int.keys(), "'%s' is not a supported resampling algorithm." % rspAlg
252
        if resamp_alg_calc in ['average', 5] and (v or not q):
253
            warnings.warn("The resampling algorithm 'average' causes sinus-shaped patterns in fft images that will "
254
255
                          "affect the precision of the calculated spatial shifts! It is highly recommended to "
                          "choose another resampling algorithm.")
256

257
258
259
260
261
262
263
264
265
266
267
268
        self.path_out = path_out  # updated by self.set_outpathes
        self.fmt_out = fmt_out
        self.out_creaOpt = out_crea_options
        self.win_pos_XY = wp  # updated by self.get_opt_winpos_winsize()
        self.win_size_XY = ws  # updated by self.get_opt_winpos_winsize()
        self.max_iter = max_iter
        self.max_shift = max_shift
        self.align_grids = align_grids
        self.match_gsd = match_gsd
        self.out_gsd = out_gsd
        self.target_xyGrid = target_xyGrid
        self.rspAlg_DS = resamp_alg_deshift \
269
            if isinstance(resamp_alg_deshift, str) else _dict_rspAlg_rsp_Int[resamp_alg_deshift]
270
        self.rspAlg_calc = resamp_alg_calc \
271
            if isinstance(resamp_alg_calc, str) else _dict_rspAlg_rsp_Int[resamp_alg_calc]
272
273
274
        self.calc_corners = calc_corners
        self.CPUs = CPUs
        self.bin_ws = binary_ws
275
        self.force_quadratic_win = force_quadratic_win
276
277
278
279
280
281
282
        self.v = v
        self.path_verbose_out = path_verbose_out
        self.q = q if not v else False  # overridden by v
        self.progress = progress if not q else False  # overridden by q

        self.ignErr = ignore_errors
        self.max_win_sz_changes = 3  # TODO: änderung der window size, falls nach max_iter kein valider match gefunden
283
284
285
286
287
288
        self.ref = None  # type: GeoArray_CoReg # set by self.get_image_params
        self.shift = None  # type: GeoArray_CoReg # set by self.get_image_params
        self.matchBox = None  # type: boxObj # set by self.get_clip_window_properties()
        self.otherBox = None  # type: boxObj # set by self.get_clip_window_properties()
        self.matchWin = None  # type: GeoArray # set by self._get_image_windows_to_match()
        self.otherWin = None  # type: GeoArray # set by self._get_image_windows_to_match()
289
290
291
        self.overlap_poly = None  # set by self._get_overlap_properties()
        self.overlap_percentage = None  # set by self._get_overlap_properties()
        self.overlap_area = None  # set by self._get_overlap_properties()
292
293
        self.imfft_xgsd = None  # set by self.get_clip_window_properties()
        self.imfft_ygsd = None  # set by self.get_clip_window_properties()
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        self.fftw_works = None  # set by self._calc_shifted_cross_power_spectrum()
        self.fftw_win_size_YX = None  # set by calc_shifted_cross_power_spectrum()

        self.x_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.y_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.x_shift_map = None  # set by self.get_updated_map_info()
        self.y_shift_map = None  # set by self.get_updated_map_info()
        self.vec_length_map = None
        self.vec_angle_deg = None
        self.updated_map_info = None  # set by self.get_updated_map_info()
        self.ssim_orig = None  # set by self._validate_ssim_improvement()
        self.ssim_deshifted = None  # set by self._validate_ssim_improvement()
        self._ssim_improved = None  # private attribute to be filled by self.ssim_improved
        self.shift_reliability = None  # set by self.calculate_spatial_shifts()

        self.tracked_errors = []  # expanded each time an error occurs
        self.success = None  # default
        self.deshift_results = None  # set by self.correct_shifts()
312
313
314
315

        gdal.AllRegister()
        self._get_image_params()
        self._set_outpathes(im_ref, im_tgt)
316
        self.grid2use = 'ref' if self.shift.xgsd <= self.ref.xgsd else 'shift'
317
318
        if self.v:
            print('resolutions: ', self.ref.xgsd, self.shift.xgsd)
319

320
        self._get_overlap_properties()
321
322

        if self.v and self.path_verbose_out:
323
324
325
            write_shp(os.path.join(self.path_verbose_out, 'poly_imref.shp'), self.ref.poly, self.ref.prj)
            write_shp(os.path.join(self.path_verbose_out, 'poly_im2shift.shp'), self.shift.poly, self.shift.prj)
            write_shp(os.path.join(self.path_verbose_out, 'overlap_poly.shp'), self.overlap_poly, self.ref.prj)
326

327
328
        # FIXME: transform_mapPt1_to_mapPt2(im2shift_center_map, ds_imref.GetProjection(), ds_im2shift.GetProjection())
        # FIXME später basteln für den fall, dass projektionen nicht gleich sind
329
330
331

        # get_clip_window_properties
        self._get_opt_winpos_winsize()
332
333
334
        if not self.q:
            print('Matching window position (X,Y): %s/%s' % (self.win_pos_XY[0], self.win_pos_XY[1]))
        self._get_clip_window_properties()  # sets self.matchBox, self.otherBox and much more
335

336
        if self.v and self.path_verbose_out and self.matchBox.mapPoly and self.success is not False:
337
338
            write_shp(os.path.join(self.path_verbose_out, 'poly_matchWin.shp'),
                      self.matchBox.mapPoly, self.matchBox.prj)
339

340
341
        self.success = False if self.success is False or not self.matchBox.boxMapYX else None
        self._coreg_info = None  # private attribute to be filled by self.coreg_info property
342

343
    def _handle_error(self, error, warn=False, warnMsg=None):
Daniel Scheffler's avatar
Daniel Scheffler committed
344
345
346
        """Append the given error to self.tracked_errors.

        This sets self.success to False and raises the error in case self.ignore_errors = True.
347
348
349
350
351
352
353
354
355
356
357
358
359

        :param error:   instance of an error
        :param warn:    whether to give a warning in case error would be ignored otherwise
        :param warnMsg: a custom message for the warning
        :return:
        """
        warn = warn or warnMsg is not None or self.v

        self.tracked_errors.append(error)
        self.success = False

        if self.ignErr and warn:
            warnMsg = repr(error) if not warnMsg else warnMsg
360
            print('\nWARNING: ' + warnMsg)
361
362
363
364

        if not self.ignErr:
            raise error

365
    def _set_outpathes(self, im_ref, im_tgt):
366
        assert isinstance(im_ref, (GeoArray, str)) and isinstance(im_tgt, (GeoArray, str)), \
367
            'COREG._set_outpathes() expects two file pathes (string) or two instances of the ' \
368
            'GeoArray class. Received %s and %s.' % (type(im_ref), type(im_tgt))
369

370
371
372
373
374
        def get_baseN(path):
            return os.path.splitext(os.path.basename(path))[0]

        # get input paths
        def get_input_path(im):
Daniel Scheffler's avatar
Daniel Scheffler committed
375
376
377
378
379
380
381
382
            path = im.filePath if isinstance(im, GeoArray) else im

            if isinstance(im, GeoArray) and im.filePath is None and self.path_out == 'auto':
                raise ValueError(self.path_out, "The output path must be explicitly set in case the input "
                                                "reference or target image is in-memory (without a reference to a "
                                                "physical file on disk). Received path_out='%s'." % self.path_out)

            return path
383

Daniel Scheffler's avatar
Daniel Scheffler committed
384
385
        path_im_ref = get_input_path(im_ref)
        path_im_tgt = get_input_path(im_tgt)
386

387
        if self.path_out:  # this also applies to self.path_out='auto'
388
389
390
391

            if self.path_out == 'auto':
                dir_out, fName_out = os.path.dirname(path_im_tgt), ''
            else:
392
                dir_out, fName_out = os.path.split(self.path_out)
393
394
395
396
397
398
399
400
401
402
403
404
405
406

            if dir_out and fName_out:
                # a valid output path is given => do nothing
                pass

            else:
                # automatically create an output directory and filename if not given
                if not dir_out:
                    if not path_im_ref:
                        dir_out = os.path.abspath(os.path.curdir)
                    else:
                        dir_out = os.path.dirname(path_im_ref)

                if not fName_out:
407
408
409
410
411
                    ext = 'bsq' if self.fmt_out == 'ENVI' else \
                        gdal.GetDriverByName(self.fmt_out).GetMetadataItem(gdal.DMD_EXTENSION)
                    fName_out = fName_out if fName_out not in ['.', ''] else \
                        '%s__shifted_to__%s' % (get_baseN(path_im_tgt), get_baseN(path_im_ref))
                    fName_out = fName_out + '.%s' % ext if ext else fName_out
412

413
                self.path_out = os.path.abspath(os.path.join(dir_out, fName_out))
414
415
416
417

                assert ' ' not in self.path_out, \
                    "The path of the output image contains whitespaces. This is not supported by GDAL."
        else:
418
            # this only happens if COREG is not instanced from within Python and self.path_out is explicitly set to None
419
420
421
422
423
424
425
426
427
428
429
            # => DESHIFTER will return an array
            pass

        if self.v:
            if self.path_verbose_out:
                dir_out, dirname_out = os.path.split(self.path_verbose_out)

                if not dir_out:
                    if self.path_out:
                        self.path_verbose_out = os.path.dirname(self.path_out)
                    else:
430
431
432
                        self.path_verbose_out = \
                            os.path.abspath(os.path.join(os.path.curdir, 'CoReg_verboseOut__%s__shifted_to__%s'
                                                         % (get_baseN(path_im_tgt), get_baseN(path_im_ref))))
433
434
435
436
437
438
439
440
441
                elif dirname_out and not dir_out:
                    self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir, dirname_out))

                assert ' ' not in self.path_verbose_out, \
                    "'path_verbose_out' contains whitespaces. This is not supported by GDAL."

        else:
            self.path_verbose_out = None

442
443
        if self.path_verbose_out and not os.path.isdir(self.path_verbose_out):
            os.makedirs(self.path_verbose_out)
444
445

    def _get_image_params(self):
446
447
        self.ref = GeoArray_CoReg(self.params, 'ref')
        self.shift = GeoArray_CoReg(self.params, 'shift')
448
449
450
451
452

        if not prj_equal(self.ref.prj, self.shift.prj):
            raise RuntimeError(
                'Input projections are not equal. Different projections are currently not supported. Got %s / %s.'
                % (get_proj4info(proj=self.ref.prj), get_proj4info(proj=self.shift.prj)))
453

454
    def _get_overlap_properties(self):
455
456
457
458
        overlap_tmp = get_overlap_polygon(self.ref.poly, self.shift.poly, self.v)
        self.overlap_poly = overlap_tmp['overlap poly']  # has to be in reference projection
        self.overlap_percentage = overlap_tmp['overlap percentage']
        self.overlap_area = overlap_tmp['overlap area']
459
460
461
462

        assert self.overlap_poly, 'The input images have no spatial overlap.'

        # overlap are must at least cover 16*16 pixels
463
464
465
466
        px_area = self.ref.xgsd * self.ref.ygsd if self.grid2use == 'ref' else self.shift.xgsd * self.shift.ygsd
        px_covered = self.overlap_area / px_area
        assert px_covered > 16 * 16, \
            'Overlap area covers only %s pixels. At least 16*16 pixels are needed.' % px_covered
467

468
    def equalize_pixGrids(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
469
        """Equalize image grids and projections of reference and target image (align target to reference)."""
470
471
        if not (prj_equal(self.ref.prj, self.shift.prj) and
                is_coord_grid_equal(self.ref.gt, *self.shift.xygrid_specs)):
472
473
            if not self.q:
                print("Equalizing pixel grids and projections of reference and target image...")
Daniel Scheffler's avatar
Daniel Scheffler committed
474

475
            if self.grid2use == 'ref':
476
                # resample target image to reference image
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
477
478
                if self.shift.bands > 1:
                    self.shift = self.shift.get_subset(zslice=slice(self.shift.band4match, self.shift.band4match + 1))
479
                self.shift.reproject_to_new_grid(prototype=self.ref, CPUs=self.CPUs)
480
                self.shift.band4match = 0  # after resampling there is only one band in the GeoArray
481

482
483
            else:
                # resample reference image to target image
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
484
485
                if self.ref.bands > 1:
                    self.ref = self.ref.get_subset(zslice=slice(self.ref.band4match, self.ref.band4match + 1))
486
                self.ref.reproject_to_new_grid(prototype=self.shift, CPUs=self.CPUs)
Daniel Scheffler's avatar
Daniel Scheffler committed
487
                self.ref.band4match = 0  # after resampling there is only one band in the GeoArray
488

489
490
491
            # self.ref.gt = (self.ref.gt[0], 1, self.ref.gt[2], self.ref.gt[3], self.ref.gt[4], -1)
            # self.shift.gt = (self.shift.gt[0], 1, self.shift.gt[2], self.shift.gt[3], self.shift.gt[4], -1)

492
    def show_image_footprints(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
493
494
495
496
        """Show a web map containing the calculated footprints and overlap area of the input images.

        NOTE: This method is intended to be called from Jupyter Notebook.
        """
497
498
499
        # TODO different colors for polygons
        assert self.overlap_poly, 'Please calculate the overlap polygon first.'

500
501
        import folium
        import geojson
502

503
504
505
        refPoly = reproject_shapelyGeometry(self.ref.poly, self.ref.epsg, 4326)
        shiftPoly = reproject_shapelyGeometry(self.shift.poly, self.shift.epsg, 4326)
        overlapPoly = reproject_shapelyGeometry(self.overlap_poly, self.shift.epsg, 4326)
506
        matchBoxPoly = reproject_shapelyGeometry(self.matchBox.mapPoly, self.shift.epsg, 4326)
507
508

        m = folium.Map(location=tuple(np.array(overlapPoly.centroid.coords.xy).flatten())[::-1])
509
        for poly in [refPoly, shiftPoly, overlapPoly, matchBoxPoly]:
510
511
512
513
            gjs = geojson.Feature(geometry=poly, properties={})
            folium.GeoJson(gjs).add_to(m)
        return m

514
    def show_matchWin(self, figsize=(15, 15), interactive=True, after_correction=None, pmin=2, pmax=98):
515
        """Show the image content within the matching window.
516

517
518
        :param figsize:             <tuple> figure size
        :param interactive:         <bool> whether to return an interactive figure based on 'holoviews' library
519
520
521
522
523
        :param after_correction:    True/False: show the image content AFTER shift correction or before
                                    None: show both states - before and after correction (default)
        :param pmin:                percentage to be used for excluding the darkest pixels from stretching (default: 2)
        :param pmax:                percentage to be used for excluding the brightest pixels from stretching
                                    (default: 98)
524
525
        :return:
        """
526
527
528
529
530
        if interactive:
            # use Holoviews
            try:
                import holoviews as hv
            except ImportError:
531
                hv = None
532
533
534
            if not hv:
                raise ImportError(
                    "This method requires the library 'holoviews'. It can be installed for Anaconda with "
535
                    "the shell command 'conda install -c conda-forge holoviews bokeh'.")
536

537
            hv.notebook_extension('matplotlib')
538
539
540
541
542
543
544
545
546
547
            hv.Store.add_style_opts(hv.Image, ['vmin', 'vmax'])

            # hv.Store.option_setters.options().Image = hv.Options('style', cmap='gnuplot2')
            # hv.Store.add_style_opts(hv.Image, ['cmap'])
            # renderer = hv.Store.renderers['matplotlib'].instance(fig='svg', holomap='gif')
            # RasterPlot = renderer.plotting_class(hv.Image)
            # RasterPlot.cmap = 'gray'
            otherWin_corr = self._get_deshifted_otherWin()
            xmin, xmax, ymin, ymax = self.matchBox.boundsMap

548
            def get_hv_image(geoArr):
549
550
                from skimage.exposure import rescale_intensity  # import here to avoid static TLS ImportError

551
552
553
554
555
                arr_masked = np.ma.masked_equal(geoArr[:], geoArr.nodata)
                vmin = np.nanpercentile(arr_masked.compressed(), pmin)
                vmax = np.nanpercentile(arr_masked.compressed(), pmax)
                arr2plot = rescale_intensity(arr_masked, in_range=(vmin, vmax), out_range='int8')

556
557
558
559
560
561
562
563
                return hv.Image(arr2plot, bounds=(xmin, ymin, xmax, ymax))\
                    .opts(style={'cmap': 'gray',
                                 'vmin': vmin,
                                 'vmax': vmax,
                                 'interpolation': 'none'},
                          plot={'fig_inches': figsize,
                                # 'fig_size': 100,
                                'show_grid': True})
564

565
566
567
            hvIm_matchWin = get_hv_image(self.matchWin)
            hvIm_otherWin_orig = get_hv_image(self.otherWin)
            hvIm_otherWin_corr = get_hv_image(otherWin_corr)
568

569
570
571
            if after_correction is None:
                # view both states
                print('Matching window before and after correction (above and below): ')
572

573
                # get layouts (docs on options: http://build.holoviews.org/Tutorials/Options.html)
574
575
                layout_before = (hvIm_matchWin + hvIm_matchWin).opts(plot=dict(fig_inches=figsize))
                layout_after = (hvIm_otherWin_orig + hvIm_otherWin_corr).opts(plot=dict(fig_inches=figsize))
576

577
578
579
580
581
582
583
584
585
586
                # plot!
                imgs = {1: layout_before, 2: layout_after}
                hmap = hv.HoloMap(imgs, kdims=['image']).collate().cols(1)

            else:
                # view state before or after correction
                imgs = {1: hvIm_matchWin, 2: hvIm_otherWin_corr if after_correction else hvIm_otherWin_orig}
                hmap = hv.HoloMap(imgs, kdims=['image'])

            # Construct a HoloMap by evaluating the function over all the keys
587
            # hmap = hv.HoloMap(imgs_corr, kdims=['image']) +  hv.HoloMap(imgs_corr, kdims=['image'])
588

589
590
            # Construct a HoloMap by defining the sampling on the Dimension
            # dmap = hv.DynamicMap(image_slice, kdims=[hv.Dimension('z_axis', values=keys)])
591

592
            return hmap
593

594
595
        else:
            # TODO add titles
Daniel Scheffler's avatar
Daniel Scheffler committed
596
            # TODO handle after_correction=None here
597
            self.matchWin.show(figsize=figsize)
598
            if after_correction:
599
                self._get_deshifted_otherWin().show(figsize=figsize, pmin=pmin, pmax=pmax)
600
            else:
601
                self.otherWin.show(figsize=figsize, pmin=pmin, pmax=pmax)
602
603

    def show_cross_power_spectrum(self, interactive=False):
Daniel Scheffler's avatar
Daniel Scheffler committed
604
605
606
607
        """Show a 3D surface of the cross power spectrum.

        NOTE: The cross power spectrum is the result from phase correlating the reference and target
              image within the matching window.
608
609
610
611
612
613
614

        :param interactive:  whether to return an interactice 3D surface plot based on 'plotly' library
        :return:
        """
        if interactive:
            # create plotly 3D surface

615
            # import plotly.plotly as py # online mode -> every plot is uploaded into online plotly account
616
617
618
619
620
621
            from plotly.offline import iplot, init_notebook_mode
            import plotly.graph_objs as go

            init_notebook_mode(connected=True)

            z_data = self._calc_shifted_cross_power_spectrum()
622
            data = [go.Surface(z=z_data)]
623
624
625
626
627
            layout = go.Layout(
                title='cross power spectrum',
                autosize=False,
                width=1000,
                height=1000,
628
                margin={'l': 65, 'r': 50, 'b': 65, 't': 90})
629
            fig = go.Figure(data=data, layout=layout)
630
631
632
633
634
635
636
637

            return iplot(fig, filename='SCPS')

        else:
            # use matplotlib
            scps = self._calc_shifted_cross_power_spectrum()
            PLT.subplot_3dsurface(scps.astype(np.float32))

638
    def _get_opt_winpos_winsize(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
639
640
641
        """Calculate optimal window position and size in reference image units.

        NOTE: The returned values are computed according to DGM, cloud_mask and trueCornerLonLat.
642
        """
643
644
645
646
        # dummy algorithm: get center position of overlap instead of searching ideal window position in whole overlap
        # TODO automatischer Algorithmus zur Bestimmung der optimalen Window Position

        wp = tuple(self.win_pos_XY)
647
648
        assert type(self.win_pos_XY) in [tuple, list, np.ndarray], \
            'The window position must be a tuple of two elements. Got %s with %s elements.' % (type(wp), len(wp))
649
650
651
        wp = tuple(wp)

        if None in wp:
652
            # use centroid point if possible
653
654
655
            overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.centroid.coords.xy
            wp = (wp[0] if wp[0] else overlap_center_pos_x[0]), (wp[1] if wp[1] else overlap_center_pos_y[0])

656
            # validate window position
657
            if not self.overlap_poly.buffer(1e-5).contains(Point(wp)):
658
659
660
661
662
663
664
665
666
667
668
                # in case the centroid point is not within overlap area
                if not self.q:
                    warnings.warn("The centroid point of the two input images could not be used as matching window "
                                  "position since it is outside of the overlap area. Instead the so called "
                                  "'representative point' is used. Alternatively you can provide your own window "
                                  "position as input parameter.")

                # -> use representative point: a point that is garanteed to be within overlap polygon
                overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.representative_point().coords.xy
                wp = overlap_center_pos_x[0], overlap_center_pos_y[0]

669
            assert self.overlap_poly.buffer(1e-5).contains(Point(wp))
670
671
672

        else:
            # validate window position
673
            if not self.overlap_poly.buffer(1e-5).contains(Point(wp)):
674
                self._handle_error(ValueError('The provided window position %s/%s is outside of the overlap '
675
                                              'area of the two input images. Check the coordinates.' % wp))
676
677
678
679
680
681

        # check if window position is within bad data area if a respective mask has been provided
        for im in [self.ref, self.shift]:
            if im.mask_baddata is not None:
                imX, imY = mapXY2imXY(wp, im.mask_baddata.gt)

682
                if im.mask_baddata[int(imY), int(imX)] is True:
683
                    self._handle_error(
684
                        RuntimeError('According to the provided bad data mask for the %s the chosen window position '
685
686
687
                                     '%s / %s is within a bad data area. Using this window position for coregistration '
                                     'is not reasonable. Please provide a better window position!'
                                     % (im.imName, wp[0], wp[1])))
688

689
690
        self.win_pos_XY = wp
        self.win_size_XY = (int(self.win_size_XY[0]), int(self.win_size_XY[1])) if self.win_size_XY else (512, 512)
691
692

    def _get_clip_window_properties(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
693
694
695
696
697
        """Calculate all properties of the matching window and the other window.

        These windows are used to read the corresponding image positions in the reference and the target image.

        NOTE: Even if X- and Y-dimension of the target window is equal, the output window can be NON-quadratic!
698
699
700
        """
        # FIXME image sizes like 10000*256 are still possible

701
702
        wpX, wpY = self.win_pos_XY
        wsX, wsY = self.win_size_XY
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

        # image units -> map units
        ref_wsX = wsX * self.ref.xgsd
        ref_wsY = wsY * self.ref.ygsd
        shift_wsX = wsX * self.shift.xgsd
        shift_wsY = wsY * self.shift.ygsd

        ref_box_kwargs = \
            dict(wp=(wpX, wpY),
                 ws=(ref_wsX, ref_wsY),
                 gt=self.ref.gt)
        shift_box_kwargs = \
            dict(wp=(wpX, wpY),
                 ws=(shift_wsX, shift_wsY),
                 gt=self.shift.gt)
        matchBox =\
            boxObj(**ref_box_kwargs) if self.grid2use == 'ref' else \
            boxObj(**shift_box_kwargs)
        otherBox = \
            boxObj(**shift_box_kwargs) if self.grid2use == 'ref' else \
            boxObj(**ref_box_kwargs)
        overlapWin = \
            boxObj(mapPoly=self.overlap_poly,
                   gt=self.ref.gt)
727
728

        # clip matching window to overlap area
729
730
        matchBox.mapPoly = matchBox.mapPoly.intersection(overlapWin.mapPoly)

731
        # check if matchBox extent touches no data area of the image -> if yes: shrink it
732
733
        overlapPoly_within_matchWin = matchBox.mapPoly.intersection(self.overlap_poly)
        if overlapPoly_within_matchWin.area < matchBox.mapPoly.area:
734
735
736
737
738
739
740
            wsX_start, wsY_start = \
                1 if wsX >= wsY else \
                wsX / wsY, 1 if wsY >= wsX else \
                wsY / wsX
            box = boxObj(**dict(wp=(wpX, wpY),
                                ws=(wsX_start, wsY_start),
                                gt=matchBox.gt))
741
            while True:
742
                box.buffer_imXY(1, 1)
743
744
745
746
                if not box.mapPoly.within(overlapPoly_within_matchWin):
                    box.buffer_imXY(-1, -1)
                    matchBox = box
                    break
747
748

        # move matching window to imref grid or im2shift grid
749
750
        mW_rows, mW_cols = \
            (self.ref.rows, self.ref.cols) if self.grid2use == 'ref' else \
751
            (self.shift.rows, self.shift.cols)
752
753
754
755
        matchBox.mapPoly = move_shapelyPoly_to_image_grid(matchBox.mapPoly,
                                                          matchBox.gt, mW_rows,
                                                          mW_cols,
                                                          'NW')
756

757
        # check, if matchBox was moved outside of overlap_poly when moving it to the image grid
758
        if not matchBox.mapPoly.within(overlapWin.mapPoly):
759
            # further shrink matchPoly (1 px buffer is enough because the window was only moved to the grid)
760
            xLarger, yLarger = matchBox.is_larger_DimXY(overlapWin.boundsIm)
761
762
            matchBox.buffer_imXY(-1 if xLarger else 0,
                                 -1 if yLarger else 0)
763

764
        # matching_win directly on grid2use (fix rounding error through coordinate transformation)
765
        matchBox.imPoly = round_shapelyPoly_coords(matchBox.imPoly, precision=0)
766

767
768
769
770
771
772
773
774
775
776
777
778
779
        # check if matching window larger than the other one or equal
        if not (matchBox.mapPoly.within(otherBox.mapPoly) or
                matchBox.mapPoly == otherBox.mapPoly):
            # if yes, find the smallest 'other window' that encloses the matching window
            otherBox.boxImYX = \
                get_smallest_boxImYX_that_contains_boxMapYX(
                    matchBox.boxMapYX,
                    otherBox.gt,
                    tolerance_ndigits=5  # avoids float coordinate rounding issues
                )

        # in case after enlarging the 'other window', it gets too large for the overlap area
        # -> shrink match window and recompute smallest possible other window until everything is fine
Daniel Scheffler's avatar
Daniel Scheffler committed
780
        t_start = time.time()
781
782
        while not otherBox.mapPoly.within(overlapWin.mapPoly):
            xLarger, yLarger = otherBox.is_larger_DimXY(overlapWin.boundsIm)
783
784
            matchBox.buffer_imXY(-1 if xLarger else 0,
                                 -1 if yLarger else 0)
785
            previous_area = otherBox.mapPoly.area
786
787
788
789
790
791
792
793
794
            otherBox.boxImYX = \
                get_smallest_boxImYX_that_contains_boxMapYX(
                    matchBox.boxMapYX,
                    otherBox.gt,
                    tolerance_ndigits=5  # avoids float coordinate rounding issues
                )

            if previous_area == otherBox.mapPoly.area or \
               time.time() - t_start > 1.5:
Daniel Scheffler's avatar
Daniel Scheffler committed
795
796
                # happens e.g in case of a triangular footprint
                # NOTE: first condition is not always fulfilled -> therefore added timeout of 1.5 sec
797
                self._handle_error(
798
799
                    RuntimeError('Matching window in target image is larger than overlap area but further shrinking '
                                 'the matching window is not possible. Check if the footprints of the input data have '
800
                                 'been computed correctly.' +
801
802
                                 (' Matching window shrinking timed out.' if time.time() - t_start > 5 else '')))
                break  # break out of while loop in order to avoid that code gets stuck here
803

Daniel Scheffler's avatar
Daniel Scheffler committed
804
805
        # output validation
        for winBox in [matchBox, otherBox]:
806
807
            if winBox.imDimsYX[0] < 16 or \
               winBox.imDimsYX[1] < 16:
Daniel Scheffler's avatar
Daniel Scheffler committed
808
809
810
811
                self._handle_error(
                    RuntimeError("One of the input images does not have sufficient gray value information "
                                 "(non-no-data values) for placing a matching window at the position %s. "
                                 "Matching failed." % str((wpX, wpY))))
Daniel Scheffler's avatar
Daniel Scheffler committed
812

813
        if self.success is not False:
Daniel Scheffler's avatar
Daniel Scheffler committed
814
            # check result -> ProgrammingError if not fulfilled
815
            def within_equal(inner, outer):
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
                return inner.within(outer.buffer(1e-5)) or \
                       inner.equals(outer)

            assert within_equal(matchBox.mapPoly,
                                otherBox.mapPoly)
            assert within_equal(otherBox.mapPoly,
                                overlapWin.mapPoly)

            if self.grid2use == 'ref':
                self.imfft_xgsd = self.ref.xgsd
                self.imfft_ygsd = self.ref.ygsd
                self.ref.win = matchBox
                self.shift.win = otherBox
            else:
                self.imfft_xgsd = self.shift.xgsd
                self.imfft_ygsd = self.shift.ygsd
                self.ref.win = otherBox
                self.shift.win = matchBox
834

835
836
            self.matchBox = matchBox
            self.otherBox = otherBox
837

838
839
840
            self.ref.win.size_YX = tuple([int(i) for i in self.ref.win.imDimsYX])
            self.shift.win.size_YX = tuple([int(i) for i in self.shift.win.imDimsYX])
            match_win_size_XY = tuple(reversed([int(i) for i in matchBox.imDimsYX]))
841

842
843
            if not self.q and \
               match_win_size_XY != self.win_size_XY:
844
                print('Target window size %s not possible due to too small overlap area or window position too close '
845
                      'to an image edge. New matching window size: %s.' % (self.win_size_XY, match_win_size_XY))
846

847
848
                # write_shp('matchMapPoly.shp', matchBox.mapPoly,matchBox.prj)
                # write_shp('otherMapPoly.shp', otherBox.mapPoly,otherBox.prj)
849
850

    def _get_image_windows_to_match(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
851
        """Read the matching window and the other window as subsets.
852

Daniel Scheffler's avatar
Daniel Scheffler committed
853
854
855
        Th other window is resampled to the resolution and the pixel grid of the matching window.
        The result consists of two images with the same dimensions and exactly the same corner coordinates.
        """
856
857
        match_fullGeoArr = self.ref if self.grid2use == 'ref' else self.shift
        other_fullGeoArr = self.shift if self.grid2use == 'ref' else self.ref
858
859

        # matchWin per subset-read einlesen -> self.matchWin.data
860
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.matchBox.boxImYX)
861
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
862
            rE <= match_fullGeoArr.rows and cE <= match_fullGeoArr.cols, \
863
864
865
866
867
            'Requested area is not completely within the input array for %s.' % match_fullGeoArr.imName
        self.matchWin = GeoArray(match_fullGeoArr[rS:rE + 1, cS:cE + 1, match_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(match_fullGeoArr.gt, self.matchBox.boxImYX),
                                 projection=copy(match_fullGeoArr.prj),
                                 nodata=copy(match_fullGeoArr.nodata))
868
        self.matchWin.imID = match_fullGeoArr.imID
869
870

        # otherWin per subset-read einlesen
871
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.otherBox.boxImYX)
872
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
873
            rE <= other_fullGeoArr.rows and cE <= other_fullGeoArr.cols, \
874
875
876
877
878
            'Requested area is not completely within the input array for %s.' % other_fullGeoArr.imName
        self.otherWin = GeoArray(other_fullGeoArr[rS:rE + 1, cS:cE + 1, other_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(other_fullGeoArr.gt, self.otherBox.boxImYX),
                                 projection=copy(other_fullGeoArr.prj),
                                 nodata=copy(other_fullGeoArr.nodata))
879
        self.otherWin.imID = other_fullGeoArr.imID
880

881
882
        # self.matchWin.deepcopy_array()
        # self.otherWin.deepcopy_array()
883
884
885

        if self.v:
            print('Original matching windows:')
886
887
888
            ref_data, shift_data = (self.matchWin[:], self.otherWin[:]) if self.grid2use == 'ref' else \
                (self.otherWin[:], self.matchWin[:])
            PLT.subplot_imshow([ref_data, shift_data], [self.ref.title, self.shift.title], grid=True)
889

890
        # resample otherWin.arr to the resolution of matchWin AND make sure the pixel edges are identical
891
        # (in order to make each image show the same window with the same coordinates)
892
893
894
895
        # TODO replace cubic resampling by PSF resampling - average resampling leads to sinus like distortions in the
        # TODO fft image that make a precise coregistration impossible. Thats why there is currently no way around
        # TODO cubic resampling.
        tgt_xmin, tgt_xmax, tgt_ymin, tgt_ymax = self.matchBox.boundsMap
896
897

        # equalize pixel grids and projection of matchWin and otherWin (ONLY if grids are really different)
898
899
        if not (self.matchWin.xygrid_specs == self.otherWin.xygrid_specs and
                prj_equal(self.matchWin.prj, self.otherWin.prj)):
900
901
902
903
            self.otherWin.arr, self.otherWin.gt = warp_ndarray(self.otherWin.arr,
                                                               self.otherWin.gt,
                                                               self.otherWin.prj,
                                                               self.matchWin.prj,
904
                                                               out_gsd=(self.imfft_xgsd, abs(self.imfft_ygsd)),
905
906
907
908
909
                                                               out_bounds=([tgt_xmin, tgt_ymin, tgt_xmax, tgt_ymax]),
                                                               rspAlg=_dict_rspAlg_rsp_Int[self.rspAlg_calc],
                                                               in_nodata=self.otherWin.nodata,
                                                               CPUs=self.CPUs,
                                                               progress=False)[:2]
910
911

        if self.matchWin.shape != self.otherWin.shape:
912
            self._handle_error(
913
                RuntimeError('Caught a possible ProgrammingError at window position %s: Bad output of '
914
                             'get_image_windows_to_match. Reference image shape is %s whereas shift '
915
                             'image shape is %s.' % (str(self.matchBox.wp), self.matchWin.shape, self.otherWin.shape)),
916
917
                warn=True)

Daniel Scheffler's avatar
Daniel Scheffler committed
918
        # check of odd dimensions of output images
919
920
        rows, cols = [i if i % 2 == 0 else i - 1 for i in self.matchWin.shape]
        self.matchWin.arr, self.otherWin.arr = self.matchWin.arr[:rows, :cols], self.otherWin.arr[:rows, :cols]
Daniel Scheffler's avatar
Daniel Scheffler committed
921
        if self.matchWin.box.imDimsYX != self.matchBox.imDimsYX:
922
923
            self.matchBox = self.matchWin.box  # update matchBox
            self.otherBox = self.otherWin.box  # update otherBox
924

925
        assert self.matchWin.arr is not None and self.otherWin.arr is not None, 'Creation of matching windows failed.'
926
927
928

    @staticmethod
    def _shrink_winsize_to_binarySize(win_shape_YX, target_size=None):
929
        # type: (tuple, tuple) -> Union[Tuple[int, int], None]
Daniel Scheffler's avatar
Daniel Scheffler committed
930
931
932
        """Shrink a given window size to the closest binary window size (a power of 2).

        NOTE: X- and Y-dimension are handled separately.
933
934
935
936

        :param win_shape_YX:    <tuple> source window shape as pixel units (rows,colums)
        :param target_size:     <tuple> source window shape as pixel units (rows,colums)
        """
937
        binarySizes = [2 ** i for i in range(3, 14)]  # [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
938
939
940
        possibSizes_X = [i for i in binarySizes if i <= win_shape_YX[1]]
        possibSizes_Y = [i for i in binarySizes if i <= win_shape_YX[0]]
        if possibSizes_X and possibSizes_Y:
941
942
943
944
            tgt_size_X, tgt_size_Y = target_size if target_size else (max(possibSizes_X), max(possibSizes_Y))
            closest_to_target_X = int(min(possibSizes_X, key=lambda x: abs(x - tgt_size_X)))
            closest_to_target_Y = int(min(possibSizes_Y, key=lambda y: abs(y - tgt_size_Y)))
            return closest_to_target_Y, closest_to_target_X
945
946
947
948
        else:
            return None

    def _calc_shifted_cross_power_spectrum(self, im0=None, im1=None, precision=np.complex64):
Daniel Scheffler's avatar
Daniel Scheffler committed
949
        """Calculate the shifted cross power spectrum for quantifying X/Y-shifts.
950

951
952
953
954
        :param im0:         reference image
        :param im1:         subject image to shift
        :param precision:   to be quantified as a datatype
        :return:            2D-numpy-array of the shifted cross power spectrum
955
        """
Daniel Scheffler's avatar