CoReg.py 84 KB
Newer Older
1
2
3
4
5
6
7
8
# -*- coding: utf-8 -*-

import os
import re
import shutil
import subprocess
import time
import warnings
9
from copy import copy
10
11

# custom
12
13
14
15
try:
    import gdal
except ImportError:
    from osgeo import gdal
16
import numpy as np
17

18
19
20
try:
    import pyfftw
except ImportError:
21
    pyfftw = None
22
from shapely.geometry import Point, Polygon
23
from skimage.exposure import rescale_intensity
24
25

# internal modules
26
from .DeShifter import DESHIFTER, _dict_rspAlg_rsp_Int
27
28
from . import geometry as GEO
from . import plotting as PLT
29

30
from geoarray import GeoArray
31
32
33
34
35
36
from py_tools_ds.convenience.object_oriented import alias_property
from py_tools_ds.geo.coord_calc import corner_coord_to_minmax, get_corner_coordinates
from py_tools_ds.geo.vector.topology import get_overlap_polygon, get_smallest_boxImYX_that_contains_boxMapYX
from py_tools_ds.geo.projection import prj_equal, get_proj4info
from py_tools_ds.geo.vector.geometry import boxObj, round_shapelyPoly_coords
from py_tools_ds.geo.coord_grid import move_shapelyPoly_to_image_grid
37
from py_tools_ds.geo.coord_trafo import pixelToMapYX, reproject_shapelyGeometry, mapXY2imXY, imXY2mapXY
38
39
40
41
from py_tools_ds.geo.raster.reproject import warp_ndarray
from py_tools_ds.geo.map_info import geotransform2mapinfo
from py_tools_ds.numeric.vector import find_nearest
from py_tools_ds.similarity.raster import calc_ssim
42
43
from py_tools_ds.io.raster.writer import convert_gdal_to_bsq__mp
from py_tools_ds.io.vector.writer import write_shp
44

45
__author__ = 'Daniel Scheffler'
46
47


48
class GeoArray_CoReg(GeoArray):
49
    def __init__(self, CoReg_params, imID):
50
51
        # type: (dict, str) -> None

52
        assert imID in ['ref', 'shift']
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
53

54
55
        # run GeoArray init
        path_or_geoArr = CoReg_params['im_ref'] if imID == 'ref' else CoReg_params['im_tgt']
56
57
58
        nodata = CoReg_params['nodata'][0 if imID == 'ref' else 1]
        progress = CoReg_params['progress']
        q = CoReg_params['q'] if not CoReg_params['v'] else False
59

60
        super(GeoArray_CoReg, self).__init__(path_or_geoArr, nodata=nodata, progress=progress, q=q)
61

62
        self.imID = imID
63
        self.imName = 'reference image' if imID == 'ref' else 'image to be shifted'
64
        self.v = CoReg_params['v']
65
66

        assert isinstance(self, GeoArray), \
67
            'Something went wrong with the creation of GeoArray instance for the %s. The created ' \
68
            'instance does not seem to belong to the GeoArray class. If you are working in Jupyter Notebook, reset ' \
69
            'the kernel and try again.' % self.imName
70

71
        # set title to be used in plots
72
        self.title = os.path.basename(self.filePath) if self.filePath else self.imName
73
74

        # validate params
75
76
        # assert self.prj, 'The %s has no projection.' % self.imName # TODO
        # assert not re.search('LOCAL_CS', self.prj), 'The %s is not georeferenced.' % self.imName # TODO
77
78
79
        assert self.gt, 'The %s has no map information.' % self.imName

        # set band4match
80
81
82
83
84
        self.band4match = (CoReg_params['r_b4match'] if imID == 'ref' else CoReg_params['s_b4match']) - 1
        assert self.bands >= self.band4match + 1 >= 1, \
            "The %s has %s %s. So its band number to match must be %s%s. Got %s." \
            % (self.imName, self.bands, 'bands' if self.bands > 1 else
               'band', 'between 1 and ' if self.bands > 1 else '', self.bands, self.band4match)
85

86
87
        # set footprint_poly
        given_footprint_poly = CoReg_params['footprint_poly_%s' % ('ref' if imID == 'ref' else 'tgt')]
88
        given_corner_coord = CoReg_params['data_corners_%s' % ('ref' if imID == 'ref' else 'tgt')]
89
90

        if given_footprint_poly:
91
            self.footprint_poly = given_footprint_poly
92
        elif given_corner_coord is not None:
93
            self.footprint_poly = Polygon(given_corner_coord)
94
95
        elif not CoReg_params['calc_corners']:
            # use the image extent
96
            self.footprint_poly = Polygon(get_corner_coordinates(gt=self.gt, cols=self.cols, rows=self.rows))
97
        else:
98
99
100
            # footprint_poly is calculated automatically by GeoArray
            if not CoReg_params['q']:
                print('Calculating actual data corner coordinates for %s...' % self.imName)
101
            self.calc_mask_nodata(fromBand=self.band4match)  # this avoids that all bands have to be read
102

103
104
105
106
        # validate footprint poly
        if not self.footprint_poly.is_valid:
            self.footprint_poly = self.footprint_poly.buffer(0)

107
        if not self.q:
Daniel Scheffler's avatar
Daniel Scheffler committed
108
            print('Bounding box of calculated footprint for %s:\n\t%s' % (self.imName, self.footprint_poly.bounds))
109

110
111
112
        # add bad data mask
        given_mask = CoReg_params['mask_baddata_%s' % ('ref' if imID == 'ref' else 'tgt')]
        if given_mask:
113
            self.mask_baddata = given_mask  # runs GeoArray.mask_baddata.setter -> sets it to BadDataMask()
Daniel Scheffler's avatar
Daniel Scheffler committed
114

115
    poly = alias_property('footprint_poly')  # ensures that self.poly is updated if self.footprint_poly is updated
Daniel Scheffler's avatar
Daniel Scheffler committed
116
117


118
class COREG(object):
119
120
    """See help(COREG) for documentation!"""

121
    def __init__(self, im_ref, im_tgt, path_out=None, fmt_out='ENVI', out_crea_options=None, r_b4match=1, s_b4match=1,
122
                 wp=(None, None), ws=(256, 256), max_iter=5, max_shift=5, align_grids=False, match_gsd=False,
123
124
                 out_gsd=None, target_xyGrid=None, resamp_alg_deshift='cubic', resamp_alg_calc='cubic',
                 footprint_poly_ref=None, footprint_poly_tgt=None, data_corners_ref=None, data_corners_tgt=None,
125
                 nodata=(None, None), calc_corners=True, binary_ws=True, mask_baddata_ref=None, mask_baddata_tgt=None,
Daniel Scheffler's avatar
Daniel Scheffler committed
126
                 CPUs=None, force_quadratic_win=True, progress=True, v=False, path_verbose_out=None, q=False,
127
                 ignore_errors=False):
128
129
130
131

        """Detects and corrects global X/Y shifts between a target and refernce image. Geometric shifts are calculated
        at a specific (adjustable) image position. Correction performs a global shifting in X- or Y direction.

132
133
134
135
        :param im_ref(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of reference image
        :param im_tgt(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of image to be shifted
136
        :param path_out(str):           target path of the coregistered image
137
138
139
                                            - if None (default), the method correct_shifts() does not write to disk
                                            - if 'auto': /dir/of/im1/<im1>__shifted_to__<im0>.bsq
        :param fmt_out(str):            raster file format for output file. ignored if path_out is None. can be any GDAL
140
141
                                        compatible raster file format (e.g. 'ENVI', 'GeoTIFF'; default: ENVI). Refer to
                                        http://www.gdal.org/formats_list.html to get a full list of supported formats.
142
143
        :param out_crea_options(list):  GDAL creation options for the output image,
                                        e.g. ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
144
145
146
147
        :param r_b4match(int):          band of reference image to be used for matching (starts with 1; default: 1)
        :param s_b4match(int):          band of shift image to be used for matching (starts with 1; default: 1)
        :param wp(tuple):               custom matching window position as map values in the same projection like the
                                        reference image (default: central position of image overlap)
Daniel Scheffler's avatar
Daniel Scheffler committed
148
        :param ws(tuple):               custom matching window size [pixels] (default: (256,256))
149
150
        :param max_iter(int):           maximum number of iterations for matching (default: 5)
        :param max_shift(int):          maximum shift distance in reference image pixel units (default: 5 px)
151
152
        :param align_grids(bool):       align the coordinate grids of the image to be and the reference image
                                        (default: 0)
153
154
155
        :param match_gsd(bool):         match the output pixel size to pixel size of the reference image (default: 0)
        :param out_gsd(tuple):          xgsd ygsd: set the output pixel size in map units
                                        (default: original pixel size of the image to be shifted)
156
157
        :param target_xyGrid(list):     a list with a target x-grid and a target y-grid like [[15,45], [15,45]]
                                        This overrides 'out_gsd', 'align_grids' and 'match_gsd'.
158
        :param resamp_alg_deshift(str)  the resampling algorithm to be used for shift correction (if neccessary)
159
160
                                        valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                          mode, max, min, med, q1, q3
161
162
163
                                        default: cubic
        :param resamp_alg_calc(str)     the resampling algorithm to be used for all warping processes during calculation
                                        of spatial shifts
164
165
                                        (valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                           mode, max, min, med, q1, q3)
166
                                        default: cubic (highly recommended)
167
168
        :param footprint_poly_ref(str): footprint polygon of the reference image (WKT string or
                                        shapely.geometry.Polygon),
169
170
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
171
172
        :param footprint_poly_tgt(str): footprint polygon of the image to be shifted (WKT string or
                                        shapely.geometry.Polygon)
173
174
175
176
177
178
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param data_corners_ref(list):  map coordinates of data corners within reference image.
                                        ignored if footprint_poly_ref is given.
        :param data_corners_tgt(list):  map coordinates of data corners within image to be shifted.
                                        ignored if footprint_poly_tgt is given.
179
180
181
182
183
        :param nodata(tuple):           no data values for reference image and image to be shifted
        :param calc_corners(bool):      calculate true positions of the dataset corners in order to get a useful
                                        matching window position within the actual image overlap
                                        (default: 1; deactivated if '-cor0' and '-cor1' are given
        :param binary_ws(bool):         use binary X/Y dimensions for the matching window (default: 1)
184
185
186
187
188
189
190
191
192
193
194
195
        :param mask_baddata_ref(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                reference image where all bad data pixels (e.g. clouds) are marked with
                                                True and the remaining pixels with False. Must have the same geographic
                                                extent and projection like 'im_ref'. The mask is used to check if the
                                                chosen matching window position is valid in the sense of useful data.
                                                Otherwise this window position is rejected.
        :param mask_baddata_tgt(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                image to be shifted where all bad data pixels (e.g. clouds) are marked
                                                with True and the remaining pixels with False. Must have the same
                                                geographic extent and projection like 'im_ref'. The mask is used to
                                                check if the chosen matching window position is valid in the sense of
                                                useful data. Otherwise this window position is rejected.
Daniel Scheffler's avatar
Daniel Scheffler committed
196
197
        :param CPUs(int):               number of CPUs to use during pixel grid equalization
                                        (default: None, which means 'all CPUs available')
198
        :param force_quadratic_win(bool):   force a quadratic matching window (default: 1)
199
        :param progress(bool):          show progress bars (default: True)
200
        :param v(bool):                 verbose mode (default: False)
201
202
        :param path_verbose_out(str):   an optional output directory for intermediate results
                                        (if not given, no intermediate results are written to disk)
203
204
        :param q(bool):                 quiet mode (default: False)
        :param ignore_errors(bool):     Useful for batch processing. (default: False)
205
206
207
208
                                        In case of error COREG.success == False and COREG.x_shift_px/COREG.y_shift_px
                                        is None
        """

209
        self.params = dict([x for x in locals().items() if x[0] != "self"])
210

211
        # assertions
212
        assert gdal.GetDriverByName(fmt_out), "'%s' is not a supported GDAL driver." % fmt_out
213
214
215
216
217
218
        if match_gsd and out_gsd:
            warnings.warn("'-out_gsd' is ignored because '-match_gsd' is set.\n")
        if out_gsd:
            assert isinstance(out_gsd, list) and len(out_gsd) == 2, 'out_gsd must be a list with two values.'
        if data_corners_ref and not isinstance(data_corners_ref[0],
                                               list):  # group if not [[x,y],[x,y]..] but [x,y,x,y,]
219
            data_corners_ref = [data_corners_ref[i:i + 2] for i in range(0, len(data_corners_ref), 2)]
220
        if data_corners_tgt and not isinstance(data_corners_tgt[0], list):  # group if not [[x,y],[x,y]..]
221
            data_corners_tgt = [data_corners_tgt[i:i + 2] for i in range(0, len(data_corners_tgt), 2)]
222
223
224
        if nodata:
            assert isinstance(nodata, tuple) and len(nodata) == 2, \
                "'nodata' must be a tuple with two values. Got %s with length %s." % (type(nodata), len(nodata))
225
        for rspAlg in [resamp_alg_deshift, resamp_alg_calc]:
226
            assert rspAlg in _dict_rspAlg_rsp_Int.keys(), "'%s' is not a supported resampling algorithm." % rspAlg
227
        if resamp_alg_calc in ['average', 5] and (v or not q):
228
            warnings.warn("The resampling algorithm 'average' causes sinus-shaped patterns in fft images that will "
229
230
                          "affect the precision of the calculated spatial shifts! It is highly recommended to "
                          "choose another resampling algorithm.")
231

232
233
234
235
236
237
238
239
240
241
242
243
        self.path_out = path_out  # updated by self.set_outpathes
        self.fmt_out = fmt_out
        self.out_creaOpt = out_crea_options
        self.win_pos_XY = wp  # updated by self.get_opt_winpos_winsize()
        self.win_size_XY = ws  # updated by self.get_opt_winpos_winsize()
        self.max_iter = max_iter
        self.max_shift = max_shift
        self.align_grids = align_grids
        self.match_gsd = match_gsd
        self.out_gsd = out_gsd
        self.target_xyGrid = target_xyGrid
        self.rspAlg_DS = resamp_alg_deshift \
244
            if isinstance(resamp_alg_deshift, str) else _dict_rspAlg_rsp_Int[resamp_alg_deshift]
245
        self.rspAlg_calc = resamp_alg_calc \
246
            if isinstance(resamp_alg_calc, str) else _dict_rspAlg_rsp_Int[resamp_alg_calc]
247
248
249
        self.calc_corners = calc_corners
        self.CPUs = CPUs
        self.bin_ws = binary_ws
250
        self.force_quadratic_win = force_quadratic_win
251
252
253
254
255
256
257
        self.v = v
        self.path_verbose_out = path_verbose_out
        self.q = q if not v else False  # overridden by v
        self.progress = progress if not q else False  # overridden by q

        self.ignErr = ignore_errors
        self.max_win_sz_changes = 3  # TODO: änderung der window size, falls nach max_iter kein valider match gefunden
258
259
260
261
262
263
        self.ref = None  # type: GeoArray_CoReg # set by self.get_image_params
        self.shift = None  # type: GeoArray_CoReg # set by self.get_image_params
        self.matchBox = None  # type: boxObj # set by self.get_clip_window_properties()
        self.otherBox = None  # type: boxObj # set by self.get_clip_window_properties()
        self.matchWin = None  # type: GeoArray # set by self._get_image_windows_to_match()
        self.otherWin = None  # type: GeoArray # set by self._get_image_windows_to_match()
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        self.overlap_poly = None  # set by self._get_overlap_properties()
        self.overlap_percentage = None  # set by self._get_overlap_properties()
        self.overlap_area = None  # set by self._get_overlap_properties()
        self.imfft_gsd = None  # set by self.get_clip_window_properties()
        self.fftw_works = None  # set by self._calc_shifted_cross_power_spectrum()
        self.fftw_win_size_YX = None  # set by calc_shifted_cross_power_spectrum()

        self.x_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.y_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.x_shift_map = None  # set by self.get_updated_map_info()
        self.y_shift_map = None  # set by self.get_updated_map_info()
        self.vec_length_map = None
        self.vec_angle_deg = None
        self.updated_map_info = None  # set by self.get_updated_map_info()
        self.ssim_orig = None  # set by self._validate_ssim_improvement()
        self.ssim_deshifted = None  # set by self._validate_ssim_improvement()
        self._ssim_improved = None  # private attribute to be filled by self.ssim_improved
        self.shift_reliability = None  # set by self.calculate_spatial_shifts()

        self.tracked_errors = []  # expanded each time an error occurs
        self.success = None  # default
        self.deshift_results = None  # set by self.correct_shifts()
286
287
288
289

        gdal.AllRegister()
        self._get_image_params()
        self._set_outpathes(im_ref, im_tgt)
290
        self.grid2use = 'ref' if self.shift.xgsd <= self.ref.xgsd else 'shift'
291
292
        if self.v:
            print('resolutions: ', self.ref.xgsd, self.shift.xgsd)
293

294
        self._get_overlap_properties()
295
296

        if self.v and self.path_verbose_out:
297
298
299
            write_shp(os.path.join(self.path_verbose_out, 'poly_imref.shp'), self.ref.poly, self.ref.prj)
            write_shp(os.path.join(self.path_verbose_out, 'poly_im2shift.shp'), self.shift.poly, self.shift.prj)
            write_shp(os.path.join(self.path_verbose_out, 'overlap_poly.shp'), self.overlap_poly, self.ref.prj)
300

301
302
        # FIXME: transform_mapPt1_to_mapPt2(im2shift_center_map, ds_imref.GetProjection(), ds_im2shift.GetProjection())
        # FIXME später basteln für den fall, dass projektionen nicht gleich sind
303
304
305

        # get_clip_window_properties
        self._get_opt_winpos_winsize()
306
307
308
        if not self.q:
            print('Matching window position (X,Y): %s/%s' % (self.win_pos_XY[0], self.win_pos_XY[1]))
        self._get_clip_window_properties()  # sets self.matchBox, self.otherBox and much more
309

310
        if self.v and self.path_verbose_out and self.matchBox.mapPoly and self.success is not False:
311
312
            write_shp(os.path.join(self.path_verbose_out, 'poly_matchWin.shp'),
                      self.matchBox.mapPoly, self.matchBox.prj)
313

314
315
        self.success = False if self.success is False or not self.matchBox.boxMapYX else None
        self._coreg_info = None  # private attribute to be filled by self.coreg_info property
316

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    def _handle_error(self, error, warn=False, warnMsg=None):
        """Appends the given error to self.tracked_errors, sets self.success to False and raises the error in case
        self.ignore_errors = True.

        :param error:   instance of an error
        :param warn:    whether to give a warning in case error would be ignored otherwise
        :param warnMsg: a custom message for the warning
        :return:
        """

        warn = warn or warnMsg is not None or self.v

        self.tracked_errors.append(error)
        self.success = False

        if self.ignErr and warn:
            warnMsg = repr(error) if not warnMsg else warnMsg
334
            print('\nWARNING: ' + warnMsg)
335
336
337
338

        if not self.ignErr:
            raise error

339
    def _set_outpathes(self, im_ref, im_tgt):
340
        assert isinstance(im_ref, (GeoArray, str)) and isinstance(im_tgt, (GeoArray, str)), \
341
            'COREG._set_outpathes() expects two file pathes (string) or two instances of the ' \
342
            'GeoArray class. Received %s and %s.' % (type(im_ref), type(im_tgt))
343

344
        def get_baseN(path): return os.path.splitext(os.path.basename(path))[0]
345
346
347
348
349

        # get input pathes
        path_im_ref = im_ref.filePath if isinstance(im_ref, GeoArray) else im_ref
        path_im_tgt = im_tgt.filePath if isinstance(im_tgt, GeoArray) else im_tgt

350
        if self.path_out:  # this also applies to self.path_out='auto'
351
352
353
354

            if self.path_out == 'auto':
                dir_out, fName_out = os.path.dirname(path_im_tgt), ''
            else:
355
                dir_out, fName_out = os.path.split(self.path_out)
356
357
358
359
360
361
362
363
364
365
366
367
368
369

            if dir_out and fName_out:
                # a valid output path is given => do nothing
                pass

            else:
                # automatically create an output directory and filename if not given
                if not dir_out:
                    if not path_im_ref:
                        dir_out = os.path.abspath(os.path.curdir)
                    else:
                        dir_out = os.path.dirname(path_im_ref)

                if not fName_out:
370
371
372
373
374
                    ext = 'bsq' if self.fmt_out == 'ENVI' else \
                        gdal.GetDriverByName(self.fmt_out).GetMetadataItem(gdal.DMD_EXTENSION)
                    fName_out = fName_out if fName_out not in ['.', ''] else \
                        '%s__shifted_to__%s' % (get_baseN(path_im_tgt), get_baseN(path_im_ref))
                    fName_out = fName_out + '.%s' % ext if ext else fName_out
375

376
                self.path_out = os.path.abspath(os.path.join(dir_out, fName_out))
377
378
379
380

                assert ' ' not in self.path_out, \
                    "The path of the output image contains whitespaces. This is not supported by GDAL."
        else:
381
            # this only happens if COREG is not instanced from within Python and self.path_out is explicitly set to None
382
383
384
385
386
387
388
389
390
391
392
            # => DESHIFTER will return an array
            pass

        if self.v:
            if self.path_verbose_out:
                dir_out, dirname_out = os.path.split(self.path_verbose_out)

                if not dir_out:
                    if self.path_out:
                        self.path_verbose_out = os.path.dirname(self.path_out)
                    else:
393
394
395
                        self.path_verbose_out = \
                            os.path.abspath(os.path.join(os.path.curdir, 'CoReg_verboseOut__%s__shifted_to__%s'
                                                         % (get_baseN(path_im_tgt), get_baseN(path_im_ref))))
396
397
398
399
400
401
402
403
404
                elif dirname_out and not dir_out:
                    self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir, dirname_out))

                assert ' ' not in self.path_verbose_out, \
                    "'path_verbose_out' contains whitespaces. This is not supported by GDAL."

        else:
            self.path_verbose_out = None

405
406
        if self.path_verbose_out and not os.path.isdir(self.path_verbose_out):
            os.makedirs(self.path_verbose_out)
407
408

    def _get_image_params(self):
409
410
        self.ref = GeoArray_CoReg(self.params, 'ref')
        self.shift = GeoArray_CoReg(self.params, 'shift')
411
        assert prj_equal(self.ref.prj, self.shift.prj), \
412
413
            'Input projections are not equal. Different projections are currently not supported. Got %s / %s.' \
            % (get_proj4info(proj=self.ref.prj), get_proj4info(proj=self.shift.prj))
414

415
    def _get_overlap_properties(self):
416
417
418
419
        overlap_tmp = get_overlap_polygon(self.ref.poly, self.shift.poly, self.v)
        self.overlap_poly = overlap_tmp['overlap poly']  # has to be in reference projection
        self.overlap_percentage = overlap_tmp['overlap percentage']
        self.overlap_area = overlap_tmp['overlap area']
420
421
422
423

        assert self.overlap_poly, 'The input images have no spatial overlap.'

        # overlap are must at least cover 16*16 pixels
424
425
426
427
        px_area = self.ref.xgsd * self.ref.ygsd if self.grid2use == 'ref' else self.shift.xgsd * self.shift.ygsd
        px_covered = self.overlap_area / px_area
        assert px_covered > 16 * 16, \
            'Overlap area covers only %s pixels. At least 16*16 pixels are needed.' % px_covered
428

429
430
431
432
    def equalize_pixGrids(self):
        """
        Equalize image grids and projections of reference and target image (align target to reference).
        """
433
434
435
        if not (prj_equal(self.ref.prj, self.shift.prj) and self.ref.xygrid_specs == self.shift.xygrid_specs):
            if not self.q:
                print("Equalizing pixel grids and projections of reference and target image...")
Daniel Scheffler's avatar
Daniel Scheffler committed
436

437
            if self.grid2use == 'ref':
438
                # resample target image to refernce image
439
                self.shift.arr = self.shift[:, :, self.shift.band4match]  # resample the needed band only
440
                self.shift.reproject_to_new_grid(prototype=self.ref, CPUs=self.CPUs)
441
                self.shift.band4match = 0  # after resampling there is only one band in the GeoArray
442
443
444
            else:
                # resample reference image to target image
                # FIXME in case of different projections this will change the projection of the reference image!
445
                self.ref.arr = self.ref[:, :, self.ref.band4match]  # resample the needed band only
446
                self.ref.reproject_to_new_grid(prototype=self.shift, CPUs=self.CPUs)
Daniel Scheffler's avatar
Daniel Scheffler committed
447
                self.ref.band4match = 0  # after resampling there is only one band in the GeoArray
448

449
450
451
452
453
454
455
    def show_image_footprints(self):
        """This method is intended to be called from Jupyter Notebook and shows a web map containing the calculated
        footprints of the input images as well as the corresponding overlap area."""
        # TODO different colors for polygons
        assert self.overlap_poly, 'Please calculate the overlap polygon first.'

        try:
456
457
            import folium
            import geojson
458
        except ImportError:
459
460
            folium, geojson = None, None
        if not folium or not geojson:
461
462
463
            raise ImportError("This method requires the libraries 'folium' and 'geojson'. They can be installed with "
                              "the shell command 'pip install folium geojson'.")

464
465
466
        refPoly = reproject_shapelyGeometry(self.ref.poly, self.ref.epsg, 4326)
        shiftPoly = reproject_shapelyGeometry(self.shift.poly, self.shift.epsg, 4326)
        overlapPoly = reproject_shapelyGeometry(self.overlap_poly, self.shift.epsg, 4326)
467
        matchBoxPoly = reproject_shapelyGeometry(self.matchBox.mapPoly, self.shift.epsg, 4326)
468
469

        m = folium.Map(location=tuple(np.array(overlapPoly.centroid.coords.xy).flatten())[::-1])
470
        for poly in [refPoly, shiftPoly, overlapPoly, matchBoxPoly]:
471
472
473
474
            gjs = geojson.Feature(geometry=poly, properties={})
            folium.GeoJson(gjs).add_to(m)
        return m

475
    def show_matchWin(self, figsize=(15, 15), interactive=True, after_correction=None, pmin=2, pmax=98):
476
        """Show the image content within the matching window.
477

478
479
        :param figsize:             <tuple> figure size
        :param interactive:         <bool> whether to return an interactive figure based on 'holoviews' library
480
481
482
483
484
        :param after_correction:    True/False: show the image content AFTER shift correction or before
                                    None: show both states - before and after correction (default)
        :param pmin:                percentage to be used for excluding the darkest pixels from stretching (default: 2)
        :param pmax:                percentage to be used for excluding the brightest pixels from stretching
                                    (default: 98)
485
486
        :return:
        """
487
488
489
490
491
        if interactive:
            # use Holoviews
            try:
                import holoviews as hv
            except ImportError:
492
                hv = None
493
494
495
496
497
498
            if not hv:
                raise ImportError(
                    "This method requires the library 'holoviews'. It can be installed for Anaconda with "
                    "the shell command 'conda install -c ioam holoviews bokeh'.")
            warnings.filterwarnings('ignore')
            hv.notebook_extension('matplotlib')
499
500
501
502
503
504
505
506
507
508
            hv.Store.add_style_opts(hv.Image, ['vmin', 'vmax'])

            # hv.Store.option_setters.options().Image = hv.Options('style', cmap='gnuplot2')
            # hv.Store.add_style_opts(hv.Image, ['cmap'])
            # renderer = hv.Store.renderers['matplotlib'].instance(fig='svg', holomap='gif')
            # RasterPlot = renderer.plotting_class(hv.Image)
            # RasterPlot.cmap = 'gray'
            otherWin_corr = self._get_deshifted_otherWin()
            xmin, xmax, ymin, ymax = self.matchBox.boundsMap

509
            def get_hv_image(geoArr):
510
511
512
513
514
515
                arr_masked = np.ma.masked_equal(geoArr[:], geoArr.nodata)
                vmin = np.nanpercentile(arr_masked.compressed(), pmin)
                vmax = np.nanpercentile(arr_masked.compressed(), pmax)
                arr2plot = rescale_intensity(arr_masked, in_range=(vmin, vmax), out_range='int8')

                return hv.Image(arr2plot, bounds=(xmin, ymin, xmax, ymax))(
516
                    style={'cmap': 'gray',
517
                           'vmin': vmin, 'vmax': vmax,
518
519
520
                           'interpolation': 'none'},
                    plot={'fig_inches': figsize, 'show_grid': True})
                #     plot={'fig_size':100, 'show_grid':True})
521

522
523
524
            hvIm_matchWin = get_hv_image(self.matchWin)
            hvIm_otherWin_orig = get_hv_image(self.otherWin)
            hvIm_otherWin_corr = get_hv_image(otherWin_corr)
525

526
527
528
            if after_correction is None:
                # view both states
                print('Matching window before and after correction (above and below): ')
529

530
531
532
                # get layouts (docs on options: http://build.holoviews.org/Tutorials/Options.html)
                layout_before = (hvIm_matchWin + hvIm_matchWin)(plot=dict(fig_inches=figsize))
                layout_after = (hvIm_otherWin_orig + hvIm_otherWin_corr)(plot=dict(fig_inches=figsize))
533

534
535
536
537
538
539
540
541
542
543
                # plot!
                imgs = {1: layout_before, 2: layout_after}
                hmap = hv.HoloMap(imgs, kdims=['image']).collate().cols(1)

            else:
                # view state before or after correction
                imgs = {1: hvIm_matchWin, 2: hvIm_otherWin_corr if after_correction else hvIm_otherWin_orig}
                hmap = hv.HoloMap(imgs, kdims=['image'])

            # Construct a HoloMap by evaluating the function over all the keys
544
            # hmap = hv.HoloMap(imgs_corr, kdims=['image']) +  hv.HoloMap(imgs_corr, kdims=['image'])
545

546
547
            # Construct a HoloMap by defining the sampling on the Dimension
            # dmap = hv.DynamicMap(image_slice, kdims=[hv.Dimension('z_axis', values=keys)])
548
549
            warnings.filterwarnings('default')

550
            return hmap
551

552
553
554
        else:
            # TODO add titles
            self.matchWin.show(figsize=figsize)
555
            if after_correction:
556
                self._get_deshifted_otherWin().show(figsize=figsize, pmin=pmin, pmax=pmax)
557
            else:
558
                self.otherWin.show(figsize=figsize, pmin=pmin, pmax=pmax)
559
560
561
562
563
564
565
566
567
568
569
570
571

    def show_cross_power_spectrum(self, interactive=False):
        """
        Shows a 3D surface of the cross power spectrum resulting from phase correlating the reference and target
        image within the matching window.

        :param interactive:  whether to return an interactice 3D surface plot based on 'plotly' library
        :return:
        """

        if interactive:
            # create plotly 3D surface

572
            # import plotly.plotly as py # online mode -> every plot is uploaded into online plotly account
573
574
575
576
577
578
            from plotly.offline import iplot, init_notebook_mode
            import plotly.graph_objs as go

            init_notebook_mode(connected=True)

            z_data = self._calc_shifted_cross_power_spectrum()
579
            data = [go.Surface(z=z_data)]
580
581
582
583
584
            layout = go.Layout(
                title='cross power spectrum',
                autosize=False,
                width=1000,
                height=1000,
585
                margin={'l': 65, 'r': 50, 'b': 65, 't': 90})
586
            fig = go.Figure(data=data, layout=layout)
587
588
589
590
591
592
593
594

            return iplot(fig, filename='SCPS')

        else:
            # use matplotlib
            scps = self._calc_shifted_cross_power_spectrum()
            PLT.subplot_3dsurface(scps.astype(np.float32))

595
    def _get_opt_winpos_winsize(self):
596
        # type: (tuple,tuple) -> None
597
598
599
600
        """
        Calculates optimal window position and size in reference image units according to DGM, cloud_mask and
        trueCornerLonLat.
        """
601
602
603
604
        # dummy algorithm: get center position of overlap instead of searching ideal window position in whole overlap
        # TODO automatischer Algorithmus zur Bestimmung der optimalen Window Position

        wp = tuple(self.win_pos_XY)
605
606
        assert type(self.win_pos_XY) in [tuple, list, np.ndarray], \
            'The window position must be a tuple of two elements. Got %s with %s elements.' % (type(wp), len(wp))
607
608
609
        wp = tuple(wp)

        if None in wp:
610
            # use centroid point if possible
611
612
613
            overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.centroid.coords.xy
            wp = (wp[0] if wp[0] else overlap_center_pos_x[0]), (wp[1] if wp[1] else overlap_center_pos_y[0])

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
            # validate window position
            if not self.overlap_poly.contains(Point(wp)):
                # in case the centroid point is not within overlap area
                if not self.q:
                    warnings.warn("The centroid point of the two input images could not be used as matching window "
                                  "position since it is outside of the overlap area. Instead the so called "
                                  "'representative point' is used. Alternatively you can provide your own window "
                                  "position as input parameter.")

                # -> use representative point: a point that is garanteed to be within overlap polygon
                overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.representative_point().coords.xy
                wp = overlap_center_pos_x[0], overlap_center_pos_y[0]

            assert self.overlap_poly.contains(Point(wp))

        else:
            # validate window position
            if not self.overlap_poly.contains(Point(wp)):
632
                self._handle_error(ValueError('The provided window position %s/%s is outside of the overlap '
633
                                              'area of the two input images. Check the coordinates.' % wp))
634
635
636
637
638
639

        # check if window position is within bad data area if a respective mask has been provided
        for im in [self.ref, self.shift]:
            if im.mask_baddata is not None:
                imX, imY = mapXY2imXY(wp, im.mask_baddata.gt)

640
                if im.mask_baddata[int(imY), int(imX)] is True:
641
                    self._handle_error(
642
                        RuntimeError('According to the provided bad data mask for the %s the chosen window position '
643
644
645
                                     '%s / %s is within a bad data area. Using this window position for coregistration '
                                     'is not reasonable. Please provide a better window position!'
                                     % (im.imName, wp[0], wp[1])))
646

647
648
        self.win_pos_XY = wp
        self.win_size_XY = (int(self.win_size_XY[0]), int(self.win_size_XY[1])) if self.win_size_XY else (512, 512)
649
650
651
652
653
654
655
656

    def _get_clip_window_properties(self):
        """Calculate all properties of the matching window and the other window. These windows are used to read the
        corresponding image positions in the reference and the target image.
        hint: Even if X- and Y-dimension of the target window is equal, the output window can be NOT quadratic!
        """
        # FIXME image sizes like 10000*256 are still possible

657
658
659
660
661
662
663
664
665
        wpX, wpY = self.win_pos_XY
        wsX, wsY = self.win_size_XY
        ref_wsX, ref_wsY = (wsX * self.ref.xgsd, wsY * self.ref.ygsd)  # image units -> map units
        shift_wsX, shift_wsY = (wsX * self.shift.xgsd, wsY * self.shift.ygsd)  # image units -> map units
        ref_box_kwargs = {'wp': (wpX, wpY), 'ws': (ref_wsX, ref_wsY), 'gt': self.ref.gt}
        shift_box_kwargs = {'wp': (wpX, wpY), 'ws': (shift_wsX, shift_wsY), 'gt': self.shift.gt}
        matchBox = boxObj(**ref_box_kwargs) if self.grid2use == 'ref' else boxObj(**shift_box_kwargs)
        otherBox = boxObj(**shift_box_kwargs) if self.grid2use == 'ref' else boxObj(**ref_box_kwargs)
        overlapWin = boxObj(mapPoly=self.overlap_poly, gt=self.ref.gt)
666
667

        # clip matching window to overlap area
668
669
        matchBox.mapPoly = matchBox.mapPoly.intersection(overlapWin.mapPoly)

670
        # check if matchBox extent touches no data area of the image -> if yes: shrink it
671
672
        overlapPoly_within_matchWin = matchBox.mapPoly.intersection(self.overlap_poly)
        if overlapPoly_within_matchWin.area < matchBox.mapPoly.area:
673
674
            wsX_start, wsY_start = 1 if wsX >= wsY else wsX / wsY, 1 if wsY >= wsX else wsY / wsX
            box = boxObj(**dict(wp=(wpX, wpY), ws=(wsX_start, wsY_start), gt=matchBox.gt))
675
            while True:
676
                box.buffer_imXY(1, 1)
677
678
679
680
                if not box.mapPoly.within(overlapPoly_within_matchWin):
                    box.buffer_imXY(-1, -1)
                    matchBox = box
                    break
681
682

        # move matching window to imref grid or im2shift grid
683
684
        mW_rows, mW_cols = (self.ref.rows, self.ref.cols) if self.grid2use == 'ref' else \
            (self.shift.rows, self.shift.cols)
685
        matchBox.mapPoly = move_shapelyPoly_to_image_grid(matchBox.mapPoly, matchBox.gt, mW_rows, mW_cols, 'NW')
686

687
688
        # check, ob durch Verschiebung auf Grid die matchBox außerhalb von overlap_poly geschoben wurde
        if not matchBox.mapPoly.within(overlapWin.mapPoly):
689
            # matchPoly weiter verkleinern # 1 px buffer reicht, weil window nur auf das Grid verschoben wurde
690
            xLarger, yLarger = matchBox.is_larger_DimXY(overlapWin.boundsIm)
691
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
692
693

        # matching_win direkt auf grid2use (Rundungsfehler bei Koordinatentrafo beseitigen)
694
        matchBox.imPoly = round_shapelyPoly_coords(matchBox.imPoly, precision=0, out_dtype=int)
695
696

        # Check, ob match Fenster größer als anderes Fenster
697
        if not (matchBox.mapPoly.within(otherBox.mapPoly) or matchBox.mapPoly == otherBox.mapPoly):
698
            # dann für anderes Fenster kleinstes Fenster finden, das match-Fenster umgibt
699
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX, otherBox.gt)
700
701

        # evtl. kann es sein, dass bei Shift-Fenster-Vergrößerung das shift-Fenster zu groß für den overlap wird
Daniel Scheffler's avatar
Daniel Scheffler committed
702
        t_start = time.time()
703
        while not otherBox.mapPoly.within(overlapWin.mapPoly):
Daniel Scheffler's avatar
Daniel Scheffler committed
704
            # -> match Fenster verkleinern und neues otherBox berechnen
705
706
            xLarger, yLarger = otherBox.is_larger_DimXY(overlapWin.boundsIm)
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
707
708
            previous_area = otherBox.mapPoly.area
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX, otherBox.gt)
709

710
            if previous_area == otherBox.mapPoly.area or time.time() - t_start > 1.5:
Daniel Scheffler's avatar
Daniel Scheffler committed
711
712
                # happens e.g in case of a triangular footprint
                # NOTE: first condition is not always fulfilled -> therefore added timeout of 1.5 sec
713
                self._handle_error(
714
715
                    RuntimeError('Matching window in target image is larger than overlap area but further shrinking '
                                 'the matching window is not possible. Check if the footprints of the input data have '
716
                                 'been computed correctly.' +
717
718
                                 (' Matching window shrinking timed out.' if time.time() - t_start > 5 else '')))
                break  # break out of while loop in order to avoid that code gets stuck here
719

Daniel Scheffler's avatar
Daniel Scheffler committed
720
721
722
723
724
725
726
        # output validation
        for winBox in [matchBox, otherBox]:
            if winBox.imDimsYX[0] < 16 or winBox.imDimsYX[1] < 16:
                self._handle_error(
                    RuntimeError("One of the input images does not have sufficient gray value information "
                                 "(non-no-data values) for placing a matching window at the position %s. "
                                 "Matching failed." % str((wpX, wpY))))
Daniel Scheffler's avatar
Daniel Scheffler committed
727

728
        if self.success is not False:
Daniel Scheffler's avatar
Daniel Scheffler committed
729
            # check result -> ProgrammingError if not fulfilled
730
            def within_equal(inner, outer): return inner.within(outer) or inner.equals(outer)
Daniel Scheffler's avatar
Daniel Scheffler committed
731
732
            assert within_equal(matchBox.mapPoly, otherBox.mapPoly)
            assert within_equal(otherBox.mapPoly, overlapWin.mapPoly)
733

734
735
736
737
738
739
            self.imfft_gsd = self.ref.xgsd if self.grid2use == 'ref' else self.shift.xgsd
            self.ref.win, self.shift.win = (matchBox, otherBox) if self.grid2use == 'ref' else (otherBox, matchBox)
            self.matchBox, self.otherBox = matchBox, otherBox
            self.ref.win.size_YX = tuple([int(i) for i in self.ref.win.imDimsYX])
            self.shift.win.size_YX = tuple([int(i) for i in self.shift.win.imDimsYX])
            match_win_size_XY = tuple(reversed([int(i) for i in matchBox.imDimsYX]))
740

741
742
            if not self.q and match_win_size_XY != self.win_size_XY:
                print('Target window size %s not possible due to too small overlap area or window position too close '
743
                      'to an image edge. New matching window size: %s.' % (self.win_size_XY, match_win_size_XY))
744

745
746
                # write_shp('/misc/hy5/scheffler/Temp/matchMapPoly.shp', matchBox.mapPoly,matchBox.prj)
                # write_shp('/misc/hy5/scheffler/Temp/otherMapPoly.shp', otherBox.mapPoly,otherBox.prj)
747
748
749
750
751
752

    def _get_image_windows_to_match(self):
        """Reads the matching window and the other window using subset read, and resamples the other window to the
        resolution and the pixel grid of the matching window. The result consists of two images with the same
        dimensions and exactly the same corner coordinates."""

753
754
        match_fullGeoArr = self.ref if self.grid2use == 'ref' else self.shift
        other_fullGeoArr = self.shift if self.grid2use == 'ref' else self.ref
755
756

        # matchWin per subset-read einlesen -> self.matchWin.data
757
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.matchBox.boxImYX)
758
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
759
            rE <= match_fullGeoArr.rows and cE <= match_fullGeoArr.cols, \
760
761
762
763
764
            'Requested area is not completely within the input array for %s.' % match_fullGeoArr.imName
        self.matchWin = GeoArray(match_fullGeoArr[rS:rE + 1, cS:cE + 1, match_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(match_fullGeoArr.gt, self.matchBox.boxImYX),
                                 projection=copy(match_fullGeoArr.prj),
                                 nodata=copy(match_fullGeoArr.nodata))
765
        self.matchWin.imID = match_fullGeoArr.imID
766
767

        # otherWin per subset-read einlesen
768
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.otherBox.boxImYX)
769
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
770
            rE <= other_fullGeoArr.rows and cE <= other_fullGeoArr.cols, \
771
772
773
774
775
            'Requested area is not completely within the input array for %s.' % other_fullGeoArr.imName
        self.otherWin = GeoArray(other_fullGeoArr[rS:rE + 1, cS:cE + 1, other_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(other_fullGeoArr.gt, self.otherBox.boxImYX),
                                 projection=copy(other_fullGeoArr.prj),
                                 nodata=copy(other_fullGeoArr.nodata))
776
        self.otherWin.imID = other_fullGeoArr.imID
777

778
779
        # self.matchWin.deepcopy_array()
        # self.otherWin.deepcopy_array()
780
781
782

        if self.v:
            print('Original matching windows:')
783
784
785
            ref_data, shift_data = (self.matchWin[:], self.otherWin[:]) if self.grid2use == 'ref' else \
                (self.otherWin[:], self.matchWin[:])
            PLT.subplot_imshow([ref_data, shift_data], [self.ref.title, self.shift.title], grid=True)
786

787
        # resample otherWin.arr to the resolution of matchWin AND make sure the pixel edges are identical
788
        # (in order to make each image show the same window with the same coordinates)
789
790
791
792
        # TODO replace cubic resampling by PSF resampling - average resampling leads to sinus like distortions in the
        # TODO fft image that make a precise coregistration impossible. Thats why there is currently no way around
        # TODO cubic resampling.
        tgt_xmin, tgt_xmax, tgt_ymin, tgt_ymax = self.matchBox.boundsMap
793
794

        # equalize pixel grids and projection of matchWin and otherWin (ONLY if grids are really different)
795
796
        if not (self.matchWin.xygrid_specs == self.otherWin.xygrid_specs and
                prj_equal(self.matchWin.prj, self.otherWin.prj)):
797
798
799
800
            self.otherWin.arr, self.otherWin.gt = warp_ndarray(self.otherWin.arr,
                                                               self.otherWin.gt,
                                                               self.otherWin.prj,
                                                               self.matchWin.prj,
801
802
803
804
805
806
                                                               out_gsd=(self.imfft_gsd, self.imfft_gsd),
                                                               out_bounds=([tgt_xmin, tgt_ymin, tgt_xmax, tgt_ymax]),
                                                               rspAlg=_dict_rspAlg_rsp_Int[self.rspAlg_calc],
                                                               in_nodata=self.otherWin.nodata,
                                                               CPUs=self.CPUs,
                                                               progress=False)[:2]
807
808

        if self.matchWin.shape != self.otherWin.shape:
809
810
811
            self._handle_error(
                RuntimeError('Catched a possible ProgrammingError at window position %s: Bad output of '
                             'get_image_windows_to_match. Reference image shape is %s whereas shift '
812
                             'image shape is %s.' % (str(self.matchBox.wp), self.matchWin.shape, self.otherWin.shape)),
813
814
                warn=True)

Daniel Scheffler's avatar
Daniel Scheffler committed
815
        # check of odd dimensions of output images
816
817
        rows, cols = [i if i % 2 == 0 else i - 1 for i in self.matchWin.shape]
        self.matchWin.arr, self.otherWin.arr = self.matchWin.arr[:rows, :cols], self.otherWin.arr[:rows, :cols]
Daniel Scheffler's avatar
Daniel Scheffler committed
818
        if self.matchWin.box.imDimsYX != self.matchBox.imDimsYX:
819
820
            self.matchBox = self.matchWin.box  # update matchBox
            self.otherBox = self.otherWin.box  # update otherBox
821

822
        assert self.matchWin.arr is not None and self.otherWin.arr is not None, 'Creation of matching windows failed.'
823
824
825

    @staticmethod
    def _shrink_winsize_to_binarySize(win_shape_YX, target_size=None):
826
        # type: (tuple, tuple, int , int) -> any
827
828
829
830
831
832
833
        """Shrinks a given window size to the closest binary window size (a power of 2) -
        separately for X- and Y-dimension.

        :param win_shape_YX:    <tuple> source window shape as pixel units (rows,colums)
        :param target_size:     <tuple> source window shape as pixel units (rows,colums)
        """

834
        binarySizes = [2 ** i for i in range(3, 14)]  # [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
835
836
837
        possibSizes_X = [i for i in binarySizes if i <= win_shape_YX[1]]
        possibSizes_Y = [i for i in binarySizes if i <= win_shape_YX[0]]
        if possibSizes_X and possibSizes_Y:
838
839
840
841
            tgt_size_X, tgt_size_Y = target_size if target_size else (max(possibSizes_X), max(possibSizes_Y))
            closest_to_target_X = int(min(possibSizes_X, key=lambda x: abs(x - tgt_size_X)))
            closest_to_target_Y = int(min(possibSizes_Y, key=lambda y: abs(y - tgt_size_Y)))
            return closest_to_target_Y, closest_to_target_X
842
843
844
845
846
847
        else:
            return None

    def _calc_shifted_cross_power_spectrum(self, im0=None, im1=None, precision=np.complex64):
        """Calculates shifted cross power spectrum for quantifying x/y-shifts.

848
849
850
851
        :param im0:         reference image
        :param im1:         subject image to shift
        :param precision:   to be quantified as a datatype
        :return:            2D-numpy-array of the shifted cross power spectrum
852
853
        """

854
855
        im0 = im0 if im0 is not None else self.matchWin[:] if self.matchWin.imID == 'ref' else self.otherWin[:]
        im1 = im1 if im1 is not None else self.otherWin[:] if self.otherWin.imID == 'shift' else self.matchWin[:]
856

857
        assert im0.shape == im1.shape, 'The reference and the target image must have the same dimensions.'
858
859
860
861
        if im0.shape[0] % 2 != 0:
            warnings.warn('Odd row count in one of the match images!')
        if im1.shape[1] % 2 != 0:
            warnings.warn('Odd column count in one of the match images!')
862

863
864
        wsYX = self._shrink_winsize_to_binarySize(im0.shape) if self.bin_ws else im0.shape
        wsYX = ((min(wsYX),) * 2 if self.force_quadratic_win else wsYX) if wsYX else None
865

866
        if wsYX not in [None, (0, 0)]:
867
            time0 = time.time()
868
869
870
871
872
            if self.v:
                print('final window size: %s/%s (X/Y)' % (wsYX[1], wsYX[0]))
                # FIXME size of self.matchWin is not updated
                # FIXME CoRegPoints_grid.WIN_SZ is taken from self.matchBox.imDimsYX but this is not updated

873
            center_YX = np.array(im0.shape) / 2
874
875
            xmin, xmax = int(center_YX[1] - wsYX[1] / 2), int(center_YX[1] + wsYX[1] / 2)
            ymin, ymax = int(center_YX[0] - wsYX[0] / 2), int(center_YX[0] + wsYX[0] / 2)
876

877
878
            in_arr0 = im0[ymin:ymax, xmin:xmax].astype(precision)
            in_arr1 = im1[ymin:ymax, xmin:xmax].astype(precision)
879
880

            if self.v:
881
                PLT.subplot_imshow([np.real(in_arr0).astype(np.float32), np.real(in_arr1).astype(np.float32)],
882
                                   ['FFTin ' + self.ref.title, 'FFTin ' + self.shift.title], grid=True)
883

884
885
886
            if pyfftw and self.fftw_works is not False:  # if module is installed and working
                fft_arr0 = pyfftw.FFTW(in_arr0, np.empty_like(in_arr0), axes=(0, 1))()
                fft_arr1 = pyfftw.FFTW(in_arr1, np.empty_like(in_arr1), axes=(0, 1))()
887
888

                # catch empty output arrays (for some reason this happens sometimes..) -> use numpy fft
889
890
                # => this is caused by the call of pyfftw.FFTW. Exactly in that moment the input array in_arr0 is
                #    overwritten with zeros (maybe this is a bug in pyFFTW?)
891
                if self.fftw_works in [None, True] and (np.std(fft_arr0) == 0 or np.std(fft_arr1) == 0):
892
893
894
895
896
897
                    self.fftw_works = False
                    # recreate input arrays and use numpy fft as fallback
                    in_arr0 = im0[ymin:ymax, xmin:xmax].astype(precision)
                    in_arr1 = im1[ymin:ymax, xmin:xmax].astype(precision)
                    fft_arr0 = np.fft.fft2(in_arr0)
                    fft_arr1 = np.fft.fft2(in_arr1)
898
899
                else:
                    self.fftw_works = True
900
901
902
            else:
                fft_arr0 = np.fft.fft2(in_arr0)
                fft_arr1 = np.fft.fft2(in_arr1)
903

904
905
            # GeoArray(fft_arr0.astype(np.float32)).show(figsize=(15,15))
            # GeoArray(fft_arr1.astype(np.float32)).show(figsize=(15,15))
906

907
908
            if self.v:
                print('forward FFTW: %.2fs' % (time.time() - time0))
909
910
911
912

            eps = np.abs(fft_arr1).max() * 1e-15
            # cps == cross-power spectrum of im0 and im2

913
            temp = np.array(fft_arr0 * fft_arr1.conjugate()) / (np.abs(fft_arr0) * np.abs(fft_arr1) + eps)
914
915
916

            time0 = time.time()
            if 'pyfft' in globals():
917
                ifft_arr = pyfftw.FFTW(temp, np.empty_like(temp), axes=(0, 1), direction='FFTW_BACKWARD')()
918
919
            else:
                ifft_arr = np.fft.ifft2(temp)
920
921
            if self.v:
                print('backward FFTW: %.2fs' % (time.time() - time0))
922
923

            cps = np.abs(ifft_arr)
924
            # scps = shifted cps  => shift the zero-frequency component to the center of the spectrum
925
926
            scps = np.fft.fftshift(cps)
            if self.v:
927
928
929
930
931
                PLT.subplot_imshow([np.real(in_arr0).astype(np.uint16), np.real(in_arr1).astype(np.uint16),
                                    np.real(fft_arr0).astype(np.uint8), np.real(fft_arr1).astype(np.uint8), scps],
                                   titles=['matching window im0', 'matching window im1',
                                           "fft result im0", "fft result im1", "cross power spectrum"], grid=True)
                PLT.subplot_3dsurface(np.real(scps).astype(np.float32))
932
        else:
933
934
            scps = None
            self._handle_error(
935
936
937
938
939
940
941
                RuntimeError('The matching window became too small for calculating a reliable match. Matching failed.'))

        self.fftw_win_size_YX = wsYX
        return scps

    @staticmethod
    def _get_peakpos(scps):
942
943
944
        """Returns the row/column position of the peak within the given cross power spectrum.

        :param scps: <np.ndarray> shifted cross power spectrum
Daniel Scheffler's avatar
Daniel Scheffler committed
945
        :return:     <np.ndarray> [row, column]
946
        """