CoReg.py 80.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
# -*- coding: utf-8 -*-
__author__='Daniel Scheffler'

import os
import re
import shutil
import subprocess
import time
import warnings
10
from copy import copy
11
12

# custom
13
14
15
16
try:
    import gdal
except ImportError:
    from osgeo import gdal
17
import numpy as np
18
19
20
try:
    import pyfftw
except ImportError:
21
    pyfftw = None
22
from shapely.geometry import Point, Polygon
23
from skimage.exposure import rescale_intensity
24
25

# internal modules
26
from .DeShifter import DESHIFTER, _dict_rspAlg_rsp_Int
27
28
29
30
from .          import geometry  as GEO
from .          import io        as IO
from .          import plotting  as PLT

Daniel Scheffler's avatar
Daniel Scheffler committed
31
from py_tools_ds.ptds.io.raster.GeoArray   import GeoArray
32
from py_tools_ds.ptds.geo.coord_calc       import corner_coord_to_minmax, get_corner_coordinates
33
from py_tools_ds.ptds.geo.vector.topology  import get_overlap_polygon, get_smallest_boxImYX_that_contains_boxMapYX
34
from py_tools_ds.ptds.geo.projection       import prj_equal, get_proj4info
35
36
from py_tools_ds.ptds.geo.vector.geometry  import boxObj, round_shapelyPoly_coords
from py_tools_ds.ptds.geo.coord_grid       import move_shapelyPoly_to_image_grid
37
from py_tools_ds.ptds.geo.coord_trafo      import pixelToMapYX, reproject_shapelyGeometry, mapXY2imXY
38
39
40
from py_tools_ds.ptds.geo.raster.reproject import warp_ndarray
from py_tools_ds.ptds.geo.map_info         import geotransform2mapinfo
from py_tools_ds.ptds.numeric.vector       import find_nearest
41
from py_tools_ds.ptds.similarity.raster    import calc_ssim
42
43
44
45




46
class GeoArray_CoReg(GeoArray):
47
    def __init__(self, CoReg_params, imID):
48
49
        # type: (dict, str) -> None

50
        assert imID in ['ref', 'shift']
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
51

52
53
54
55
56
57
        # run GeoArray init
        path_or_geoArr = CoReg_params['im_ref'] if imID == 'ref' else CoReg_params['im_tgt']
        nodata         = CoReg_params['nodata'][0 if imID == 'ref' else 1]
        progress       = CoReg_params['progress']
        q              = CoReg_params['q'] if not CoReg_params['v'] else False

58
        super(GeoArray_CoReg, self).__init__(path_or_geoArr, nodata=nodata, progress=progress, q=q)
59
60

        self.imID   = imID
61
        self.imName = 'reference image' if imID == 'ref' else 'image to be shifted'
62
63
64
        self.v      = CoReg_params['v']

        assert isinstance(self, GeoArray), \
65
            'Something went wrong with the creation of GeoArray instance for the %s. The created ' \
66
67
            'instance does not seem to belong to the GeoArray class. If you are working in Jupyter Notebook, reset ' \
            'the kernel and try again.' %self.imName
68

69
        # set title to be used in plots
70
        self.title = os.path.basename(self.filePath) if self.filePath else self.imName
71
72
73
74
75
76
77

        # validate params
        assert self.prj, 'The %s has no projection.' % self.imName
        assert not re.search('LOCAL_CS', self.prj), 'The %s is not georeferenced.' % self.imName
        assert self.gt, 'The %s has no map information.' % self.imName

        # set band4match
78
        self.band4match = (CoReg_params['r_b4match'] if imID == 'ref' else CoReg_params['s_b4match'])-1
79
80
81
        assert self.bands >= self.band4match+1 >= 1, "The %s has %s %s. So its band number to match must be %s%s. " \
            "Got %s." % (self.imName, self.bands, 'bands' if self.bands > 1 else 'band', 'between 1 and '
            if self.bands > 1 else '', self.bands, self.band4match)
82

83
84
85
86
87
        # set footprint_poly
        given_footprint_poly = CoReg_params['footprint_poly_%s' % ('ref' if imID == 'ref' else 'tgt')]
        given_corner_coord   = CoReg_params['data_corners_%s'   % ('ref' if imID == 'ref' else 'tgt')]

        if given_footprint_poly:
88
            self.footprint_poly = given_footprint_poly
89
        elif given_corner_coord is not None:
90
            self.footprint_poly = Polygon(given_corner_coord)
91
92
        elif not CoReg_params['calc_corners']:
            # use the image extent
93
            self.footprint_poly = Polygon(get_corner_coordinates(gt=self.gt, cols=self.cols,rows=self.rows))
94
        else:
95
96
97
            # footprint_poly is calculated automatically by GeoArray
            if not CoReg_params['q']:
                print('Calculating actual data corner coordinates for %s...' % self.imName)
98
            self.calc_mask_nodata(fromBand=self.band4match)  # this avoids that all bands have to be read
99

100
        self.poly = self.footprint_poly  # returns a shapely geometry
101

102
        if not self.q:
103
            print('Bounding box of calculated footprint for %s:\n\t%s' % (self.imName, self.poly.bounds))
104

105
106
107
        # add bad data mask
        given_mask = CoReg_params['mask_baddata_%s' % ('ref' if imID == 'ref' else 'tgt')]
        if given_mask:
Daniel Scheffler's avatar
Daniel Scheffler committed
108
            self.mask_baddata = given_mask # runs GeoArray.mask_baddata.setter -> sets it to BadDataMask()
109
110
111


class COREG(object):
112
113
    """See help(COREG) for documentation!"""

114
115
    def __init__(self, im_ref, im_tgt, path_out=None, fmt_out='ENVI', out_crea_options=None, r_b4match=1, s_b4match=1,
                 wp=(None,None), ws=(512, 512), max_iter=5, max_shift=5, align_grids=False, match_gsd=False,
116
117
                 out_gsd=None, target_xyGrid=None, resamp_alg_deshift='cubic', resamp_alg_calc='cubic',
                 footprint_poly_ref=None, footprint_poly_tgt=None, data_corners_ref=None, data_corners_tgt=None,
118
                 nodata=(None,None), calc_corners=True, binary_ws=True, mask_baddata_ref=None, mask_baddata_tgt=None,
Daniel Scheffler's avatar
Daniel Scheffler committed
119
                 CPUs=None, force_quadratic_win=True, progress=True, v=False, path_verbose_out=None, q=False,
120
                 ignore_errors=False):
121
122
123
124

        """Detects and corrects global X/Y shifts between a target and refernce image. Geometric shifts are calculated
        at a specific (adjustable) image position. Correction performs a global shifting in X- or Y direction.

125
126
127
128
        :param im_ref(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of reference image
        :param im_tgt(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of image to be shifted
129
        :param path_out(str):           target path of the coregistered image
130
131
132
                                            - if None (default), the method correct_shifts() does not write to disk
                                            - if 'auto': /dir/of/im1/<im1>__shifted_to__<im0>.bsq
        :param fmt_out(str):            raster file format for output file. ignored if path_out is None. can be any GDAL
133
134
                                        compatible raster file format (e.g. 'ENVI', 'GeoTIFF'; default: ENVI). Refer to
                                        http://www.gdal.org/formats_list.html to get a full list of supported formats.
135
136
        :param out_crea_options(list):  GDAL creation options for the output image,
                                        e.g. ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
137
138
139
140
141
142
143
144
145
146
147
        :param r_b4match(int):          band of reference image to be used for matching (starts with 1; default: 1)
        :param s_b4match(int):          band of shift image to be used for matching (starts with 1; default: 1)
        :param wp(tuple):               custom matching window position as map values in the same projection like the
                                        reference image (default: central position of image overlap)
        :param ws(tuple):               custom matching window size [pixels] (default: (512,512))
        :param max_iter(int):           maximum number of iterations for matching (default: 5)
        :param max_shift(int):          maximum shift distance in reference image pixel units (default: 5 px)
        :param align_grids(bool):       align the coordinate grids of the image to be and the reference image (default: 0)
        :param match_gsd(bool):         match the output pixel size to pixel size of the reference image (default: 0)
        :param out_gsd(tuple):          xgsd ygsd: set the output pixel size in map units
                                        (default: original pixel size of the image to be shifted)
148
149
        :param target_xyGrid(list):     a list with a target x-grid and a target y-grid like [[15,45], [15,45]]
                                        This overrides 'out_gsd', 'align_grids' and 'match_gsd'.
150
151
152
153
154
155
156
157
158
        :param resamp_alg_deshift(str)  the resampling algorithm to be used for shift correction (if neccessary)
                                        valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average, mode,
                                                          max, min, med, q1, q3
                                        default: cubic
        :param resamp_alg_calc(str)     the resampling algorithm to be used for all warping processes during calculation
                                        of spatial shifts
                                        (valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average, mode,
                                                       max, min, med, q1, q3)
                                        default: cubic (highly recommended)
159
160
161
162
163
164
165
166
167
168
        :param footprint_poly_ref(str): footprint polygon of the reference image (WKT string or shapely.geometry.Polygon),
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param footprint_poly_tgt(str): footprint polygon of the image to be shifted (WKT string or shapely.geometry.Polygon)
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param data_corners_ref(list):  map coordinates of data corners within reference image.
                                        ignored if footprint_poly_ref is given.
        :param data_corners_tgt(list):  map coordinates of data corners within image to be shifted.
                                        ignored if footprint_poly_tgt is given.
169
170
171
172
173
        :param nodata(tuple):           no data values for reference image and image to be shifted
        :param calc_corners(bool):      calculate true positions of the dataset corners in order to get a useful
                                        matching window position within the actual image overlap
                                        (default: 1; deactivated if '-cor0' and '-cor1' are given
        :param binary_ws(bool):         use binary X/Y dimensions for the matching window (default: 1)
174
175
176
177
178
179
180
181
182
183
184
185
        :param mask_baddata_ref(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                reference image where all bad data pixels (e.g. clouds) are marked with
                                                True and the remaining pixels with False. Must have the same geographic
                                                extent and projection like 'im_ref'. The mask is used to check if the
                                                chosen matching window position is valid in the sense of useful data.
                                                Otherwise this window position is rejected.
        :param mask_baddata_tgt(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                image to be shifted where all bad data pixels (e.g. clouds) are marked
                                                with True and the remaining pixels with False. Must have the same
                                                geographic extent and projection like 'im_ref'. The mask is used to
                                                check if the chosen matching window position is valid in the sense of
                                                useful data. Otherwise this window position is rejected.
Daniel Scheffler's avatar
Daniel Scheffler committed
186
187
        :param CPUs(int):               number of CPUs to use during pixel grid equalization
                                        (default: None, which means 'all CPUs available')
188
        :param force_quadratic_win(bool):   force a quadratic matching window (default: 1)
189
        :param progress(bool):          show progress bars (default: True)
190
        :param v(bool):                 verbose mode (default: False)
191
192
        :param path_verbose_out(str):   an optional output directory for intermediate results
                                        (if not given, no intermediate results are written to disk)
193
194
        :param q(bool):                 quiet mode (default: False)
        :param ignore_errors(bool):     Useful for batch processing. (default: False)
195
196
197
198
199
200
                                        In case of error COREG.success == False and COREG.x_shift_px/COREG.y_shift_px
                                        is None
        """

        self.params              = dict([x for x in locals().items() if x[0] != "self"])

201
        # assertions
202
        assert gdal.GetDriverByName(fmt_out), "'%s' is not a supported GDAL driver." % fmt_out
203
204
        if match_gsd and out_gsd: warnings.warn("'-out_gsd' is ignored because '-match_gsd' is set.\n")
        if out_gsd:  assert isinstance(out_gsd, list) and len(out_gsd) == 2, 'out_gsd must be a list with two values.'
205
206
207
208
        if data_corners_ref and not isinstance(data_corners_ref[0], list): # group if not [[x,y],[x,y]..] but [x,y,x,y,]
            data_corners_ref = [data_corners_ref[i:i + 2] for i in range(0, len(data_corners_ref), 2)]
        if data_corners_tgt and not isinstance(data_corners_tgt[0], list): # group if not [[x,y],[x,y]..]
            data_corners_tgt = [data_corners_tgt[i:i + 2] for i in range(0, len(data_corners_tgt), 2)]
209
210
        if nodata: assert isinstance(nodata, tuple) and len(nodata) == 2, "'nodata' must be a tuple with two values." \
                                                                          "Got %s with length %s." %(type(nodata),len(nodata))
211
        for rspAlg in [resamp_alg_deshift, resamp_alg_calc]:
212
            assert rspAlg in _dict_rspAlg_rsp_Int.keys(), "'%s' is not a supported resampling algorithm." % rspAlg
213
        if resamp_alg_calc=='average' and (v or not q):
214
            warnings.warn("The resampling algorithm 'average' causes sinus-shaped patterns in fft images that will "
215
216
                          "affect the precision of the calculated spatial shifts! It is highly recommended to "
                          "choose another resampling algorithm.")
217
218

        self.path_out            = path_out            # updated by self.set_outpathes
219
        self.fmt_out             = fmt_out
220
        self.out_creaOpt         = out_crea_options
221
222
223
224
225
226
227
        self.win_pos_XY          = wp                  # updated by self.get_opt_winpos_winsize()
        self.win_size_XY         = ws                  # updated by self.get_opt_winpos_winsize()
        self.max_iter            = max_iter
        self.max_shift           = max_shift
        self.align_grids         = align_grids
        self.match_gsd           = match_gsd
        self.out_gsd             = out_gsd
228
        self.target_xyGrid       = target_xyGrid
229
230
        self.rspAlg_DS           = resamp_alg_deshift
        self.rspAlg_calc         = resamp_alg_calc
231
        self.calc_corners        = calc_corners
Daniel Scheffler's avatar
Daniel Scheffler committed
232
        self.CPUs                = CPUs
233
234
235
236
        self.bin_ws              = binary_ws
        self.force_quadratic_win = force_quadratic_win
        self.v                   = v
        self.path_verbose_out    = path_verbose_out
237
238
239
        self.q                   = q if not v else False # overridden by v
        self.progress            = progress if not q else False  # overridden by q

240
241
242
243
        self.ignErr              = ignore_errors
        self.max_win_sz_changes  = 3                   # TODO: änderung der window size, falls nach max_iter kein valider match gefunden
        self.ref                 = None                # set by self.get_image_params
        self.shift               = None                # set by self.get_image_params
244
245
246
247
        self.matchBox            = None                # set by self.get_clip_window_properties()  => boxObj
        self.otherBox            = None                # set by self.get_clip_window_properties()  => boxObj
        self.matchWin            = None                # set by self._get_image_windows_to_match() => GeoArray
        self.otherWin            = None                # set by self._get_image_windows_to_match() => GeoArray
248
249
250
        self.overlap_poly        = None                # set by self._get_overlap_properties()
        self.overlap_percentage  = None                # set by self._get_overlap_properties()
        self.overlap_area        = None                # set by self._get_overlap_properties()
251
        self.imfft_gsd           = None                # set by self.get_clip_window_properties()
252
        self.fftw_works          = None                # set by self._calc_shifted_cross_power_spectrum()
253
        self.fftw_win_size_YX    = None                # set by calc_shifted_cross_power_spectrum()
254
255
256
257
258

        self.x_shift_px          = None                # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.y_shift_px          = None                # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.x_shift_map         = None                # set by self.get_updated_map_info()
        self.y_shift_map         = None                # set by self.get_updated_map_info()
259
260
        self.vec_length_map      = None
        self.vec_angle_deg       = None
261
        self.updated_map_info    = None                # set by self.get_updated_map_info()
262
263
264
        self.ssim_orig           = None                # set by self._validate_ssim_improvement()
        self.ssim_deshifted      = None                # set by self._validate_ssim_improvement()
        self._ssim_improved      = None                # private attribute to be filled by self.ssim_improved
265
        self.shift_reliability   = None                # set by self.calculate_spatial_shifts()
266
267

        self.tracked_errors      = []                  # expanded each time an error occurs
268
        self.success             = None                # default
269
        self.deshift_results     = None                # set by self.correct_shifts()
270
271
272
273

        gdal.AllRegister()
        self._get_image_params()
        self._set_outpathes(im_ref, im_tgt)
274
        self.grid2use = 'ref' if self.shift.xgsd <= self.ref.xgsd else 'shift'
275
276
        if self.v: print('resolutions: ', self.ref.xgsd, self.shift.xgsd)

277
        self._get_overlap_properties()
278
279
280
281
282
283
284
285
286
287
288

        if self.v and self.path_verbose_out:
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_imref.shp'),    self.ref.poly,     self.ref.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_im2shift.shp'), self.shift.poly,   self.shift.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'overlap_poly.shp'),  self.overlap_poly, self.ref.prj)

        ### FIXME: transform_mapPt1_to_mapPt2(im2shift_center_map, ds_imref.GetProjection(), ds_im2shift.GetProjection()) # später basteln für den fall, dass projektionen nicht gleich sind

        # get_clip_window_properties
        self._get_opt_winpos_winsize()
        if not self.q: print('Matching window position (X,Y): %s/%s' % (self.win_pos_XY[0], self.win_pos_XY[1]))
289
        self._get_clip_window_properties() # sets self.matchBox, self.otherBox and much more
290

291
        if self.v and self.path_verbose_out and self.matchBox.mapPoly and self.success is not False:
292
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_matchWin.shp'),
293
                         self.matchBox.mapPoly, self.matchBox.prj)
294

295
        self.success     = False if self.success is False or not self.matchBox.boxMapYX else None
296
        self._coreg_info = None # private attribute to be filled by self.coreg_info property
297
298


299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    def _handle_error(self, error, warn=False, warnMsg=None):
        """Appends the given error to self.tracked_errors, sets self.success to False and raises the error in case
        self.ignore_errors = True.

        :param error:   instance of an error
        :param warn:    whether to give a warning in case error would be ignored otherwise
        :param warnMsg: a custom message for the warning
        :return:
        """

        warn = warn or warnMsg is not None or self.v

        self.tracked_errors.append(error)
        self.success = False

        if self.ignErr and warn:
            warnMsg = repr(error) if not warnMsg else warnMsg
            print('\nWARNING: '+warnMsg)

        if not self.ignErr:
            raise error


322
    def _set_outpathes(self, im_ref, im_tgt):
323
324
325
326
        assert isinstance(im_ref, (GeoArray, str)) and isinstance(im_tgt, (GeoArray, str)),\
            'COREG._set_outpathes() expects two file pathes (string) or two instances of the ' \
            'GeoArray class. Received %s and %s.' %(type(im_ref), type(im_tgt))

327
328
329
330
331
332
        get_baseN = lambda path: os.path.splitext(os.path.basename(path))[0]

        # get input pathes
        path_im_ref = im_ref.filePath if isinstance(im_ref, GeoArray) else im_ref
        path_im_tgt = im_tgt.filePath if isinstance(im_tgt, GeoArray) else im_tgt

333
334
335
336
337
        if self.path_out: # this also applies to self.path_out='auto'

            if self.path_out == 'auto':
                dir_out, fName_out = os.path.dirname(path_im_tgt), ''
            else:
338
                dir_out, fName_out = os.path.split(self.path_out)
339
340
341
342
343
344
345
346
347
348
349
350
351
352

            if dir_out and fName_out:
                # a valid output path is given => do nothing
                pass

            else:
                # automatically create an output directory and filename if not given
                if not dir_out:
                    if not path_im_ref:
                        dir_out = os.path.abspath(os.path.curdir)
                    else:
                        dir_out = os.path.dirname(path_im_ref)

                if not fName_out:
353
354
355
356
357
                    ext         = 'bsq' if self.fmt_out=='ENVI' else \
                                    gdal.GetDriverByName(self.fmt_out).GetMetadataItem(gdal.DMD_EXTENSION)
                    fName_out   = fName_out if not fName_out in ['.',''] else '%s__shifted_to__%s' \
                                    %(get_baseN(path_im_tgt), get_baseN(path_im_ref))
                    fName_out   = fName_out+'.%s'%ext if ext else fName_out
358

359
                self.path_out   = os.path.abspath(os.path.join(dir_out,fName_out))
360
361
362
363

                assert ' ' not in self.path_out, \
                    "The path of the output image contains whitespaces. This is not supported by GDAL."
        else:
364
            # this only happens if COREG is not instanced from within Python and self.path_out is explicitly set to None
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
            # => DESHIFTER will return an array
            pass

        if self.v:
            if self.path_verbose_out:
                dir_out, dirname_out = os.path.split(self.path_verbose_out)

                if not dir_out:
                    if self.path_out:
                        self.path_verbose_out = os.path.dirname(self.path_out)
                    else:
                        self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir,
                            'CoReg_verboseOut__%s__shifted_to__%s' % (get_baseN(path_im_tgt), get_baseN(path_im_ref))))
                elif dirname_out and not dir_out:
                    self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir, dirname_out))

                assert ' ' not in self.path_verbose_out, \
                    "'path_verbose_out' contains whitespaces. This is not supported by GDAL."

        else:
            self.path_verbose_out = None

        if self.path_verbose_out and not os.path.isdir(self.path_verbose_out): os.makedirs(self.path_verbose_out)


    def _get_image_params(self):
391
392
        self.ref   = GeoArray_CoReg(self.params,'ref')
        self.shift = GeoArray_CoReg(self.params,'shift')
393
        assert prj_equal(self.ref.prj, self.shift.prj), \
394
395
            'Input projections are not equal. Different projections are currently not supported. Got %s / %s.'\
            %(get_proj4info(proj=self.ref.prj), get_proj4info(proj=self.shift.prj))
396
397


398
399
400
401
402
403
404
405
406
407
408
    def _get_overlap_properties(self):
        overlap_tmp                   = get_overlap_polygon(self.ref.poly, self.shift.poly, self.v)
        self.overlap_poly             = overlap_tmp['overlap poly'] # has to be in reference projection
        self.overlap_percentage       = overlap_tmp['overlap percentage']
        self.overlap_area             = overlap_tmp['overlap area']

        assert self.overlap_poly, 'The input images have no spatial overlap.'

        # overlap are must at least cover 16*16 pixels
        px_area = self.ref.xgsd * self.ref.ygsd if self.grid2use=='ref' else self.shift.xgsd * self.shift.ygsd
        px_covered = self.overlap_area/px_area
409
        assert px_covered > 16*16, 'Overlap area covers only %s pixels. At least 16*16 pixels are needed.' %px_covered
410
411


412
413
414
415
416
    def equalize_pixGrids(self):
        """
        Equalize image grids and projections of reference and target image (align target to reference).
        """
        if not (prj_equal(self.ref.prj, self.shift.prj) and self.ref.xygrid_specs==self.shift.xygrid_specs):
Daniel Scheffler's avatar
Daniel Scheffler committed
417
418
            if not self.q: print("Equalizing pixel grids and projections of reference and target image...")

419
420
            if self.grid2use=='ref':
                # resample target image to refernce image
Daniel Scheffler's avatar
Daniel Scheffler committed
421
                self.shift.arr = self.shift[:,:,self.shift.band4match] # resample the needed band only
422
                self.shift.reproject_to_new_grid(prototype=self.ref, CPUs=self.CPUs)
Daniel Scheffler's avatar
Daniel Scheffler committed
423
                self.shift.band4match = 0 # after resampling there is only one band in the GeoArray
424
425
426
            else:
                # resample reference image to target image
                # FIXME in case of different projections this will change the projection of the reference image!
Daniel Scheffler's avatar
Daniel Scheffler committed
427
                self.ref.arr = self.ref[:,:,self.ref.band4match] # resample the needed band only
428
                self.ref.reproject_to_new_grid(prototype=self.shift, CPUs=self.CPUs)
Daniel Scheffler's avatar
Daniel Scheffler committed
429
                self.ref.band4match = 0  # after resampling there is only one band in the GeoArray
430
431


432
433
434
435
436
437
438
439
440
    def show_image_footprints(self):
        """This method is intended to be called from Jupyter Notebook and shows a web map containing the calculated
        footprints of the input images as well as the corresponding overlap area."""
        # TODO different colors for polygons
        assert self.overlap_poly, 'Please calculate the overlap polygon first.'

        try:
            import folium, geojson
        except ImportError:
441
442
            folium, geojson = None, None
        if not folium or not geojson:
443
444
445
            raise ImportError("This method requires the libraries 'folium' and 'geojson'. They can be installed with "
                              "the shell command 'pip install folium geojson'.")

446
447
448
449
        refPoly      = reproject_shapelyGeometry(self.ref  .poly      , self.ref  .epsg, 4326)
        shiftPoly    = reproject_shapelyGeometry(self.shift.poly      , self.shift.epsg, 4326)
        overlapPoly  = reproject_shapelyGeometry(self.overlap_poly    , self.shift.epsg, 4326)
        matchBoxPoly = reproject_shapelyGeometry(self.matchBox.mapPoly, self.shift.epsg, 4326)
450
451

        m = folium.Map(location=tuple(np.array(overlapPoly.centroid.coords.xy).flatten())[::-1])
452
        for poly in [refPoly, shiftPoly, overlapPoly, matchBoxPoly]:
453
454
455
456
457
            gjs = geojson.Feature(geometry=poly, properties={})
            folium.GeoJson(gjs).add_to(m)
        return m


458
459
    def show_matchWin(self, figsize=(15,15), interactive=True, deshifted=False):
        """Show the image content within the matching window.
460

461
462
463
464
465
        :param figsize:      <tuple> figure size
        :param interactive:  <bool> whether to return an interactive figure based on 'holoviews' library
        :param deshifted:    <bool> whether to put the image content AFTER shift correction into the figure
        :return:
        """
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        if interactive:
            # use Holoviews
            try:
                import holoviews as hv
            except ImportError:
                hv =None
            if not hv:
                raise ImportError(
                    "This method requires the library 'holoviews'. It can be installed for Anaconda with "
                    "the shell command 'conda install -c ioam holoviews bokeh'.")
            warnings.filterwarnings('ignore')
            hv.notebook_extension('matplotlib')
            hv.Store.add_style_opts(hv.Image, ['vmin','vmax'])

            #hv.Store.option_setters.options().Image = hv.Options('style', cmap='gnuplot2')
            #hv.Store.add_style_opts(hv.Image, ['cmap'])
            #renderer = hv.Store.renderers['matplotlib'].instance(fig='svg', holomap='gif')
            #RasterPlot = renderer.plotting_class(hv.Image)
            #RasterPlot.cmap = 'gray'
485
486
            otherWin_corr       = self._get_deshifted_otherWin()
            xmin,xmax,ymin,ymax = self.matchBox.boundsMap
487
488
489
490


            get_vmin     = lambda arr: np.percentile(arr, 2)
            get_vmax     = lambda arr: np.percentile(arr, 98)
491
492
493
            rescale      = lambda arr: rescale_intensity(arr, in_range=(get_vmin(arr), get_vmax(arr)))
            get_arr      = lambda geoArr: rescale(np.ma.masked_equal(geoArr[:], geoArr.nodata))
            get_hv_image = lambda geoArr: hv.Image(get_arr(geoArr), bounds=(xmin,ymin,xmax,ymax))(
494
                style={'cmap':'gray',
495
                       'vmin':get_vmin(geoArr[:]), 'vmax':get_vmax(geoArr[:]), # does not work
496
                       'interpolation':'none'},
497
                plot={'fig_inches':figsize, 'show_grid':True})
498
499
                #plot={'fig_size':100, 'show_grid':True})

500
501
502
            imgs_orig = {1 : get_hv_image(self.matchWin), 2 : get_hv_image(self.otherWin)}
            imgs_corr = {1 : get_hv_image(self.matchWin), 2 : get_hv_image(otherWin_corr)}
            #layout = get_hv_image(self.matchWin) + get_hv_image(self.otherWin)
503

504
505
            imgs = {1 : get_hv_image(self.matchWin) + get_hv_image(self.matchWin),
                    2 : get_hv_image(self.otherWin) + get_hv_image(otherWin_corr)
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
                        }

            # Construct a HoloMap by evaluating the function over all the keys
            hmap_orig = hv.HoloMap(imgs_orig, kdims=['image'])
            hmap_corr = hv.HoloMap(imgs_corr, kdims=['image'])

            hmap      = hv.HoloMap(imgs, kdims=['image']).collate().cols(1) # displaying this results in a too small figure
            #hmap = hv.HoloMap(imgs_corr, kdims=['image']) +  hv.HoloMap(imgs_corr, kdims=['image'])

            ## Construct a HoloMap by defining the sampling on the Dimension
            #dmap = hv.DynamicMap(image_slice, kdims=[hv.Dimension('z_axis', values=keys)])
            warnings.filterwarnings('default')
            #return hmap

            return hmap_orig if not deshifted else hmap_corr

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
        else:
            # TODO add titles
            self.matchWin.show(figsize=figsize)
            if deshifted:
                self._get_deshifted_otherWin().show(figsize=figsize)
            else:
                self.otherWin.show(figsize=figsize)


    def show_cross_power_spectrum(self, interactive=False):
        """
        Shows a 3D surface of the cross power spectrum resulting from phase correlating the reference and target
        image within the matching window.

        :param interactive:  whether to return an interactice 3D surface plot based on 'plotly' library
        :return:
        """

        if interactive:
            # create plotly 3D surface

            #import plotly.plotly as py # online mode -> every plot is uploaded into online plotly account
            from plotly.offline import iplot, init_notebook_mode
            import plotly.graph_objs as go

            init_notebook_mode(connected=True)

            z_data = self._calc_shifted_cross_power_spectrum()
            data   = [go.Surface(z=z_data)]
            layout = go.Layout(
                title='cross power spectrum',
                autosize=False,
                width=1000,
                height=1000,
                margin=dict(l=65, r=50, b=65, t=90))
            fig    = go.Figure(data=data, layout=layout)

            return iplot(fig, filename='SCPS')

        else:
            # use matplotlib
            scps = self._calc_shifted_cross_power_spectrum()
            PLT.subplot_3dsurface(scps.astype(np.float32))

566

567
    def _get_opt_winpos_winsize(self):
568
        # type: (tuple,tuple) -> None
569
570
571
572
        """
        Calculates optimal window position and size in reference image units according to DGM, cloud_mask and
        trueCornerLonLat.
        """
573
574
575
576
577
578
579
580
581
582
583
584
        # dummy algorithm: get center position of overlap instead of searching ideal window position in whole overlap
        # TODO automatischer Algorithmus zur Bestimmung der optimalen Window Position

        wp = tuple(self.win_pos_XY)
        assert type(self.win_pos_XY) in [tuple,list,np.ndarray],\
            'The window position must be a tuple of two elements. Got %s with %s elements.' %(type(wp),len(wp))
        wp = tuple(wp)

        if None in wp:
            overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.centroid.coords.xy
            wp = (wp[0] if wp[0] else overlap_center_pos_x[0]), (wp[1] if wp[1] else overlap_center_pos_y[0])

585
        # validate window position
586
        if not self.overlap_poly.contains(Point(wp)):
587
588
            self._handle_error(ValueError('The provided window position %s/%s is outside of the overlap ' \
                                          'area of the two input images. Check the coordinates.' %wp))
589
590
591
592
593
594

        # check if window position is within bad data area if a respective mask has been provided
        for im in [self.ref, self.shift]:
            if im.mask_baddata is not None:
                imX, imY = mapXY2imXY(wp, im.mask_baddata.gt)

595
                if im.mask_baddata[int(imY), int(imX)] is True:
596
                    self._handle_error(
597
598
599
                        RuntimeError('According to the provided bad data mask for the %s the chosen window position '
                            '%s / %s is within a bad data area. Using this window position for coregistration '
                            'is not reasonable. Please provide a better window position!' %(im.imName, wp[0], wp[1])))
600

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        self.win_pos_XY  = wp
        self.win_size_XY = (int(self.win_size_XY[0]), int(self.win_size_XY[1])) if self.win_size_XY else (512,512)


    def _get_clip_window_properties(self):
        """Calculate all properties of the matching window and the other window. These windows are used to read the
        corresponding image positions in the reference and the target image.
        hint: Even if X- and Y-dimension of the target window is equal, the output window can be NOT quadratic!
        """
        # FIXME image sizes like 10000*256 are still possible

        wpX,wpY             = self.win_pos_XY
        wsX,wsY             = self.win_size_XY
        ref_wsX, ref_wsY    = (wsX*self.ref.xgsd  , wsY*self.ref.ygsd)   # image units -> map units
        shift_wsX,shift_wsY = (wsX*self.shift.xgsd, wsY*self.shift.ygsd) # image units -> map units
        ref_box_kwargs      = {'wp':(wpX,wpY),'ws':(ref_wsX,ref_wsY)    ,'gt':self.ref.gt  }
        shift_box_kwargs    = {'wp':(wpX,wpY),'ws':(shift_wsX,shift_wsY),'gt':self.shift.gt}
618
619
        matchBox            = boxObj(**ref_box_kwargs)   if self.grid2use=='ref' else boxObj(**shift_box_kwargs)
        otherBox            = boxObj(**shift_box_kwargs) if self.grid2use=='ref' else boxObj(**ref_box_kwargs)
620
621
622
        overlapWin          = boxObj(mapPoly=self.overlap_poly,gt=self.ref.gt)

        # clip matching window to overlap area
623
624
625
626
627
628
629
630
631
632
633
634
635
        matchBox.mapPoly = matchBox.mapPoly.intersection(overlapWin.mapPoly)

        #check if matchBox extent touches no data area of the image -> if yes: shrink it
        overlapPoly_within_matchWin = matchBox.mapPoly.intersection(self.overlap_poly)
        if overlapPoly_within_matchWin.area < matchBox.mapPoly.area:
            wsX_start, wsY_start = 1 if wsX>=wsY else wsX/wsY, 1 if wsY>=wsX else wsY/wsX
            box = boxObj(**dict(wp=(wpX,wpY),ws=(wsX_start, wsY_start), gt=matchBox.gt))
            while True:
                box.buffer_imXY(1,1)
                if not box.mapPoly.within(overlapPoly_within_matchWin):
                    box.buffer_imXY(-1, -1)
                    matchBox = box
                    break
636
637
638

        # move matching window to imref grid or im2shift grid
        mW_rows, mW_cols = (self.ref.rows, self.ref.cols) if self.grid2use == 'ref' else (self.shift.rows, self.shift.cols)
639
        matchBox.mapPoly = move_shapelyPoly_to_image_grid(matchBox.mapPoly, matchBox.gt, mW_rows, mW_cols, 'NW')
640

641
642
        # check, ob durch Verschiebung auf Grid die matchBox außerhalb von overlap_poly geschoben wurde
        if not matchBox.mapPoly.within(overlapWin.mapPoly):
643
            # matchPoly weiter verkleinern # 1 px buffer reicht, weil window nur auf das Grid verschoben wurde
644
645
            xLarger,yLarger = matchBox.is_larger_DimXY(overlapWin.boundsIm)
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
646
647

        # matching_win direkt auf grid2use (Rundungsfehler bei Koordinatentrafo beseitigen)
648
        matchBox.imPoly = round_shapelyPoly_coords(matchBox.imPoly, precision=0, out_dtype=int)
649
650

        # Check, ob match Fenster größer als anderes Fenster
651
        if not (matchBox.mapPoly.within(otherBox.mapPoly) or matchBox.mapPoly==otherBox.mapPoly):
652
            # dann für anderes Fenster kleinstes Fenster finden, das match-Fenster umgibt
653
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX,otherBox.gt)
654
655

        # evtl. kann es sein, dass bei Shift-Fenster-Vergrößerung das shift-Fenster zu groß für den overlap wird
Daniel Scheffler's avatar
Daniel Scheffler committed
656
        t_start = time.time()
657
        while not otherBox.mapPoly.within(overlapWin.mapPoly):
Daniel Scheffler's avatar
Daniel Scheffler committed
658
            # -> match Fenster verkleinern und neues otherBox berechnen
659
660
661
662
            xLarger, yLarger = otherBox.is_larger_DimXY(overlapWin.boundsIm)
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
            previous_area    = otherBox.mapPoly.area
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX,otherBox.gt)
663

Daniel Scheffler's avatar
Daniel Scheffler committed
664
665
666
            if previous_area == otherBox.mapPoly.area or time.time()-t_start > 1.5:
                # happens e.g in case of a triangular footprint
                # NOTE: first condition is not always fulfilled -> therefore added timeout of 1.5 sec
667
                self._handle_error(
668
669
                    RuntimeError('Matching window in target image is larger than overlap area but further shrinking '
                                 'the matching window is not possible. Check if the footprints of the input data have '
670
671
                                 'been computed correctly.' +
                                 (' Matching window shrinking timed out.' if time.time() - t_start > 5 else ''))  )
672
673
                break # break out of while loop in order to avoid that code gets stuck here

Daniel Scheffler's avatar
Daniel Scheffler committed
674
675
676
677
678
679
680
        # output validation
        for winBox in [matchBox, otherBox]:
            if winBox.imDimsYX[0] < 16 or winBox.imDimsYX[1] < 16:
                self._handle_error(
                    RuntimeError("One of the input images does not have sufficient gray value information "
                                 "(non-no-data values) for placing a matching window at the position %s. "
                                 "Matching failed." % str((wpX, wpY))))
Daniel Scheffler's avatar
Daniel Scheffler committed
681

682
        if self.success is not False:
Daniel Scheffler's avatar
Daniel Scheffler committed
683
684
685
686
            # check result -> ProgrammingError if not fulfilled
            within_equal = lambda inner, outer: inner.within(outer) or inner.equals(outer)
            assert within_equal(matchBox.mapPoly, otherBox.mapPoly)
            assert within_equal(otherBox.mapPoly, overlapWin.mapPoly)
687
688

            self.imfft_gsd              = self.ref.xgsd       if self.grid2use =='ref' else self.shift.xgsd
689
690
            self.ref.win,self.shift.win = (matchBox,otherBox) if self.grid2use =='ref' else (otherBox,matchBox)
            self.matchBox,self.otherBox = matchBox, otherBox
691
692
            self.ref.  win.size_YX      = tuple([int(i) for i in self.ref.  win.imDimsYX])
            self.shift.win.size_YX      = tuple([int(i) for i in self.shift.win.imDimsYX])
693
            match_win_size_XY           = tuple(reversed([int(i) for i in matchBox.imDimsYX]))
694

695
696
697
            if not self.q and match_win_size_XY != self.win_size_XY:
                print('Target window size %s not possible due to too small overlap area or window position too close '
                      'to an image edge. New matching window size: %s.' %(self.win_size_XY,match_win_size_XY))
698

699
700
            #IO.write_shp('/misc/hy5/scheffler/Temp/matchMapPoly.shp', matchBox.mapPoly,matchBox.prj)
            #IO.write_shp('/misc/hy5/scheffler/Temp/otherMapPoly.shp', otherBox.mapPoly,otherBox.prj)
701
702


Daniel Scheffler's avatar
Daniel Scheffler committed
703
704


705
706
707
708
709
    def _get_image_windows_to_match(self):
        """Reads the matching window and the other window using subset read, and resamples the other window to the
        resolution and the pixel grid of the matching window. The result consists of two images with the same
        dimensions and exactly the same corner coordinates."""

710
711
        match_fullGeoArr = self.ref   if self.grid2use=='ref' else self.shift
        other_fullGeoArr = self.shift if self.grid2use=='ref' else self.ref
712
713

        # matchWin per subset-read einlesen -> self.matchWin.data
714
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.matchBox.boxImYX)
715
        assert np.array_equal(np.abs(np.array([rS,rE,cS,cE])), np.array([rS,rE,cS,cE])), \
716
            'Got negative values in gdalReadInputs for %s.' %match_fullGeoArr.imName
717
718
719
720
721
        self.matchWin = GeoArray(match_fullGeoArr[rS:rE,cS:cE, match_fullGeoArr.band4match],
                                 geotransform = GEO.get_subset_GeoTransform(match_fullGeoArr.gt, self.matchBox.boxImYX),
                                 projection   = copy(match_fullGeoArr.prj),
                                 nodata       = copy(match_fullGeoArr.nodata))
        self.matchWin.imID = match_fullGeoArr.imID
722
723

        # otherWin per subset-read einlesen
724
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.otherBox.boxImYX)
725
        assert np.array_equal(np.abs(np.array([rS,rE,cS,cE])), np.array([rS,rE,cS,cE])), \
726
            'Got negative values in gdalReadInputs for %s.' %other_fullGeoArr.imName
727
728
729
730
731
        self.otherWin = GeoArray(other_fullGeoArr[rS:rE, cS:cE, other_fullGeoArr.band4match],
                                 geotransform = GEO.get_subset_GeoTransform(other_fullGeoArr.gt, self.otherBox.boxImYX),
                                 projection   = copy(other_fullGeoArr.prj),
                                 nodata       = copy(other_fullGeoArr.nodata))
        self.otherWin.imID = other_fullGeoArr.imID
732
733
734

        #self.matchWin.deepcopy_array()
        #self.otherWin.deepcopy_array()
735
736
737

        if self.v:
            print('Original matching windows:')
738
739
            ref_data, shift_data =  (self.matchWin[:], self.otherWin[:]) if self.grid2use=='ref' else \
                                    (self.otherWin[:], self.matchWin[:])
740
741
            PLT.subplot_imshow([ref_data, shift_data],[self.ref.title,self.shift.title], grid=True)

742
        # resample otherWin.arr to the resolution of matchWin AND make sure the pixel edges are identical
743
744
        # (in order to make each image show the same window with the same coordinates)
        # TODO replace cubic resampling by PSF resampling - average resampling leads to sinus like distortions in the fft image that make a precise coregistration impossible. Thats why there is currently no way around cubic resampling.
745
        tgt_xmin,tgt_xmax,tgt_ymin,tgt_ymax = self.matchBox.boundsMap
746
747
748
749
750
751
752
753
754
755
756
757

        # equalize pixel grids and projection of matchWin and otherWin (ONLY if grids are really different)
        if not(self.matchWin.xygrid_specs==self.otherWin.xygrid_specs and
            prj_equal(self.matchWin.prj, self.otherWin.prj)):
            self.otherWin.arr, self.otherWin.gt = warp_ndarray(self.otherWin.arr,
                                                               self.otherWin.gt,
                                                               self.otherWin.prj,
                                                               self.matchWin.prj,
                                                               out_gsd    = (self.imfft_gsd, self.imfft_gsd),
                                                               out_bounds = ([tgt_xmin, tgt_ymin, tgt_xmax, tgt_ymax]),
                                                               rspAlg     = _dict_rspAlg_rsp_Int[self.rspAlg_calc],
                                                               in_nodata  = self.otherWin.nodata,
Daniel Scheffler's avatar
Daniel Scheffler committed
758
                                                               CPUs       = self.CPUs,
759
                                                               progress   = False) [:2]
760
761

        if self.matchWin.shape != self.otherWin.shape:
762
763
764
765
766
767
            self._handle_error(
                RuntimeError('Catched a possible ProgrammingError at window position %s: Bad output of '
                             'get_image_windows_to_match. Reference image shape is %s whereas shift '
                             'image shape is %s.' % (str(self.matchBox.wp),self.matchWin.shape, self.otherWin.shape)),
                warn=True)

768
769
        rows, cols = [i if i % 2 == 0 else i - 1 for i in self.matchWin.shape]
        self.matchWin.arr, self.otherWin.arr = self.matchWin.arr[:rows, :cols], self.otherWin.arr[:rows, :cols]
770

771
        assert self.matchWin.arr is not None and self.otherWin.arr is not None, 'Creation of matching windows failed.'
772
773
774
775


    @staticmethod
    def _shrink_winsize_to_binarySize(win_shape_YX, target_size=None):
776
        # type: (tuple, tuple, int , int) -> any
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
        """Shrinks a given window size to the closest binary window size (a power of 2) -
        separately for X- and Y-dimension.

        :param win_shape_YX:    <tuple> source window shape as pixel units (rows,colums)
        :param target_size:     <tuple> source window shape as pixel units (rows,colums)
        """

        binarySizes   = [2**i for i in range(3,14)] # [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
        possibSizes_X = [i for i in binarySizes if i <= win_shape_YX[1]]
        possibSizes_Y = [i for i in binarySizes if i <= win_shape_YX[0]]
        if possibSizes_X and possibSizes_Y:
            tgt_size_X,tgt_size_Y = target_size if target_size else (max(possibSizes_X),max(possibSizes_Y))
            closest_to_target_X = int(min(possibSizes_X, key=lambda x:abs(x-tgt_size_X)))
            closest_to_target_Y = int(min(possibSizes_Y, key=lambda y:abs(y-tgt_size_Y)))
            return closest_to_target_Y,closest_to_target_X
        else:
            return None


    def _calc_shifted_cross_power_spectrum(self, im0=None, im1=None, precision=np.complex64):
        """Calculates shifted cross power spectrum for quantifying x/y-shifts.

799
800
801
802
        :param im0:         reference image
        :param im1:         subject image to shift
        :param precision:   to be quantified as a datatype
        :return:            2D-numpy-array of the shifted cross power spectrum
803
804
        """

805
806
807
        im0 = im0 if im0 is not None else self.matchWin[:] if self.matchWin.imID=='ref'   else self.otherWin[:]
        im1 = im1 if im1 is not None else self.otherWin[:] if self.otherWin.imID=='shift' else self.matchWin[:]

808
809
810
811
812
        assert im0.shape == im1.shape, 'The reference and the target image must have the same dimensions.'
        if im0.shape[0]%2!=0: warnings.warn('Odd row count in one of the match images!')
        if im1.shape[1]%2!=0: warnings.warn('Odd column count in one of the match images!')

        wsYX = self._shrink_winsize_to_binarySize(im0.shape) if self.bin_ws              else im0.shape
813
        wsYX = ((min(wsYX),) * 2                             if self.force_quadratic_win else wsYX) if wsYX else None
814
815
816
817
818
819
820

        if wsYX:
            time0 = time.time()
            if self.v: print('final window size: %s/%s (X/Y)' % (wsYX[1], wsYX[0]))
            center_YX = np.array(im0.shape)/2
            xmin,xmax,ymin,ymax = int(center_YX[1]-wsYX[1]/2), int(center_YX[1]+wsYX[1]/2),\
                                  int(center_YX[0]-wsYX[0]/2), int(center_YX[0]+wsYX[0]/2)
821

822
823
824
825
826
827
828
            in_arr0  = im0[ymin:ymax,xmin:xmax].astype(precision)
            in_arr1  = im1[ymin:ymax,xmin:xmax].astype(precision)

            if self.v:
                PLT.subplot_imshow([in_arr0.astype(np.float32), in_arr1.astype(np.float32)],
                               ['FFTin '+self.ref.title,'FFTin '+self.shift.title], grid=True)

829
            if pyfftw and self.fftw_works is not False: # if module is installed and working
830
831
                fft_arr0 = pyfftw.FFTW(in_arr0,np.empty_like(in_arr0), axes=(0,1))()
                fft_arr1 = pyfftw.FFTW(in_arr1,np.empty_like(in_arr1), axes=(0,1))()
832
833
834
835
836
837
838
839
840

                # catch empty output arrays (for some reason this happens sometimes..) -> use numpy fft
                if self.fftw_works is None and (np.std(fft_arr0)==0 or np.std(fft_arr1)==0):
                    self.fftw_works = False
                    # recreate input arrays and use numpy fft as fallback
                    in_arr0 = im0[ymin:ymax, xmin:xmax].astype(precision)
                    in_arr1 = im1[ymin:ymax, xmin:xmax].astype(precision)
                    fft_arr0 = np.fft.fft2(in_arr0)
                    fft_arr1 = np.fft.fft2(in_arr1)
841
842
                else:
                    self.fftw_works = True
843
844
845
            else:
                fft_arr0 = np.fft.fft2(in_arr0)
                fft_arr1 = np.fft.fft2(in_arr1)
846

847
848
849
            #GeoArray(fft_arr0.astype(np.float32)).show(figsize=(15,15))
            #GeoArray(fft_arr1.astype(np.float32)).show(figsize=(15,15))

850
851
852
853
854
            if self.v: print('forward FFTW: %.2fs' %(time.time() -time0))

            eps = np.abs(fft_arr1).max() * 1e-15
            # cps == cross-power spectrum of im0 and im2

855
            temp = np.array(fft_arr0 * fft_arr1.conjugate()) / (np.abs(fft_arr0) * np.abs(fft_arr1) + eps)
856
857
858

            time0 = time.time()
            if 'pyfft' in globals():
859
                ifft_arr = pyfftw.FFTW(temp,np.empty_like(temp), axes=(0,1), direction='FFTW_BACKWARD')()
860
861
862
863
864
            else:
                ifft_arr = np.fft.ifft2(temp)
            if self.v: print('backward FFTW: %.2fs' %(time.time() -time0))

            cps = np.abs(ifft_arr)
865
            # scps = shifted cps  => shift the zero-frequency component to the center of the spectrum
866
867
868
869
870
871
872
            scps = np.fft.fftshift(cps)
            if self.v:
                PLT.subplot_imshow([in_arr0.astype(np.uint16), in_arr1.astype(np.uint16), fft_arr0.astype(np.uint8),
                                fft_arr1.astype(np.uint8), scps], titles=['matching window im0', 'matching window im1',
                                "fft result im0", "fft result im1", "cross power spectrum"], grid=True)
                PLT.subplot_3dsurface(scps.astype(np.float32))
        else:
873
874
            scps = None
            self._handle_error(
875
876
877
878
879
880
881
882
                RuntimeError('The matching window became too small for calculating a reliable match. Matching failed.'))

        self.fftw_win_size_YX = wsYX
        return scps


    @staticmethod
    def _get_peakpos(scps):
883
884
885
886
887
        """Returns the row/column position of the peak within the given cross power spectrum.

        :param scps: <np.ndarray> shifted cross power spectrum
        :return:     <np.ndarray> [row, column>
        """
888
        max_flat_idx = np.argmax(scps)
889
        return np.array(np.unravel_index(max_flat_idx, scps.shape))
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931


    @staticmethod
    def _get_shifts_from_peakpos(peakpos, arr_shape):
        y_shift = peakpos[0]-arr_shape[0]//2
        x_shift = peakpos[1]-arr_shape[1]//2
        return x_shift,y_shift


    @staticmethod
    def _clip_image(im, center_YX, winSzYX): # TODO this is also implemented in GeoArray
        get_bounds = lambda YX,wsY,wsX: (int(YX[1]-(wsX/2)),int(YX[1]+(wsX/2)),int(YX[0]-(wsY/2)),int(YX[0]+(wsY/2)))
        wsY,wsX    = winSzYX
        xmin,xmax,ymin,ymax = get_bounds(center_YX,wsY,wsX)
        return im[ymin:ymax,xmin:xmax]


    def _get_grossly_deshifted_images(self, im0, im1, x_intshift, y_intshift): # TODO this is also implemented in GeoArray # this should update ref.win.data and shift.win.data
        # get_grossly_deshifted_im0
        old_center_YX = np.array(im0.shape)/2
        new_center_YX = [old_center_YX[0]+y_intshift, old_center_YX[1]+x_intshift]

        x_left  = new_center_YX[1]
        x_right = im0.shape[1]-new_center_YX[1]
        y_above = new_center_YX[0]
        y_below = im0.shape[0]-new_center_YX[0]
        maxposs_winsz = 2*min(x_left,x_right,y_above,y_below)

        gdsh_im0 = self._clip_image(im0, new_center_YX, [maxposs_winsz, maxposs_winsz])

        # get_corresponding_im1_clip
        crsp_im1  = self._clip_image(im1, np.array(im1.shape) / 2, gdsh_im0.shape)

        if self.v:
            PLT.subplot_imshow([self._clip_image(im0, old_center_YX, gdsh_im0.shape), crsp_im1],
                               titles=['reference original', 'target'], grid=True)
            PLT.subplot_imshow([gdsh_im0, crsp_im1], titles=['reference virtually shifted', 'target'], grid=True)
        return gdsh_im0,crsp_im1


    @staticmethod
    def _find_side_maximum(scps, v=0):
932
        centerpos     = [scps.shape[0]//2, scps.shape[1]//2]
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
        profile_left  = scps[ centerpos [0]  ,:centerpos[1]+1]
        profile_right = scps[ centerpos [0]  , centerpos[1]:]
        profile_above = scps[:centerpos [0]+1, centerpos[1]]
        profile_below = scps[ centerpos [0]: , centerpos[1]]

        if v:
            max_count_vals = 10
            PLT.subplot_2dline([[range(len(profile_left)) [-max_count_vals:], profile_left[-max_count_vals:]],
                                [range(len(profile_right))[:max_count_vals] , profile_right[:max_count_vals]],
                                [range(len(profile_above))[-max_count_vals:], profile_above[-max_count_vals:]],
                                [range(len(profile_below))[:max_count_vals:], profile_below[:max_count_vals]]],
                                titles =['Profile left', 'Profile right', 'Profile above', 'Profile below'],
                                shapetuple=(2,2))

        get_sidemaxVal_from_profile = lambda pf: np.array(pf)[::-1][1] if pf[0]<pf[-1] else np.array(pf)[1]
        sm_dicts_lr  = [{'side':si, 'value': get_sidemaxVal_from_profile(pf)} \
                        for pf,si in zip([profile_left,profile_right],['left','right'])]
        sm_dicts_ab  = [{'side':si, 'value': get_sidemaxVal_from_profile(pf)} \
                        for pf,si in zip([profile_above,profile_below],['above','below'])]
        sm_maxVal_lr = max([i['value'] for i in sm_dicts_lr])
        sm_maxVal_ab = max([i['value'] for i in sm_dicts_ab])
        sidemax_lr   = [sm for sm in sm_dicts_lr if sm['value'] is sm_maxVal_lr][0]
        sidemax_ab   = [sm for sm in sm_dicts_ab if sm['value'] is sm_maxVal_ab][0]
        sidemax_lr['direction_factor'] = {'left':-1, 'right':1} [sidemax_lr['side']]
        sidemax_ab['direction_factor'] = {'above':-1,'below':1} [sidemax_ab['side']]

        if v:
            print('Horizontal side maximum found %s. value: %s' %(sidemax_lr['side'],sidemax_lr['value']))
961
            print('Vertical side maximum found %s. value: %s'   %(sidemax_ab['side'],sidemax_ab['value']))
962
963
964
965
966
967
968
969
970
971

        return sidemax_lr, sidemax_ab


    def _calc_integer_shifts(self, scps):
        peakpos = self._get_peakpos(scps)
        x_intshift, y_intshift = self._get_shifts_from_peakpos(peakpos, scps.shape)
        return x_intshift, y_intshift


972
    def _calc_shift_reliability(self, scps):
973
974
975
976
977
978
979
980
981
982
983
984
985
986
        """Calculates a confidence percentage that can be used as an assessment for reliability of the calculated shifts.

        :param scps:    <np.ndarray> shifted cross power spectrum
        :return:
        """

        # calculate mean power at peak
        peakR, peakC  = self._get_peakpos(scps)
        power_at_peak = np.mean(scps[peakR-1:peakR+2, peakC-1:peakC+2])

        # calculate mean power without peak + 3* standard deviation
        scps_masked        = scps
        scps_masked[peakR-1:peakR+2, peakC-1:peakC+2] = -9999
        scps_masked        = np.ma.masked_equal(scps_masked, -9999)
987
        power_without_peak = np.mean(scps_masked) + 2* np.std(scps_masked)
988
989
990
991
992
993

        # calculate confidence
        confid = 100-((power_without_peak/power_at_peak)*100)
        confid = 100 if confid > 100 else 0 if confid < 0 else confid

        if not self.q:
994
            print('Estimated reliability of the calculated shifts:  %.1f' %confid, '%')
995
996
997
998

        return confid


999
1000
    def _validate_integer_shifts(self, im0, im1, x_intshift, y_intshift):