CoReg.py 84 KB
Newer Older
1
2
3
4
5
6
7
8
# -*- coding: utf-8 -*-

import os
import re
import shutil
import subprocess
import time
import warnings
9
from copy import copy
10
11

# custom
12
13
14
15
try:
    import gdal
except ImportError:
    from osgeo import gdal
16
import numpy as np
17

18
19
20
try:
    import pyfftw
except ImportError:
21
    pyfftw = None
22
from shapely.geometry import Point, Polygon
23
from skimage.exposure import rescale_intensity
24
25

# internal modules
26
from .DeShifter import DESHIFTER, _dict_rspAlg_rsp_Int
27
28
29
from . import geometry as GEO
from . import io as IO
from . import plotting as PLT
30

31
from geoarray import GeoArray
32
33
34
35
36
37
from py_tools_ds.convenience.object_oriented import alias_property
from py_tools_ds.geo.coord_calc import corner_coord_to_minmax, get_corner_coordinates
from py_tools_ds.geo.vector.topology import get_overlap_polygon, get_smallest_boxImYX_that_contains_boxMapYX
from py_tools_ds.geo.projection import prj_equal, get_proj4info
from py_tools_ds.geo.vector.geometry import boxObj, round_shapelyPoly_coords
from py_tools_ds.geo.coord_grid import move_shapelyPoly_to_image_grid
38
from py_tools_ds.geo.coord_trafo import pixelToMapYX, reproject_shapelyGeometry, mapXY2imXY, imXY2mapXY
39
40
41
42
from py_tools_ds.geo.raster.reproject import warp_ndarray
from py_tools_ds.geo.map_info import geotransform2mapinfo
from py_tools_ds.numeric.vector import find_nearest
from py_tools_ds.similarity.raster import calc_ssim
43

44
__author__ = 'Daniel Scheffler'
45
46


47
class GeoArray_CoReg(GeoArray):
48
    def __init__(self, CoReg_params, imID):
49
50
        # type: (dict, str) -> None

51
        assert imID in ['ref', 'shift']
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
52

53
54
        # run GeoArray init
        path_or_geoArr = CoReg_params['im_ref'] if imID == 'ref' else CoReg_params['im_tgt']
55
56
57
        nodata = CoReg_params['nodata'][0 if imID == 'ref' else 1]
        progress = CoReg_params['progress']
        q = CoReg_params['q'] if not CoReg_params['v'] else False
58

59
        super(GeoArray_CoReg, self).__init__(path_or_geoArr, nodata=nodata, progress=progress, q=q)
60

61
        self.imID = imID
62
        self.imName = 'reference image' if imID == 'ref' else 'image to be shifted'
63
        self.v = CoReg_params['v']
64
65

        assert isinstance(self, GeoArray), \
66
            'Something went wrong with the creation of GeoArray instance for the %s. The created ' \
67
            'instance does not seem to belong to the GeoArray class. If you are working in Jupyter Notebook, reset ' \
68
            'the kernel and try again.' % self.imName
69

70
        # set title to be used in plots
71
        self.title = os.path.basename(self.filePath) if self.filePath else self.imName
72
73

        # validate params
74
75
        # assert self.prj, 'The %s has no projection.' % self.imName # TODO
        # assert not re.search('LOCAL_CS', self.prj), 'The %s is not georeferenced.' % self.imName # TODO
76
77
78
        assert self.gt, 'The %s has no map information.' % self.imName

        # set band4match
79
80
81
82
83
        self.band4match = (CoReg_params['r_b4match'] if imID == 'ref' else CoReg_params['s_b4match']) - 1
        assert self.bands >= self.band4match + 1 >= 1, \
            "The %s has %s %s. So its band number to match must be %s%s. Got %s." \
            % (self.imName, self.bands, 'bands' if self.bands > 1 else
               'band', 'between 1 and ' if self.bands > 1 else '', self.bands, self.band4match)
84

85
86
        # set footprint_poly
        given_footprint_poly = CoReg_params['footprint_poly_%s' % ('ref' if imID == 'ref' else 'tgt')]
87
        given_corner_coord = CoReg_params['data_corners_%s' % ('ref' if imID == 'ref' else 'tgt')]
88
89

        if given_footprint_poly:
90
            self.footprint_poly = given_footprint_poly
91
        elif given_corner_coord is not None:
92
            self.footprint_poly = Polygon(given_corner_coord)
93
94
        elif not CoReg_params['calc_corners']:
            # use the image extent
95
            self.footprint_poly = Polygon(get_corner_coordinates(gt=self.gt, cols=self.cols, rows=self.rows))
96
        else:
97
98
99
            # footprint_poly is calculated automatically by GeoArray
            if not CoReg_params['q']:
                print('Calculating actual data corner coordinates for %s...' % self.imName)
100
            self.calc_mask_nodata(fromBand=self.band4match)  # this avoids that all bands have to be read
101

102
103
104
105
        # validate footprint poly
        if not self.footprint_poly.is_valid:
            self.footprint_poly = self.footprint_poly.buffer(0)

106
        if not self.q:
Daniel Scheffler's avatar
Daniel Scheffler committed
107
            print('Bounding box of calculated footprint for %s:\n\t%s' % (self.imName, self.footprint_poly.bounds))
108

109
110
111
        # add bad data mask
        given_mask = CoReg_params['mask_baddata_%s' % ('ref' if imID == 'ref' else 'tgt')]
        if given_mask:
112
            self.mask_baddata = given_mask  # runs GeoArray.mask_baddata.setter -> sets it to BadDataMask()
Daniel Scheffler's avatar
Daniel Scheffler committed
113

114
    poly = alias_property('footprint_poly')  # ensures that self.poly is updated if self.footprint_poly is updated
Daniel Scheffler's avatar
Daniel Scheffler committed
115
116


117
class COREG(object):
118
119
    """See help(COREG) for documentation!"""

120
    def __init__(self, im_ref, im_tgt, path_out=None, fmt_out='ENVI', out_crea_options=None, r_b4match=1, s_b4match=1,
121
                 wp=(None, None), ws=(256, 256), max_iter=5, max_shift=5, align_grids=False, match_gsd=False,
122
123
                 out_gsd=None, target_xyGrid=None, resamp_alg_deshift='cubic', resamp_alg_calc='cubic',
                 footprint_poly_ref=None, footprint_poly_tgt=None, data_corners_ref=None, data_corners_tgt=None,
124
                 nodata=(None, None), calc_corners=True, binary_ws=True, mask_baddata_ref=None, mask_baddata_tgt=None,
Daniel Scheffler's avatar
Daniel Scheffler committed
125
                 CPUs=None, force_quadratic_win=True, progress=True, v=False, path_verbose_out=None, q=False,
126
                 ignore_errors=False):
127
128
129
130

        """Detects and corrects global X/Y shifts between a target and refernce image. Geometric shifts are calculated
        at a specific (adjustable) image position. Correction performs a global shifting in X- or Y direction.

131
132
133
134
        :param im_ref(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of reference image
        :param im_tgt(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of image to be shifted
135
        :param path_out(str):           target path of the coregistered image
136
137
138
                                            - if None (default), the method correct_shifts() does not write to disk
                                            - if 'auto': /dir/of/im1/<im1>__shifted_to__<im0>.bsq
        :param fmt_out(str):            raster file format for output file. ignored if path_out is None. can be any GDAL
139
140
                                        compatible raster file format (e.g. 'ENVI', 'GeoTIFF'; default: ENVI). Refer to
                                        http://www.gdal.org/formats_list.html to get a full list of supported formats.
141
142
        :param out_crea_options(list):  GDAL creation options for the output image,
                                        e.g. ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
143
144
145
146
        :param r_b4match(int):          band of reference image to be used for matching (starts with 1; default: 1)
        :param s_b4match(int):          band of shift image to be used for matching (starts with 1; default: 1)
        :param wp(tuple):               custom matching window position as map values in the same projection like the
                                        reference image (default: central position of image overlap)
Daniel Scheffler's avatar
Daniel Scheffler committed
147
        :param ws(tuple):               custom matching window size [pixels] (default: (256,256))
148
149
        :param max_iter(int):           maximum number of iterations for matching (default: 5)
        :param max_shift(int):          maximum shift distance in reference image pixel units (default: 5 px)
150
151
        :param align_grids(bool):       align the coordinate grids of the image to be and the reference image
                                        (default: 0)
152
153
154
        :param match_gsd(bool):         match the output pixel size to pixel size of the reference image (default: 0)
        :param out_gsd(tuple):          xgsd ygsd: set the output pixel size in map units
                                        (default: original pixel size of the image to be shifted)
155
156
        :param target_xyGrid(list):     a list with a target x-grid and a target y-grid like [[15,45], [15,45]]
                                        This overrides 'out_gsd', 'align_grids' and 'match_gsd'.
157
        :param resamp_alg_deshift(str)  the resampling algorithm to be used for shift correction (if neccessary)
158
159
                                        valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                          mode, max, min, med, q1, q3
160
161
162
                                        default: cubic
        :param resamp_alg_calc(str)     the resampling algorithm to be used for all warping processes during calculation
                                        of spatial shifts
163
164
                                        (valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                           mode, max, min, med, q1, q3)
165
                                        default: cubic (highly recommended)
166
167
        :param footprint_poly_ref(str): footprint polygon of the reference image (WKT string or
                                        shapely.geometry.Polygon),
168
169
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
170
171
        :param footprint_poly_tgt(str): footprint polygon of the image to be shifted (WKT string or
                                        shapely.geometry.Polygon)
172
173
174
175
176
177
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param data_corners_ref(list):  map coordinates of data corners within reference image.
                                        ignored if footprint_poly_ref is given.
        :param data_corners_tgt(list):  map coordinates of data corners within image to be shifted.
                                        ignored if footprint_poly_tgt is given.
178
179
180
181
182
        :param nodata(tuple):           no data values for reference image and image to be shifted
        :param calc_corners(bool):      calculate true positions of the dataset corners in order to get a useful
                                        matching window position within the actual image overlap
                                        (default: 1; deactivated if '-cor0' and '-cor1' are given
        :param binary_ws(bool):         use binary X/Y dimensions for the matching window (default: 1)
183
184
185
186
187
188
189
190
191
192
193
194
        :param mask_baddata_ref(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                reference image where all bad data pixels (e.g. clouds) are marked with
                                                True and the remaining pixels with False. Must have the same geographic
                                                extent and projection like 'im_ref'. The mask is used to check if the
                                                chosen matching window position is valid in the sense of useful data.
                                                Otherwise this window position is rejected.
        :param mask_baddata_tgt(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                image to be shifted where all bad data pixels (e.g. clouds) are marked
                                                with True and the remaining pixels with False. Must have the same
                                                geographic extent and projection like 'im_ref'. The mask is used to
                                                check if the chosen matching window position is valid in the sense of
                                                useful data. Otherwise this window position is rejected.
Daniel Scheffler's avatar
Daniel Scheffler committed
195
196
        :param CPUs(int):               number of CPUs to use during pixel grid equalization
                                        (default: None, which means 'all CPUs available')
197
        :param force_quadratic_win(bool):   force a quadratic matching window (default: 1)
198
        :param progress(bool):          show progress bars (default: True)
199
        :param v(bool):                 verbose mode (default: False)
200
201
        :param path_verbose_out(str):   an optional output directory for intermediate results
                                        (if not given, no intermediate results are written to disk)
202
203
        :param q(bool):                 quiet mode (default: False)
        :param ignore_errors(bool):     Useful for batch processing. (default: False)
204
205
206
207
                                        In case of error COREG.success == False and COREG.x_shift_px/COREG.y_shift_px
                                        is None
        """

208
        self.params = dict([x for x in locals().items() if x[0] != "self"])
209

210
        # assertions
211
        assert gdal.GetDriverByName(fmt_out), "'%s' is not a supported GDAL driver." % fmt_out
212
213
214
215
216
217
        if match_gsd and out_gsd:
            warnings.warn("'-out_gsd' is ignored because '-match_gsd' is set.\n")
        if out_gsd:
            assert isinstance(out_gsd, list) and len(out_gsd) == 2, 'out_gsd must be a list with two values.'
        if data_corners_ref and not isinstance(data_corners_ref[0],
                                               list):  # group if not [[x,y],[x,y]..] but [x,y,x,y,]
218
            data_corners_ref = [data_corners_ref[i:i + 2] for i in range(0, len(data_corners_ref), 2)]
219
        if data_corners_tgt and not isinstance(data_corners_tgt[0], list):  # group if not [[x,y],[x,y]..]
220
            data_corners_tgt = [data_corners_tgt[i:i + 2] for i in range(0, len(data_corners_tgt), 2)]
221
222
223
        if nodata:
            assert isinstance(nodata, tuple) and len(nodata) == 2, \
                "'nodata' must be a tuple with two values. Got %s with length %s." % (type(nodata), len(nodata))
224
        for rspAlg in [resamp_alg_deshift, resamp_alg_calc]:
225
            assert rspAlg in _dict_rspAlg_rsp_Int.keys(), "'%s' is not a supported resampling algorithm." % rspAlg
226
        if resamp_alg_calc in ['average', 5] and (v or not q):
227
            warnings.warn("The resampling algorithm 'average' causes sinus-shaped patterns in fft images that will "
228
229
                          "affect the precision of the calculated spatial shifts! It is highly recommended to "
                          "choose another resampling algorithm.")
230

231
232
233
234
235
236
237
238
239
240
241
242
        self.path_out = path_out  # updated by self.set_outpathes
        self.fmt_out = fmt_out
        self.out_creaOpt = out_crea_options
        self.win_pos_XY = wp  # updated by self.get_opt_winpos_winsize()
        self.win_size_XY = ws  # updated by self.get_opt_winpos_winsize()
        self.max_iter = max_iter
        self.max_shift = max_shift
        self.align_grids = align_grids
        self.match_gsd = match_gsd
        self.out_gsd = out_gsd
        self.target_xyGrid = target_xyGrid
        self.rspAlg_DS = resamp_alg_deshift \
243
            if isinstance(resamp_alg_deshift, str) else _dict_rspAlg_rsp_Int[resamp_alg_deshift]
244
        self.rspAlg_calc = resamp_alg_calc \
245
            if isinstance(resamp_alg_calc, str) else _dict_rspAlg_rsp_Int[resamp_alg_calc]
246
247
248
        self.calc_corners = calc_corners
        self.CPUs = CPUs
        self.bin_ws = binary_ws
249
        self.force_quadratic_win = force_quadratic_win
250
251
252
253
254
255
256
        self.v = v
        self.path_verbose_out = path_verbose_out
        self.q = q if not v else False  # overridden by v
        self.progress = progress if not q else False  # overridden by q

        self.ignErr = ignore_errors
        self.max_win_sz_changes = 3  # TODO: änderung der window size, falls nach max_iter kein valider match gefunden
257
258
259
260
261
262
        self.ref = None  # type: GeoArray_CoReg # set by self.get_image_params
        self.shift = None  # type: GeoArray_CoReg # set by self.get_image_params
        self.matchBox = None  # type: boxObj # set by self.get_clip_window_properties()
        self.otherBox = None  # type: boxObj # set by self.get_clip_window_properties()
        self.matchWin = None  # type: GeoArray # set by self._get_image_windows_to_match()
        self.otherWin = None  # type: GeoArray # set by self._get_image_windows_to_match()
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        self.overlap_poly = None  # set by self._get_overlap_properties()
        self.overlap_percentage = None  # set by self._get_overlap_properties()
        self.overlap_area = None  # set by self._get_overlap_properties()
        self.imfft_gsd = None  # set by self.get_clip_window_properties()
        self.fftw_works = None  # set by self._calc_shifted_cross_power_spectrum()
        self.fftw_win_size_YX = None  # set by calc_shifted_cross_power_spectrum()

        self.x_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.y_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.x_shift_map = None  # set by self.get_updated_map_info()
        self.y_shift_map = None  # set by self.get_updated_map_info()
        self.vec_length_map = None
        self.vec_angle_deg = None
        self.updated_map_info = None  # set by self.get_updated_map_info()
        self.ssim_orig = None  # set by self._validate_ssim_improvement()
        self.ssim_deshifted = None  # set by self._validate_ssim_improvement()
        self._ssim_improved = None  # private attribute to be filled by self.ssim_improved
        self.shift_reliability = None  # set by self.calculate_spatial_shifts()

        self.tracked_errors = []  # expanded each time an error occurs
        self.success = None  # default
        self.deshift_results = None  # set by self.correct_shifts()
285
286
287
288

        gdal.AllRegister()
        self._get_image_params()
        self._set_outpathes(im_ref, im_tgt)
289
        self.grid2use = 'ref' if self.shift.xgsd <= self.ref.xgsd else 'shift'
290
291
        if self.v:
            print('resolutions: ', self.ref.xgsd, self.shift.xgsd)
292

293
        self._get_overlap_properties()
294
295

        if self.v and self.path_verbose_out:
296
297
298
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_imref.shp'), self.ref.poly, self.ref.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_im2shift.shp'), self.shift.poly, self.shift.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'overlap_poly.shp'), self.overlap_poly, self.ref.prj)
299

300
301
        # FIXME: transform_mapPt1_to_mapPt2(im2shift_center_map, ds_imref.GetProjection(), ds_im2shift.GetProjection())
        # FIXME später basteln für den fall, dass projektionen nicht gleich sind
302
303
304

        # get_clip_window_properties
        self._get_opt_winpos_winsize()
305
306
307
        if not self.q:
            print('Matching window position (X,Y): %s/%s' % (self.win_pos_XY[0], self.win_pos_XY[1]))
        self._get_clip_window_properties()  # sets self.matchBox, self.otherBox and much more
308

309
        if self.v and self.path_verbose_out and self.matchBox.mapPoly and self.success is not False:
310
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_matchWin.shp'),
311
                         self.matchBox.mapPoly, self.matchBox.prj)
312

313
314
        self.success = False if self.success is False or not self.matchBox.boxMapYX else None
        self._coreg_info = None  # private attribute to be filled by self.coreg_info property
315

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def _handle_error(self, error, warn=False, warnMsg=None):
        """Appends the given error to self.tracked_errors, sets self.success to False and raises the error in case
        self.ignore_errors = True.

        :param error:   instance of an error
        :param warn:    whether to give a warning in case error would be ignored otherwise
        :param warnMsg: a custom message for the warning
        :return:
        """

        warn = warn or warnMsg is not None or self.v

        self.tracked_errors.append(error)
        self.success = False

        if self.ignErr and warn:
            warnMsg = repr(error) if not warnMsg else warnMsg
333
            print('\nWARNING: ' + warnMsg)
334
335
336
337

        if not self.ignErr:
            raise error

338
    def _set_outpathes(self, im_ref, im_tgt):
339
        assert isinstance(im_ref, (GeoArray, str)) and isinstance(im_tgt, (GeoArray, str)), \
340
            'COREG._set_outpathes() expects two file pathes (string) or two instances of the ' \
341
            'GeoArray class. Received %s and %s.' % (type(im_ref), type(im_tgt))
342

343
        def get_baseN(path): return os.path.splitext(os.path.basename(path))[0]
344
345
346
347
348

        # get input pathes
        path_im_ref = im_ref.filePath if isinstance(im_ref, GeoArray) else im_ref
        path_im_tgt = im_tgt.filePath if isinstance(im_tgt, GeoArray) else im_tgt

349
        if self.path_out:  # this also applies to self.path_out='auto'
350
351
352
353

            if self.path_out == 'auto':
                dir_out, fName_out = os.path.dirname(path_im_tgt), ''
            else:
354
                dir_out, fName_out = os.path.split(self.path_out)
355
356
357
358
359
360
361
362
363
364
365
366
367
368

            if dir_out and fName_out:
                # a valid output path is given => do nothing
                pass

            else:
                # automatically create an output directory and filename if not given
                if not dir_out:
                    if not path_im_ref:
                        dir_out = os.path.abspath(os.path.curdir)
                    else:
                        dir_out = os.path.dirname(path_im_ref)

                if not fName_out:
369
370
371
372
373
                    ext = 'bsq' if self.fmt_out == 'ENVI' else \
                        gdal.GetDriverByName(self.fmt_out).GetMetadataItem(gdal.DMD_EXTENSION)
                    fName_out = fName_out if fName_out not in ['.', ''] else \
                        '%s__shifted_to__%s' % (get_baseN(path_im_tgt), get_baseN(path_im_ref))
                    fName_out = fName_out + '.%s' % ext if ext else fName_out
374

375
                self.path_out = os.path.abspath(os.path.join(dir_out, fName_out))
376
377
378
379

                assert ' ' not in self.path_out, \
                    "The path of the output image contains whitespaces. This is not supported by GDAL."
        else:
380
            # this only happens if COREG is not instanced from within Python and self.path_out is explicitly set to None
381
382
383
384
385
386
387
388
389
390
391
            # => DESHIFTER will return an array
            pass

        if self.v:
            if self.path_verbose_out:
                dir_out, dirname_out = os.path.split(self.path_verbose_out)

                if not dir_out:
                    if self.path_out:
                        self.path_verbose_out = os.path.dirname(self.path_out)
                    else:
392
393
394
                        self.path_verbose_out = \
                            os.path.abspath(os.path.join(os.path.curdir, 'CoReg_verboseOut__%s__shifted_to__%s'
                                                         % (get_baseN(path_im_tgt), get_baseN(path_im_ref))))
395
396
397
398
399
400
401
402
403
                elif dirname_out and not dir_out:
                    self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir, dirname_out))

                assert ' ' not in self.path_verbose_out, \
                    "'path_verbose_out' contains whitespaces. This is not supported by GDAL."

        else:
            self.path_verbose_out = None

404
405
        if self.path_verbose_out and not os.path.isdir(self.path_verbose_out):
            os.makedirs(self.path_verbose_out)
406
407

    def _get_image_params(self):
408
409
        self.ref = GeoArray_CoReg(self.params, 'ref')
        self.shift = GeoArray_CoReg(self.params, 'shift')
410
        assert prj_equal(self.ref.prj, self.shift.prj), \
411
412
            'Input projections are not equal. Different projections are currently not supported. Got %s / %s.' \
            % (get_proj4info(proj=self.ref.prj), get_proj4info(proj=self.shift.prj))
413

414
    def _get_overlap_properties(self):
415
416
417
418
        overlap_tmp = get_overlap_polygon(self.ref.poly, self.shift.poly, self.v)
        self.overlap_poly = overlap_tmp['overlap poly']  # has to be in reference projection
        self.overlap_percentage = overlap_tmp['overlap percentage']
        self.overlap_area = overlap_tmp['overlap area']
419
420
421
422

        assert self.overlap_poly, 'The input images have no spatial overlap.'

        # overlap are must at least cover 16*16 pixels
423
424
425
426
        px_area = self.ref.xgsd * self.ref.ygsd if self.grid2use == 'ref' else self.shift.xgsd * self.shift.ygsd
        px_covered = self.overlap_area / px_area
        assert px_covered > 16 * 16, \
            'Overlap area covers only %s pixels. At least 16*16 pixels are needed.' % px_covered
427

428
429
430
431
    def equalize_pixGrids(self):
        """
        Equalize image grids and projections of reference and target image (align target to reference).
        """
432
433
434
        if not (prj_equal(self.ref.prj, self.shift.prj) and self.ref.xygrid_specs == self.shift.xygrid_specs):
            if not self.q:
                print("Equalizing pixel grids and projections of reference and target image...")
Daniel Scheffler's avatar
Daniel Scheffler committed
435

436
            if self.grid2use == 'ref':
437
                # resample target image to refernce image
438
                self.shift.arr = self.shift[:, :, self.shift.band4match]  # resample the needed band only
439
                self.shift.reproject_to_new_grid(prototype=self.ref, CPUs=self.CPUs)
440
                self.shift.band4match = 0  # after resampling there is only one band in the GeoArray
441
442
443
            else:
                # resample reference image to target image
                # FIXME in case of different projections this will change the projection of the reference image!
444
                self.ref.arr = self.ref[:, :, self.ref.band4match]  # resample the needed band only
445
                self.ref.reproject_to_new_grid(prototype=self.shift, CPUs=self.CPUs)
Daniel Scheffler's avatar
Daniel Scheffler committed
446
                self.ref.band4match = 0  # after resampling there is only one band in the GeoArray
447

448
449
450
451
452
453
454
    def show_image_footprints(self):
        """This method is intended to be called from Jupyter Notebook and shows a web map containing the calculated
        footprints of the input images as well as the corresponding overlap area."""
        # TODO different colors for polygons
        assert self.overlap_poly, 'Please calculate the overlap polygon first.'

        try:
455
456
            import folium
            import geojson
457
        except ImportError:
458
459
            folium, geojson = None, None
        if not folium or not geojson:
460
461
462
            raise ImportError("This method requires the libraries 'folium' and 'geojson'. They can be installed with "
                              "the shell command 'pip install folium geojson'.")

463
464
465
        refPoly = reproject_shapelyGeometry(self.ref.poly, self.ref.epsg, 4326)
        shiftPoly = reproject_shapelyGeometry(self.shift.poly, self.shift.epsg, 4326)
        overlapPoly = reproject_shapelyGeometry(self.overlap_poly, self.shift.epsg, 4326)
466
        matchBoxPoly = reproject_shapelyGeometry(self.matchBox.mapPoly, self.shift.epsg, 4326)
467
468

        m = folium.Map(location=tuple(np.array(overlapPoly.centroid.coords.xy).flatten())[::-1])
469
        for poly in [refPoly, shiftPoly, overlapPoly, matchBoxPoly]:
470
471
472
473
            gjs = geojson.Feature(geometry=poly, properties={})
            folium.GeoJson(gjs).add_to(m)
        return m

474
    def show_matchWin(self, figsize=(15, 15), interactive=True, after_correction=None, pmin=2, pmax=98):
475
        """Show the image content within the matching window.
476

477
478
        :param figsize:             <tuple> figure size
        :param interactive:         <bool> whether to return an interactive figure based on 'holoviews' library
479
480
481
482
483
        :param after_correction:    True/False: show the image content AFTER shift correction or before
                                    None: show both states - before and after correction (default)
        :param pmin:                percentage to be used for excluding the darkest pixels from stretching (default: 2)
        :param pmax:                percentage to be used for excluding the brightest pixels from stretching
                                    (default: 98)
484
485
        :return:
        """
486
487
488
489
490
        if interactive:
            # use Holoviews
            try:
                import holoviews as hv
            except ImportError:
491
                hv = None
492
493
494
495
496
497
            if not hv:
                raise ImportError(
                    "This method requires the library 'holoviews'. It can be installed for Anaconda with "
                    "the shell command 'conda install -c ioam holoviews bokeh'.")
            warnings.filterwarnings('ignore')
            hv.notebook_extension('matplotlib')
498
499
500
501
502
503
504
505
506
507
            hv.Store.add_style_opts(hv.Image, ['vmin', 'vmax'])

            # hv.Store.option_setters.options().Image = hv.Options('style', cmap='gnuplot2')
            # hv.Store.add_style_opts(hv.Image, ['cmap'])
            # renderer = hv.Store.renderers['matplotlib'].instance(fig='svg', holomap='gif')
            # RasterPlot = renderer.plotting_class(hv.Image)
            # RasterPlot.cmap = 'gray'
            otherWin_corr = self._get_deshifted_otherWin()
            xmin, xmax, ymin, ymax = self.matchBox.boundsMap

508
            def get_hv_image(geoArr):
509
510
511
512
513
514
                arr_masked = np.ma.masked_equal(geoArr[:], geoArr.nodata)
                vmin = np.nanpercentile(arr_masked.compressed(), pmin)
                vmax = np.nanpercentile(arr_masked.compressed(), pmax)
                arr2plot = rescale_intensity(arr_masked, in_range=(vmin, vmax), out_range='int8')

                return hv.Image(arr2plot, bounds=(xmin, ymin, xmax, ymax))(
515
                    style={'cmap': 'gray',
516
                           'vmin': vmin, 'vmax': vmax,
517
518
519
                           'interpolation': 'none'},
                    plot={'fig_inches': figsize, 'show_grid': True})
                #     plot={'fig_size':100, 'show_grid':True})
520

521
522
523
            hvIm_matchWin = get_hv_image(self.matchWin)
            hvIm_otherWin_orig = get_hv_image(self.otherWin)
            hvIm_otherWin_corr = get_hv_image(otherWin_corr)
524

525
526
527
            if after_correction is None:
                # view both states
                print('Matching window before and after correction (above and below): ')
528

529
530
531
                # get layouts (docs on options: http://build.holoviews.org/Tutorials/Options.html)
                layout_before = (hvIm_matchWin + hvIm_matchWin)(plot=dict(fig_inches=figsize))
                layout_after = (hvIm_otherWin_orig + hvIm_otherWin_corr)(plot=dict(fig_inches=figsize))
532

533
534
535
536
537
538
539
540
541
542
                # plot!
                imgs = {1: layout_before, 2: layout_after}
                hmap = hv.HoloMap(imgs, kdims=['image']).collate().cols(1)

            else:
                # view state before or after correction
                imgs = {1: hvIm_matchWin, 2: hvIm_otherWin_corr if after_correction else hvIm_otherWin_orig}
                hmap = hv.HoloMap(imgs, kdims=['image'])

            # Construct a HoloMap by evaluating the function over all the keys
543
            # hmap = hv.HoloMap(imgs_corr, kdims=['image']) +  hv.HoloMap(imgs_corr, kdims=['image'])
544

545
546
            # Construct a HoloMap by defining the sampling on the Dimension
            # dmap = hv.DynamicMap(image_slice, kdims=[hv.Dimension('z_axis', values=keys)])
547
548
            warnings.filterwarnings('default')

549
            return hmap
550

551
552
553
        else:
            # TODO add titles
            self.matchWin.show(figsize=figsize)
554
            if after_correction:
555
                self._get_deshifted_otherWin().show(figsize=figsize, pmin=pmin, pmax=pmax)
556
            else:
557
                self.otherWin.show(figsize=figsize, pmin=pmin, pmax=pmax)
558
559
560
561
562
563
564
565
566
567
568
569
570

    def show_cross_power_spectrum(self, interactive=False):
        """
        Shows a 3D surface of the cross power spectrum resulting from phase correlating the reference and target
        image within the matching window.

        :param interactive:  whether to return an interactice 3D surface plot based on 'plotly' library
        :return:
        """

        if interactive:
            # create plotly 3D surface

571
            # import plotly.plotly as py # online mode -> every plot is uploaded into online plotly account
572
573
574
575
576
577
            from plotly.offline import iplot, init_notebook_mode
            import plotly.graph_objs as go

            init_notebook_mode(connected=True)

            z_data = self._calc_shifted_cross_power_spectrum()
578
            data = [go.Surface(z=z_data)]
579
580
581
582
583
            layout = go.Layout(
                title='cross power spectrum',
                autosize=False,
                width=1000,
                height=1000,
584
                margin={'l': 65, 'r': 50, 'b': 65, 't': 90})
585
            fig = go.Figure(data=data, layout=layout)
586
587
588
589
590
591
592
593

            return iplot(fig, filename='SCPS')

        else:
            # use matplotlib
            scps = self._calc_shifted_cross_power_spectrum()
            PLT.subplot_3dsurface(scps.astype(np.float32))

594
    def _get_opt_winpos_winsize(self):
595
        # type: (tuple,tuple) -> None
596
597
598
599
        """
        Calculates optimal window position and size in reference image units according to DGM, cloud_mask and
        trueCornerLonLat.
        """
600
601
602
603
        # dummy algorithm: get center position of overlap instead of searching ideal window position in whole overlap
        # TODO automatischer Algorithmus zur Bestimmung der optimalen Window Position

        wp = tuple(self.win_pos_XY)
604
605
        assert type(self.win_pos_XY) in [tuple, list, np.ndarray], \
            'The window position must be a tuple of two elements. Got %s with %s elements.' % (type(wp), len(wp))
606
607
608
        wp = tuple(wp)

        if None in wp:
609
            # use centroid point if possible
610
611
612
            overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.centroid.coords.xy
            wp = (wp[0] if wp[0] else overlap_center_pos_x[0]), (wp[1] if wp[1] else overlap_center_pos_y[0])

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
            # validate window position
            if not self.overlap_poly.contains(Point(wp)):
                # in case the centroid point is not within overlap area
                if not self.q:
                    warnings.warn("The centroid point of the two input images could not be used as matching window "
                                  "position since it is outside of the overlap area. Instead the so called "
                                  "'representative point' is used. Alternatively you can provide your own window "
                                  "position as input parameter.")

                # -> use representative point: a point that is garanteed to be within overlap polygon
                overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.representative_point().coords.xy
                wp = overlap_center_pos_x[0], overlap_center_pos_y[0]

            assert self.overlap_poly.contains(Point(wp))

        else:
            # validate window position
            if not self.overlap_poly.contains(Point(wp)):
631
                self._handle_error(ValueError('The provided window position %s/%s is outside of the overlap '
632
                                              'area of the two input images. Check the coordinates.' % wp))
633
634
635
636
637
638

        # check if window position is within bad data area if a respective mask has been provided
        for im in [self.ref, self.shift]:
            if im.mask_baddata is not None:
                imX, imY = mapXY2imXY(wp, im.mask_baddata.gt)

639
                if im.mask_baddata[int(imY), int(imX)] is True:
640
                    self._handle_error(
641
                        RuntimeError('According to the provided bad data mask for the %s the chosen window position '
642
643
644
                                     '%s / %s is within a bad data area. Using this window position for coregistration '
                                     'is not reasonable. Please provide a better window position!'
                                     % (im.imName, wp[0], wp[1])))
645

646
647
        self.win_pos_XY = wp
        self.win_size_XY = (int(self.win_size_XY[0]), int(self.win_size_XY[1])) if self.win_size_XY else (512, 512)
648
649
650
651
652
653
654
655

    def _get_clip_window_properties(self):
        """Calculate all properties of the matching window and the other window. These windows are used to read the
        corresponding image positions in the reference and the target image.
        hint: Even if X- and Y-dimension of the target window is equal, the output window can be NOT quadratic!
        """
        # FIXME image sizes like 10000*256 are still possible

656
657
658
659
660
661
662
663
664
        wpX, wpY = self.win_pos_XY
        wsX, wsY = self.win_size_XY
        ref_wsX, ref_wsY = (wsX * self.ref.xgsd, wsY * self.ref.ygsd)  # image units -> map units
        shift_wsX, shift_wsY = (wsX * self.shift.xgsd, wsY * self.shift.ygsd)  # image units -> map units
        ref_box_kwargs = {'wp': (wpX, wpY), 'ws': (ref_wsX, ref_wsY), 'gt': self.ref.gt}
        shift_box_kwargs = {'wp': (wpX, wpY), 'ws': (shift_wsX, shift_wsY), 'gt': self.shift.gt}
        matchBox = boxObj(**ref_box_kwargs) if self.grid2use == 'ref' else boxObj(**shift_box_kwargs)
        otherBox = boxObj(**shift_box_kwargs) if self.grid2use == 'ref' else boxObj(**ref_box_kwargs)
        overlapWin = boxObj(mapPoly=self.overlap_poly, gt=self.ref.gt)
665
666

        # clip matching window to overlap area
667
668
        matchBox.mapPoly = matchBox.mapPoly.intersection(overlapWin.mapPoly)

669
        # check if matchBox extent touches no data area of the image -> if yes: shrink it
670
671
        overlapPoly_within_matchWin = matchBox.mapPoly.intersection(self.overlap_poly)
        if overlapPoly_within_matchWin.area < matchBox.mapPoly.area:
672
673
            wsX_start, wsY_start = 1 if wsX >= wsY else wsX / wsY, 1 if wsY >= wsX else wsY / wsX
            box = boxObj(**dict(wp=(wpX, wpY), ws=(wsX_start, wsY_start), gt=matchBox.gt))
674
            while True:
675
                box.buffer_imXY(1, 1)
676
677
678
679
                if not box.mapPoly.within(overlapPoly_within_matchWin):
                    box.buffer_imXY(-1, -1)
                    matchBox = box
                    break
680
681

        # move matching window to imref grid or im2shift grid
682
683
        mW_rows, mW_cols = (self.ref.rows, self.ref.cols) if self.grid2use == 'ref' else \
            (self.shift.rows, self.shift.cols)
684
        matchBox.mapPoly = move_shapelyPoly_to_image_grid(matchBox.mapPoly, matchBox.gt, mW_rows, mW_cols, 'NW')
685

686
687
        # check, ob durch Verschiebung auf Grid die matchBox außerhalb von overlap_poly geschoben wurde
        if not matchBox.mapPoly.within(overlapWin.mapPoly):
688
            # matchPoly weiter verkleinern # 1 px buffer reicht, weil window nur auf das Grid verschoben wurde
689
            xLarger, yLarger = matchBox.is_larger_DimXY(overlapWin.boundsIm)
690
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
691
692

        # matching_win direkt auf grid2use (Rundungsfehler bei Koordinatentrafo beseitigen)
693
        matchBox.imPoly = round_shapelyPoly_coords(matchBox.imPoly, precision=0, out_dtype=int)
694
695

        # Check, ob match Fenster größer als anderes Fenster
696
        if not (matchBox.mapPoly.within(otherBox.mapPoly) or matchBox.mapPoly == otherBox.mapPoly):
697
            # dann für anderes Fenster kleinstes Fenster finden, das match-Fenster umgibt
698
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX, otherBox.gt)
699
700

        # evtl. kann es sein, dass bei Shift-Fenster-Vergrößerung das shift-Fenster zu groß für den overlap wird
Daniel Scheffler's avatar
Daniel Scheffler committed
701
        t_start = time.time()
702
        while not otherBox.mapPoly.within(overlapWin.mapPoly):
Daniel Scheffler's avatar
Daniel Scheffler committed
703
            # -> match Fenster verkleinern und neues otherBox berechnen
704
705
            xLarger, yLarger = otherBox.is_larger_DimXY(overlapWin.boundsIm)
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
706
707
            previous_area = otherBox.mapPoly.area
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX, otherBox.gt)
708

709
            if previous_area == otherBox.mapPoly.area or time.time() - t_start > 1.5:
Daniel Scheffler's avatar
Daniel Scheffler committed
710
711
                # happens e.g in case of a triangular footprint
                # NOTE: first condition is not always fulfilled -> therefore added timeout of 1.5 sec
712
                self._handle_error(
713
714
                    RuntimeError('Matching window in target image is larger than overlap area but further shrinking '
                                 'the matching window is not possible. Check if the footprints of the input data have '
715
                                 'been computed correctly.' +
716
717
                                 (' Matching window shrinking timed out.' if time.time() - t_start > 5 else '')))
                break  # break out of while loop in order to avoid that code gets stuck here
718

Daniel Scheffler's avatar
Daniel Scheffler committed
719
720
721
722
723
724
725
        # output validation
        for winBox in [matchBox, otherBox]:
            if winBox.imDimsYX[0] < 16 or winBox.imDimsYX[1] < 16:
                self._handle_error(
                    RuntimeError("One of the input images does not have sufficient gray value information "
                                 "(non-no-data values) for placing a matching window at the position %s. "
                                 "Matching failed." % str((wpX, wpY))))
Daniel Scheffler's avatar
Daniel Scheffler committed
726

727
        if self.success is not False:
Daniel Scheffler's avatar
Daniel Scheffler committed
728
            # check result -> ProgrammingError if not fulfilled
729
            def within_equal(inner, outer): return inner.within(outer) or inner.equals(outer)
Daniel Scheffler's avatar
Daniel Scheffler committed
730
731
            assert within_equal(matchBox.mapPoly, otherBox.mapPoly)
            assert within_equal(otherBox.mapPoly, overlapWin.mapPoly)
732

733
734
735
736
737
738
            self.imfft_gsd = self.ref.xgsd if self.grid2use == 'ref' else self.shift.xgsd
            self.ref.win, self.shift.win = (matchBox, otherBox) if self.grid2use == 'ref' else (otherBox, matchBox)
            self.matchBox, self.otherBox = matchBox, otherBox
            self.ref.win.size_YX = tuple([int(i) for i in self.ref.win.imDimsYX])
            self.shift.win.size_YX = tuple([int(i) for i in self.shift.win.imDimsYX])
            match_win_size_XY = tuple(reversed([int(i) for i in matchBox.imDimsYX]))
739

740
741
            if not self.q and match_win_size_XY != self.win_size_XY:
                print('Target window size %s not possible due to too small overlap area or window position too close '
742
                      'to an image edge. New matching window size: %s.' % (self.win_size_XY, match_win_size_XY))
743

744
745
                # IO.write_shp('/misc/hy5/scheffler/Temp/matchMapPoly.shp', matchBox.mapPoly,matchBox.prj)
                # IO.write_shp('/misc/hy5/scheffler/Temp/otherMapPoly.shp', otherBox.mapPoly,otherBox.prj)
746
747
748
749
750
751

    def _get_image_windows_to_match(self):
        """Reads the matching window and the other window using subset read, and resamples the other window to the
        resolution and the pixel grid of the matching window. The result consists of two images with the same
        dimensions and exactly the same corner coordinates."""

752
753
        match_fullGeoArr = self.ref if self.grid2use == 'ref' else self.shift
        other_fullGeoArr = self.shift if self.grid2use == 'ref' else self.ref
754
755

        # matchWin per subset-read einlesen -> self.matchWin.data
756
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.matchBox.boxImYX)
757
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
758
            rE <= match_fullGeoArr.rows and cE <= match_fullGeoArr.cols, \
759
760
761
762
763
            'Requested area is not completely within the input array for %s.' % match_fullGeoArr.imName
        self.matchWin = GeoArray(match_fullGeoArr[rS:rE + 1, cS:cE + 1, match_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(match_fullGeoArr.gt, self.matchBox.boxImYX),
                                 projection=copy(match_fullGeoArr.prj),
                                 nodata=copy(match_fullGeoArr.nodata))
764
        self.matchWin.imID = match_fullGeoArr.imID
765
766

        # otherWin per subset-read einlesen
767
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.otherBox.boxImYX)
768
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
769
            rE <= other_fullGeoArr.rows and cE <= other_fullGeoArr.cols, \
770
771
772
773
774
            'Requested area is not completely within the input array for %s.' % other_fullGeoArr.imName
        self.otherWin = GeoArray(other_fullGeoArr[rS:rE + 1, cS:cE + 1, other_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(other_fullGeoArr.gt, self.otherBox.boxImYX),
                                 projection=copy(other_fullGeoArr.prj),
                                 nodata=copy(other_fullGeoArr.nodata))
775
        self.otherWin.imID = other_fullGeoArr.imID
776

777
778
        # self.matchWin.deepcopy_array()
        # self.otherWin.deepcopy_array()
779
780
781

        if self.v:
            print('Original matching windows:')
782
783
784
            ref_data, shift_data = (self.matchWin[:], self.otherWin[:]) if self.grid2use == 'ref' else \
                (self.otherWin[:], self.matchWin[:])
            PLT.subplot_imshow([ref_data, shift_data], [self.ref.title, self.shift.title], grid=True)
785

786
        # resample otherWin.arr to the resolution of matchWin AND make sure the pixel edges are identical
787
        # (in order to make each image show the same window with the same coordinates)
788
789
790
791
        # TODO replace cubic resampling by PSF resampling - average resampling leads to sinus like distortions in the
        # TODO fft image that make a precise coregistration impossible. Thats why there is currently no way around
        # TODO cubic resampling.
        tgt_xmin, tgt_xmax, tgt_ymin, tgt_ymax = self.matchBox.boundsMap
792
793

        # equalize pixel grids and projection of matchWin and otherWin (ONLY if grids are really different)
794
795
        if not (self.matchWin.xygrid_specs == self.otherWin.xygrid_specs and
                prj_equal(self.matchWin.prj, self.otherWin.prj)):
796
797
798
799
            self.otherWin.arr, self.otherWin.gt = warp_ndarray(self.otherWin.arr,
                                                               self.otherWin.gt,
                                                               self.otherWin.prj,
                                                               self.matchWin.prj,
800
801
802
803
804
805
                                                               out_gsd=(self.imfft_gsd, self.imfft_gsd),
                                                               out_bounds=([tgt_xmin, tgt_ymin, tgt_xmax, tgt_ymax]),
                                                               rspAlg=_dict_rspAlg_rsp_Int[self.rspAlg_calc],
                                                               in_nodata=self.otherWin.nodata,
                                                               CPUs=self.CPUs,
                                                               progress=False)[:2]
806
807

        if self.matchWin.shape != self.otherWin.shape:
808
809
810
            self._handle_error(
                RuntimeError('Catched a possible ProgrammingError at window position %s: Bad output of '
                             'get_image_windows_to_match. Reference image shape is %s whereas shift '
811
                             'image shape is %s.' % (str(self.matchBox.wp), self.matchWin.shape, self.otherWin.shape)),
812
813
                warn=True)

Daniel Scheffler's avatar
Daniel Scheffler committed
814
        # check of odd dimensions of output images
815
816
        rows, cols = [i if i % 2 == 0 else i - 1 for i in self.matchWin.shape]
        self.matchWin.arr, self.otherWin.arr = self.matchWin.arr[:rows, :cols], self.otherWin.arr[:rows, :cols]
Daniel Scheffler's avatar
Daniel Scheffler committed
817
        if self.matchWin.box.imDimsYX != self.matchBox.imDimsYX:
818
819
            self.matchBox = self.matchWin.box  # update matchBox
            self.otherBox = self.otherWin.box  # update otherBox
820

821
        assert self.matchWin.arr is not None and self.otherWin.arr is not None, 'Creation of matching windows failed.'
822
823
824

    @staticmethod
    def _shrink_winsize_to_binarySize(win_shape_YX, target_size=None):
825
        # type: (tuple, tuple, int , int) -> any
826
827
828
829
830
831
832
        """Shrinks a given window size to the closest binary window size (a power of 2) -
        separately for X- and Y-dimension.

        :param win_shape_YX:    <tuple> source window shape as pixel units (rows,colums)
        :param target_size:     <tuple> source window shape as pixel units (rows,colums)
        """

833
        binarySizes = [2 ** i for i in range(3, 14)]  # [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
834
835
836
        possibSizes_X = [i for i in binarySizes if i <= win_shape_YX[1]]
        possibSizes_Y = [i for i in binarySizes if i <= win_shape_YX[0]]
        if possibSizes_X and possibSizes_Y:
837
838
839
840
            tgt_size_X, tgt_size_Y = target_size if target_size else (max(possibSizes_X), max(possibSizes_Y))
            closest_to_target_X = int(min(possibSizes_X, key=lambda x: abs(x - tgt_size_X)))
            closest_to_target_Y = int(min(possibSizes_Y, key=lambda y: abs(y - tgt_size_Y)))
            return closest_to_target_Y, closest_to_target_X
841
842
843
844
845
846
        else:
            return None

    def _calc_shifted_cross_power_spectrum(self, im0=None, im1=None, precision=np.complex64):
        """Calculates shifted cross power spectrum for quantifying x/y-shifts.

847
848
849
850
        :param im0:         reference image
        :param im1:         subject image to shift
        :param precision:   to be quantified as a datatype
        :return:            2D-numpy-array of the shifted cross power spectrum
851
852
        """

853
854
        im0 = im0 if im0 is not None else self.matchWin[:] if self.matchWin.imID == 'ref' else self.otherWin[:]
        im1 = im1 if im1 is not None else self.otherWin[:] if self.otherWin.imID == 'shift' else self.matchWin[:]
855

856
        assert im0.shape == im1.shape, 'The reference and the target image must have the same dimensions.'
857
858
859
860
        if im0.shape[0] % 2 != 0:
            warnings.warn('Odd row count in one of the match images!')
        if im1.shape[1] % 2 != 0:
            warnings.warn('Odd column count in one of the match images!')
861

862
863
        wsYX = self._shrink_winsize_to_binarySize(im0.shape) if self.bin_ws else im0.shape
        wsYX = ((min(wsYX),) * 2 if self.force_quadratic_win else wsYX) if wsYX else None
864

865
        if wsYX not in [None, (0, 0)]:
866
            time0 = time.time()
867
868
869
870
871
            if self.v:
                print('final window size: %s/%s (X/Y)' % (wsYX[1], wsYX[0]))
                # FIXME size of self.matchWin is not updated
                # FIXME CoRegPoints_grid.WIN_SZ is taken from self.matchBox.imDimsYX but this is not updated

872
            center_YX = np.array(im0.shape) / 2
873
874
            xmin, xmax = int(center_YX[1] - wsYX[1] / 2), int(center_YX[1] + wsYX[1] / 2)
            ymin, ymax = int(center_YX[0] - wsYX[0] / 2), int(center_YX[0] + wsYX[0] / 2)
875

876
877
            in_arr0 = im0[ymin:ymax, xmin:xmax].astype(precision)
            in_arr1 = im1[ymin:ymax, xmin:xmax].astype(precision)
878
879

            if self.v:
880
                PLT.subplot_imshow([np.real(in_arr0).astype(np.float32), np.real(in_arr1).astype(np.float32)],
881
                                   ['FFTin ' + self.ref.title, 'FFTin ' + self.shift.title], grid=True)
882

883
884
885
            if pyfftw and self.fftw_works is not False:  # if module is installed and working
                fft_arr0 = pyfftw.FFTW(in_arr0, np.empty_like(in_arr0), axes=(0, 1))()
                fft_arr1 = pyfftw.FFTW(in_arr1, np.empty_like(in_arr1), axes=(0, 1))()
886
887

                # catch empty output arrays (for some reason this happens sometimes..) -> use numpy fft
888
889
                # => this is caused by the call of pyfftw.FFTW. Exactly in that moment the input array in_arr0 is
                #    overwritten with zeros (maybe this is a bug in pyFFTW?)
890
                if self.fftw_works in [None, True] and (np.std(fft_arr0) == 0 or np.std(fft_arr1) == 0):
891
892
893
894
895
896
                    self.fftw_works = False
                    # recreate input arrays and use numpy fft as fallback
                    in_arr0 = im0[ymin:ymax, xmin:xmax].astype(precision)
                    in_arr1 = im1[ymin:ymax, xmin:xmax].astype(precision)
                    fft_arr0 = np.fft.fft2(in_arr0)
                    fft_arr1 = np.fft.fft2(in_arr1)
897
898
                else:
                    self.fftw_works = True
899
900
901
            else:
                fft_arr0 = np.fft.fft2(in_arr0)
                fft_arr1 = np.fft.fft2(in_arr1)
902

903
904
            # GeoArray(fft_arr0.astype(np.float32)).show(figsize=(15,15))
            # GeoArray(fft_arr1.astype(np.float32)).show(figsize=(15,15))
905

906
907
            if self.v:
                print('forward FFTW: %.2fs' % (time.time() - time0))
908
909
910
911

            eps = np.abs(fft_arr1).max() * 1e-15
            # cps == cross-power spectrum of im0 and im2

912
            temp = np.array(fft_arr0 * fft_arr1.conjugate()) / (np.abs(fft_arr0) * np.abs(fft_arr1) + eps)
913
914
915

            time0 = time.time()
            if 'pyfft' in globals():
916
                ifft_arr = pyfftw.FFTW(temp, np.empty_like(temp), axes=(0, 1), direction='FFTW_BACKWARD')()
917
918
            else:
                ifft_arr = np.fft.ifft2(temp)
919
920
            if self.v:
                print('backward FFTW: %.2fs' % (time.time() - time0))
921
922

            cps = np.abs(ifft_arr)
923
            # scps = shifted cps  => shift the zero-frequency component to the center of the spectrum
924
925
            scps = np.fft.fftshift(cps)
            if self.v:
926
927
928
929
930
                PLT.subplot_imshow([np.real(in_arr0).astype(np.uint16), np.real(in_arr1).astype(np.uint16),
                                    np.real(fft_arr0).astype(np.uint8), np.real(fft_arr1).astype(np.uint8), scps],
                                   titles=['matching window im0', 'matching window im1',
                                           "fft result im0", "fft result im1", "cross power spectrum"], grid=True)
                PLT.subplot_3dsurface(np.real(scps).astype(np.float32))
931
        else:
932
933
            scps = None
            self._handle_error(
934
935
936
937
938
939
940
                RuntimeError('The matching window became too small for calculating a reliable match. Matching failed.'))

        self.fftw_win_size_YX = wsYX
        return scps

    @staticmethod
    def _get_peakpos(scps):
941
942
943
        """Returns the row/column position of the peak within the given cross power spectrum.

        :param scps: <np.ndarray> shifted cross power spectrum
Daniel Scheffler's avatar
Daniel Scheffler committed
944
        :return:     <np.ndarray> [row, column]
945
        """