CoReg.py 68.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
# -*- coding: utf-8 -*-
__author__='Daniel Scheffler'

import os
import re
import shutil
import subprocess
import time
import warnings
10
from copy import copy
11
12

# custom
13
14
15
16
try:
    import gdal
except ImportError:
    from osgeo import gdal
17
import numpy as np
18
19
20
try:
    import pyfftw
except ImportError:
21
    pyfftw = None
22
from shapely.geometry import Point, Polygon
23
24

# internal modules
25
from .DeShifter import DESHIFTER, _dict_rspAlg_rsp_Int
26
27
28
29
30
31
from .          import geometry  as GEO
from .          import io        as IO
from .          import plotting  as PLT

from py_tools_ds.ptds                      import GeoArray
from py_tools_ds.ptds.geo.coord_calc       import corner_coord_to_minmax, get_corner_coordinates
32
from py_tools_ds.ptds.geo.vector.topology  import get_overlap_polygon, get_smallest_boxImYX_that_contains_boxMapYX
33
from py_tools_ds.ptds.geo.projection       import prj_equal, get_proj4info
34
35
from py_tools_ds.ptds.geo.vector.geometry  import boxObj, round_shapelyPoly_coords
from py_tools_ds.ptds.geo.coord_grid       import move_shapelyPoly_to_image_grid
36
from py_tools_ds.ptds.geo.coord_trafo      import pixelToMapYX, reproject_shapelyGeometry, mapXY2imXY
37
38
39
from py_tools_ds.ptds.geo.raster.reproject import warp_ndarray
from py_tools_ds.ptds.geo.map_info         import geotransform2mapinfo
from py_tools_ds.ptds.numeric.vector       import find_nearest
40
from py_tools_ds.ptds.similarity.raster    import calc_ssim
41
42
43
44
45
46
47
48





class imParamObj(object):
    def __init__(self, CoReg_params, imID):
        assert imID in ['ref', 'shift']
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
49

50
        self.imName = 'reference image' if imID == 'ref' else 'image to be shifted'
51
52
        self.v = CoReg_params['v']
        self.q = CoReg_params['q'] if not self.v else False
53
54

        # set GeoArray
55
        get_geoArr    = lambda p: GeoArray(p) if not isinstance(p,GeoArray) else p
56
        self.GeoArray = get_geoArr(CoReg_params['im_ref']) if imID == 'ref' else get_geoArr(CoReg_params['im_tgt'])
57
58
59
60
        init_nodata   = CoReg_params['nodata'][0 if imID == 'ref' else 1]
        self.GeoArray.nodata   = init_nodata if init_nodata is not None else self.GeoArray.nodata
        self.GeoArray.progress = CoReg_params['progress']
        self.GeoArray.q        = CoReg_params['q']
61
62
63
64
65

        # set title to be used in plots
        self.title = os.path.basename(self.GeoArray.filePath) if self.GeoArray.filePath else self.imName

        # set params
66
67
68
69
70
71
72
73
        self.prj          = self.GeoArray.projection
        self.gt           = self.GeoArray.geotransform
        self.xgsd         = self.GeoArray.xgsd
        self.ygsd         = self.GeoArray.ygsd
        self.xygrid_specs = self.GeoArray.xygrid_specs
        self.rows         = self.GeoArray.rows
        self.cols         = self.GeoArray.cols
        self.bands        = self.GeoArray.bands
74
75
76
77
78
79
80

        # validate params
        assert self.prj, 'The %s has no projection.' % self.imName
        assert not re.search('LOCAL_CS', self.prj), 'The %s is not georeferenced.' % self.imName
        assert self.gt, 'The %s has no map information.' % self.imName

        # set band4match
81
        self.band4match = (CoReg_params['r_b4match'] if imID == 'ref' else CoReg_params['s_b4match'])-1
82
83
84
        assert self.bands >= self.band4match+1 >= 1, "The %s has %s %s. So its band number to match must be %s%s. " \
            "Got %s." % (self.imName, self.bands, 'bands' if self.bands > 1 else 'band', 'between 1 and '
            if self.bands > 1 else '', self.bands, self.band4match)
85
86

        # set nodata
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
87
        if CoReg_params['nodata'][0 if imID == 'ref' else 1] is not None:
88
            self.nodata = CoReg_params['nodata'][0 if imID == 'ref' else 1]
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
89
        else:
90
            self.nodata = self.GeoArray.nodata
91

92
93
94
95
96
97
98
99
100
101
102
103
        # set footprint_poly
        given_footprint_poly = CoReg_params['footprint_poly_%s' % ('ref' if imID == 'ref' else 'tgt')]
        given_corner_coord   = CoReg_params['data_corners_%s'   % ('ref' if imID == 'ref' else 'tgt')]

        if given_footprint_poly:
            self.GeoArray.footprint_poly = given_footprint_poly
        elif given_corner_coord is not None:
            self.GeoArray.footprint_poly = Polygon(given_corner_coord)
        elif not CoReg_params['calc_corners']:
            # use the image extent
            self.GeoArray.footprint_poly = Polygon(get_corner_coordinates(gt=self.GeoArray.geotransform,
                                                                          cols=self.cols,rows=self.rows))
104
        else:
105
106
107
108
            # footprint_poly is calculated automatically by GeoArray
            if not CoReg_params['q']:
                print('Calculating actual data corner coordinates for %s...' % self.imName)
            self.GeoArray.calc_mask_nodata(fromBand=self.band4match)  # this avoids that all bands have to be read
109

110
        self.poly = self.GeoArray.footprint_poly  # returns a shapely geometry
111

112
113
        if not CoReg_params['q']:
            print('Bounding box of calculated footprint for %s:\n\t%s' % (self.imName, self.poly.bounds))
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        # add bad data mask
        given_mask = CoReg_params['mask_baddata_%s' % ('ref' if imID == 'ref' else 'tgt')]
        self.mask_baddata = None
        if given_mask:
            self.add_mask_bad_data(given_mask)


    def add_mask_bad_data(self, path_or_geoArr):
        """Adds a bad data mask. This method is separated from __init__() in order to allow explicit adding of the mask.

        :param path_or_geoArr:
        """
        geoArr_mask = path_or_geoArr if isinstance(path_or_geoArr, GeoArray) else GeoArray(path_or_geoArr)

        assert geoArr_mask.bands == 1, \
            'Expected one single band as bad data mask for %s. Got %s bands.' % (self.imName, geoArr_mask.bands)
        pixelVals_in_mask = sorted(list(np.unique(geoArr_mask[:])))
        assert len(pixelVals_in_mask) <= 2, 'Bad data mask must have only two pixel values (boolean) - 0 and 1 or ' \
                                            'False and True! The given mask for %s contains the values %s.' % (
                                            self.imName, pixelVals_in_mask)
        assert pixelVals_in_mask in [[0, 1], [False, True]], 'Found unsupported pixel values in the given bad data ' \
                                                             'mask for %s: %s Only the values True, False, 0 and 1 ' \
                                                             'are supported. ' % (self.imName, pixelVals_in_mask)

        self.mask_baddata = GeoArray(geoArr_mask[:].astype(np.bool), geoArr_mask.gt, geoArr_mask.prj)


142
143
144


class COREG(object):
145
146
    """See help(COREG) for documentation!"""

147
148
    def __init__(self, im_ref, im_tgt, path_out=None, fmt_out='ENVI', out_crea_options=None, r_b4match=1, s_b4match=1,
                 wp=(None,None), ws=(512, 512), max_iter=5, max_shift=5, align_grids=False, match_gsd=False,
149
150
                 out_gsd=None, target_xyGrid=None, resamp_alg_deshift='cubic', resamp_alg_calc='cubic',
                 footprint_poly_ref=None, footprint_poly_tgt=None, data_corners_ref=None, data_corners_tgt=None,
151
152
153
                 nodata=(None,None), calc_corners=True, binary_ws=True, mask_baddata_ref=None, mask_baddata_tgt=None,
                 multiproc=True, force_quadratic_win=True, progress=True, v=False, path_verbose_out=None, q=False,
                 ignore_errors=False):
154
155
156
157

        """Detects and corrects global X/Y shifts between a target and refernce image. Geometric shifts are calculated
        at a specific (adjustable) image position. Correction performs a global shifting in X- or Y direction.

158
159
160
161
        :param im_ref(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of reference image
        :param im_tgt(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of image to be shifted
162
        :param path_out(str):           target path of the coregistered image
163
164
165
166
                                            - if None (default), the method correct_shifts() does not write to disk
                                            - if 'auto': /dir/of/im1/<im1>__shifted_to__<im0>.bsq
        :param fmt_out(str):            raster file format for output file. ignored if path_out is None. can be any GDAL
                                        compatible raster file format (e.g. 'ENVI', 'GeoTIFF'; default: ENVI)
167
168
        :param out_crea_options(list):  GDAL creation options for the output image,
                                        e.g. ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
169
170
171
172
173
174
175
176
177
178
179
        :param r_b4match(int):          band of reference image to be used for matching (starts with 1; default: 1)
        :param s_b4match(int):          band of shift image to be used for matching (starts with 1; default: 1)
        :param wp(tuple):               custom matching window position as map values in the same projection like the
                                        reference image (default: central position of image overlap)
        :param ws(tuple):               custom matching window size [pixels] (default: (512,512))
        :param max_iter(int):           maximum number of iterations for matching (default: 5)
        :param max_shift(int):          maximum shift distance in reference image pixel units (default: 5 px)
        :param align_grids(bool):       align the coordinate grids of the image to be and the reference image (default: 0)
        :param match_gsd(bool):         match the output pixel size to pixel size of the reference image (default: 0)
        :param out_gsd(tuple):          xgsd ygsd: set the output pixel size in map units
                                        (default: original pixel size of the image to be shifted)
180
181
        :param target_xyGrid(list):     a list with a target x-grid and a target y-grid like [[15,45], [15,45]]
                                        This overrides 'out_gsd', 'align_grids' and 'match_gsd'.
182
183
184
185
186
187
188
189
190
        :param resamp_alg_deshift(str)  the resampling algorithm to be used for shift correction (if neccessary)
                                        valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average, mode,
                                                          max, min, med, q1, q3
                                        default: cubic
        :param resamp_alg_calc(str)     the resampling algorithm to be used for all warping processes during calculation
                                        of spatial shifts
                                        (valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average, mode,
                                                       max, min, med, q1, q3)
                                        default: cubic (highly recommended)
191
192
193
194
195
196
197
198
199
200
        :param footprint_poly_ref(str): footprint polygon of the reference image (WKT string or shapely.geometry.Polygon),
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param footprint_poly_tgt(str): footprint polygon of the image to be shifted (WKT string or shapely.geometry.Polygon)
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param data_corners_ref(list):  map coordinates of data corners within reference image.
                                        ignored if footprint_poly_ref is given.
        :param data_corners_tgt(list):  map coordinates of data corners within image to be shifted.
                                        ignored if footprint_poly_tgt is given.
201
202
203
204
205
        :param nodata(tuple):           no data values for reference image and image to be shifted
        :param calc_corners(bool):      calculate true positions of the dataset corners in order to get a useful
                                        matching window position within the actual image overlap
                                        (default: 1; deactivated if '-cor0' and '-cor1' are given
        :param binary_ws(bool):         use binary X/Y dimensions for the matching window (default: 1)
206
207
208
209
210
211
212
213
214
215
216
217
218
        :param mask_baddata_ref(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                reference image where all bad data pixels (e.g. clouds) are marked with
                                                True and the remaining pixels with False. Must have the same geographic
                                                extent and projection like 'im_ref'. The mask is used to check if the
                                                chosen matching window position is valid in the sense of useful data.
                                                Otherwise this window position is rejected.
        :param mask_baddata_tgt(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                image to be shifted where all bad data pixels (e.g. clouds) are marked
                                                with True and the remaining pixels with False. Must have the same
                                                geographic extent and projection like 'im_ref'. The mask is used to
                                                check if the chosen matching window position is valid in the sense of
                                                useful data. Otherwise this window position is rejected.
        :param multiproc(bool):         enable multiprocessing (default: 1)
219
        :param force_quadratic_win(bool):   force a quadratic matching window (default: 1)
220
        :param progress(bool):          show progress bars (default: True)
221
        :param v(bool):                 verbose mode (default: False)
222
223
        :param path_verbose_out(str):   an optional output directory for intermediate results
                                        (if not given, no intermediate results are written to disk)
224
225
        :param q(bool):                 quiet mode (default: False)
        :param ignore_errors(bool):     Useful for batch processing. (default: False)
226
227
228
229
230
231
                                        In case of error COREG.success == False and COREG.x_shift_px/COREG.y_shift_px
                                        is None
        """

        self.params              = dict([x for x in locals().items() if x[0] != "self"])

232
233
        # assertions
        assert fmt_out, "'%s' is not a valid GDAL driver code." %fmt_out
234
235
        if match_gsd and out_gsd: warnings.warn("'-out_gsd' is ignored because '-match_gsd' is set.\n")
        if out_gsd:  assert isinstance(out_gsd, list) and len(out_gsd) == 2, 'out_gsd must be a list with two values.'
236
237
238
239
        if data_corners_ref and not isinstance(data_corners_ref[0], list): # group if not [[x,y],[x,y]..] but [x,y,x,y,]
            data_corners_ref = [data_corners_ref[i:i + 2] for i in range(0, len(data_corners_ref), 2)]
        if data_corners_tgt and not isinstance(data_corners_tgt[0], list): # group if not [[x,y],[x,y]..]
            data_corners_tgt = [data_corners_tgt[i:i + 2] for i in range(0, len(data_corners_tgt), 2)]
240
241
        if nodata: assert isinstance(nodata, tuple) and len(nodata) == 2, "'nodata' must be a tuple with two values." \
                                                                          "Got %s with length %s." %(type(nodata),len(nodata))
242
        for rspAlg in [resamp_alg_deshift, resamp_alg_calc]:
243
            assert rspAlg in _dict_rspAlg_rsp_Int.keys(), "'%s' is not a supported resampling algorithm." % rspAlg
244
        if resamp_alg_calc=='average' and (v or not q):
245
            warnings.warn("The resampling algorithm 'average' causes sinus-shaped patterns in fft images that will "
246
247
                          "affect the precision of the calculated spatial shifts! It is highly recommended to "
                          "choose another resampling algorithm.")
248
249

        self.path_out            = path_out            # updated by self.set_outpathes
250
        self.fmt_out             = fmt_out
251
        self.out_creaOpt         = out_crea_options
252
253
254
255
256
257
258
        self.win_pos_XY          = wp                  # updated by self.get_opt_winpos_winsize()
        self.win_size_XY         = ws                  # updated by self.get_opt_winpos_winsize()
        self.max_iter            = max_iter
        self.max_shift           = max_shift
        self.align_grids         = align_grids
        self.match_gsd           = match_gsd
        self.out_gsd             = out_gsd
259
        self.target_xyGrid       = target_xyGrid
260
261
        self.rspAlg_DS           = resamp_alg_deshift
        self.rspAlg_calc         = resamp_alg_calc
262
263
264
265
266
267
        self.calc_corners        = calc_corners
        self.mp                  = multiproc
        self.bin_ws              = binary_ws
        self.force_quadratic_win = force_quadratic_win
        self.v                   = v
        self.path_verbose_out    = path_verbose_out
268
269
270
        self.q                   = q if not v else False # overridden by v
        self.progress            = progress if not q else False  # overridden by q

271
272
273
274
275
276
277
278
279
280
281
282
283
        self.ignErr              = ignore_errors
        self.max_win_sz_changes  = 3                   # TODO: änderung der window size, falls nach max_iter kein valider match gefunden
        self.ref                 = None                # set by self.get_image_params
        self.shift               = None                # set by self.get_image_params
        self.matchWin            = None                # set by self.get_clip_window_properties()
        self.otherWin            = None                # set by self.get_clip_window_properties()
        self.imfft_gsd           = None                # set by self.get_clip_window_properties()
        self.fftw_win_size_YX    = None                # set by calc_shifted_cross_power_spectrum

        self.x_shift_px          = None                # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.y_shift_px          = None                # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.x_shift_map         = None                # set by self.get_updated_map_info()
        self.y_shift_map         = None                # set by self.get_updated_map_info()
284
285
        self.vec_length_map      = None
        self.vec_angle_deg       = None
286
        self.updated_map_info    = None                # set by self.get_updated_map_info()
287
288
289
        self.ssim_orig           = None                # set by self._validate_ssim_improvement()
        self.ssim_deshifted      = None                # set by self._validate_ssim_improvement()
        self._ssim_improved      = None                # private attribute to be filled by self.ssim_improved
290
291

        self.tracked_errors      = []                  # expanded each time an error occurs
292
        self.success             = None                # default
293
        self.deshift_results     = None                # set by self.correct_shifts()
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

        gdal.AllRegister()
        self._get_image_params()
        self._set_outpathes(im_ref, im_tgt)
        self.grid2use                 = 'ref' if self.shift.xgsd <= self.ref.xgsd else 'shift'
        if self.v: print('resolutions: ', self.ref.xgsd, self.shift.xgsd)

        overlap_tmp                   = get_overlap_polygon(self.ref.poly, self.shift.poly, self.v)
        self.overlap_poly             = overlap_tmp['overlap poly'] # has to be in reference projection
        assert self.overlap_poly, 'The input images have no spatial overlap.'
        self.overlap_percentage       = overlap_tmp['overlap percentage']
        self.overlap_area             = overlap_tmp['overlap area']

        if self.v and self.path_verbose_out:
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_imref.shp'),    self.ref.poly,     self.ref.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_im2shift.shp'), self.shift.poly,   self.shift.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'overlap_poly.shp'),  self.overlap_poly, self.ref.prj)

        ### FIXME: transform_mapPt1_to_mapPt2(im2shift_center_map, ds_imref.GetProjection(), ds_im2shift.GetProjection()) # später basteln für den fall, dass projektionen nicht gleich sind

        # get_clip_window_properties
        self._get_opt_winpos_winsize()
        if not self.q: print('Matching window position (X,Y): %s/%s' % (self.win_pos_XY[0], self.win_pos_XY[1]))
        self._get_clip_window_properties()

319
        if self.v and self.path_verbose_out and self.matchWin.mapPoly and self.success is not False:
320
321
322
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_matchWin.shp'),
                         self.matchWin.mapPoly, self.matchWin.prj)

323
        self.success     = False if self.success is False or not self.matchWin.boxMapYX else None
324
        self._coreg_info = None # private attribute to be filled by self.coreg_info property
325
326
327
328
329
330
331
332
333


    def _set_outpathes(self, im_ref, im_tgt):
        get_baseN = lambda path: os.path.splitext(os.path.basename(path))[0]

        # get input pathes
        path_im_ref = im_ref.filePath if isinstance(im_ref, GeoArray) else im_ref
        path_im_tgt = im_tgt.filePath if isinstance(im_tgt, GeoArray) else im_tgt

334
335
336
337
338
339
        if self.path_out: # this also applies to self.path_out='auto'

            if self.path_out == 'auto':
                dir_out, fName_out = os.path.dirname(path_im_tgt), ''
            else:
                dir_out, fName_out = os.path.split(path_im_tgt)
340
341
342
343
344
345
346
347
348
349
350
351
352
353

            if dir_out and fName_out:
                # a valid output path is given => do nothing
                pass

            else:
                # automatically create an output directory and filename if not given
                if not dir_out:
                    if not path_im_ref:
                        dir_out = os.path.abspath(os.path.curdir)
                    else:
                        dir_out = os.path.dirname(path_im_ref)

                if not fName_out:
354
355
356
357
358
                    ext         = 'bsq' if self.fmt_out=='ENVI' else \
                                    gdal.GetDriverByName(self.fmt_out).GetMetadataItem(gdal.DMD_EXTENSION)
                    fName_out   = fName_out if not fName_out in ['.',''] else '%s__shifted_to__%s' \
                                    %(get_baseN(path_im_tgt), get_baseN(path_im_ref))
                    fName_out   = fName_out+'.%s'%ext if ext else fName_out
359

360
                self.path_out   = os.path.abspath(os.path.join(dir_out,fName_out))
361
362
363
364

                assert ' ' not in self.path_out, \
                    "The path of the output image contains whitespaces. This is not supported by GDAL."
        else:
365
            # this only happens if COREG is not instanced from within Python and self.path_out is explicitly set to None
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
            # => DESHIFTER will return an array
            pass

        if self.v:
            if self.path_verbose_out:
                dir_out, dirname_out = os.path.split(self.path_verbose_out)

                if not dir_out:
                    if self.path_out:
                        self.path_verbose_out = os.path.dirname(self.path_out)
                    else:
                        self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir,
                            'CoReg_verboseOut__%s__shifted_to__%s' % (get_baseN(path_im_tgt), get_baseN(path_im_ref))))
                elif dirname_out and not dir_out:
                    self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir, dirname_out))

                assert ' ' not in self.path_verbose_out, \
                    "'path_verbose_out' contains whitespaces. This is not supported by GDAL."

        else:
            self.path_verbose_out = None

        if self.path_verbose_out and not os.path.isdir(self.path_verbose_out): os.makedirs(self.path_verbose_out)


    def _get_image_params(self):
        self.ref   = imParamObj(self.params,'ref')
        self.shift = imParamObj(self.params,'shift')
        assert prj_equal(self.ref.prj, self.shift.prj), \
395
396
            'Input projections are not equal. Different projections are currently not supported. Got %s / %s.'\
            %(get_proj4info(proj=self.ref.prj), get_proj4info(proj=self.shift.prj))
397
398


399
400
401
402
403
404
405
406
407
    def show_image_footprints(self):
        """This method is intended to be called from Jupyter Notebook and shows a web map containing the calculated
        footprints of the input images as well as the corresponding overlap area."""
        # TODO different colors for polygons
        assert self.overlap_poly, 'Please calculate the overlap polygon first.'

        try:
            import folium, geojson
        except ImportError:
408
409
            folium, geojson = None, None
        if not folium or not geojson:
410
411
412
            raise ImportError("This method requires the libraries 'folium' and 'geojson'. They can be installed with "
                              "the shell command 'pip install folium geojson'.")

413
414
415
        refPoly      = reproject_shapelyGeometry(self.ref  .poly      , self.ref  .GeoArray.epsg, 4326)
        shiftPoly    = reproject_shapelyGeometry(self.shift.poly      , self.shift.GeoArray.epsg, 4326)
        overlapPoly  = reproject_shapelyGeometry(self.overlap_poly    , self.shift.GeoArray.epsg, 4326)
416
417
418
419
420
421
422
423
424
        matchWinPoly = reproject_shapelyGeometry(self.matchWin.mapPoly, self.shift.GeoArray.epsg, 4326)

        m = folium.Map(location=tuple(np.array(overlapPoly.centroid.coords.xy).flatten())[::-1])
        for poly in [refPoly, shiftPoly, overlapPoly, matchWinPoly]:
            gjs = geojson.Feature(geometry=poly, properties={})
            folium.GeoJson(gjs).add_to(m)
        return m


425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    def _get_opt_winpos_winsize(self):
        # type: (tuple,tuple) -> tuple,tuple
        """Calculates optimal window position and size in reference image units according to DGM, cloud_mask and
        trueCornerLonLat."""
        # dummy algorithm: get center position of overlap instead of searching ideal window position in whole overlap
        # TODO automatischer Algorithmus zur Bestimmung der optimalen Window Position

        wp = tuple(self.win_pos_XY)
        assert type(self.win_pos_XY) in [tuple,list,np.ndarray],\
            'The window position must be a tuple of two elements. Got %s with %s elements.' %(type(wp),len(wp))
        wp = tuple(wp)

        if None in wp:
            overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.centroid.coords.xy
            wp = (wp[0] if wp[0] else overlap_center_pos_x[0]), (wp[1] if wp[1] else overlap_center_pos_y[0])

441
        # validate window position
442
443
444
445
446
447
        if not self.overlap_poly.contains(Point(wp)):
            self.success=False
            self.tracked_errors.append(ValueError('The provided window position %s/%s is outside of the overlap ' \
                                                  'area of the two input images. Check the coordinates.' %wp))
            if not self.ignErr:
                raise self.tracked_errors[-1]
448
449
450
451
452
453
454
455
456
457
458
459
460
461

        # check if window position is within bad data area if a respective mask has been provided
        for im in [self.ref, self.shift]:
            if im.mask_baddata is not None:
                imX, imY = mapXY2imXY(wp, im.mask_baddata.gt)

                if not im.mask_baddata[imY, imX]:
                    self.tracked_errors.append(
                        RuntimeError('According to the provided bad data mask for the %s the chosen window position '
                            '%s / %s is within a bad data area. Using this window position for coregistration '
                            'is not reasonable. Please provide a better window position!' %(im.imName, wp[0], wp[1])))
                    self.success = False
                    if not self.ignErr:
                        raise self.tracked_errors[-1]
462

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
        self.win_pos_XY  = wp
        self.win_size_XY = (int(self.win_size_XY[0]), int(self.win_size_XY[1])) if self.win_size_XY else (512,512)


    def _get_clip_window_properties(self):
        """Calculate all properties of the matching window and the other window. These windows are used to read the
        corresponding image positions in the reference and the target image.
        hint: Even if X- and Y-dimension of the target window is equal, the output window can be NOT quadratic!
        """
        # FIXME image sizes like 10000*256 are still possible

        wpX,wpY             = self.win_pos_XY
        wsX,wsY             = self.win_size_XY
        ref_wsX, ref_wsY    = (wsX*self.ref.xgsd  , wsY*self.ref.ygsd)   # image units -> map units
        shift_wsX,shift_wsY = (wsX*self.shift.xgsd, wsY*self.shift.ygsd) # image units -> map units
        ref_box_kwargs      = {'wp':(wpX,wpY),'ws':(ref_wsX,ref_wsY)    ,'gt':self.ref.gt  }
        shift_box_kwargs    = {'wp':(wpX,wpY),'ws':(shift_wsX,shift_wsY),'gt':self.shift.gt}
        matchWin            = boxObj(**ref_box_kwargs)   if self.grid2use=='ref' else boxObj(**shift_box_kwargs)
        otherWin            = boxObj(**shift_box_kwargs) if self.grid2use=='ref' else boxObj(**ref_box_kwargs)
        overlapWin          = boxObj(mapPoly=self.overlap_poly,gt=self.ref.gt)

        # clip matching window to overlap area
        matchWin.mapPoly = matchWin.mapPoly.intersection(overlapWin.mapPoly)

        # move matching window to imref grid or im2shift grid
        mW_rows, mW_cols = (self.ref.rows, self.ref.cols) if self.grid2use == 'ref' else (self.shift.rows, self.shift.cols)
        matchWin.mapPoly = move_shapelyPoly_to_image_grid(matchWin.mapPoly, matchWin.gt, mW_rows, mW_cols, 'NW')

        # check, ob durch Verschiebung auf Grid das matchWin außerhalb von overlap_poly geschoben wurde
        if not matchWin.mapPoly.within(overlapWin.mapPoly):
            # matchPoly weiter verkleinern # 1 px buffer reicht, weil window nur auf das Grid verschoben wurde
            xLarger,yLarger = matchWin.is_larger_DimXY(overlapWin.boundsIm)
            matchWin.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)

        # matching_win direkt auf grid2use (Rundungsfehler bei Koordinatentrafo beseitigen)
        matchWin.imPoly = round_shapelyPoly_coords(matchWin.imPoly, precision=0, out_dtype=int)

        # Check, ob match Fenster größer als anderes Fenster
        if not (matchWin.mapPoly.within(otherWin.mapPoly) or matchWin.mapPoly==otherWin.mapPoly):
            # dann für anderes Fenster kleinstes Fenster finden, das match-Fenster umgibt
            otherWin.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchWin.boxMapYX,otherWin.gt)

        # evtl. kann es sein, dass bei Shift-Fenster-Vergrößerung das shift-Fenster zu groß für den overlap wird
        while not otherWin.mapPoly.within(overlapWin.mapPoly):
            # -> match Fenster verkleinern und neues anderes Fenster berechnen
            xLarger, yLarger = otherWin.is_larger_DimXY(overlapWin.boundsIm)
            matchWin.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
510
            previous_area    = otherWin.mapPoly.area
511
512
            otherWin.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchWin.boxMapYX,otherWin.gt)

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
            if previous_area == otherWin.mapPoly.area:
                self.tracked_errors.append(
                    RuntimeError('Matching window in target image is larger than overlap area but further shrinking '
                                 'the matching window is not possible. Check if the footprints of the input data have '
                                 'been computed correctly. '))
                if not self.ignErr:
                    raise self.tracked_errors[-1]
                break # break out of while loop in order to avoid that code gets stuck here

        if self.tracked_errors:
            self.success = False
        else:
            # check results
            assert matchWin.mapPoly.within(otherWin.mapPoly)
            assert otherWin.mapPoly.within(overlapWin.mapPoly)

            self.imfft_gsd              = self.ref.xgsd       if self.grid2use =='ref' else self.shift.xgsd
            self.ref.win,self.shift.win = (matchWin,otherWin) if self.grid2use =='ref' else (otherWin,matchWin)
            self.matchWin,self.otherWin = matchWin, otherWin
            self.ref.  win.size_YX      = tuple([int(i) for i in self.ref.  win.imDimsYX])
            self.shift.win.size_YX      = tuple([int(i) for i in self.shift.win.imDimsYX])
            match_win_size_XY           = tuple(reversed([int(i) for i in matchWin.imDimsYX]))
            if not self.q and match_win_size_XY != self.win_size_XY:
                print('Target window size %s not possible due to too small overlap area or window position too close '
                      'to an image edge. New matching window size: %s.' %(self.win_size_XY,match_win_size_XY))
            #IO.write_shp('/misc/hy5/scheffler/Temp/matchMapPoly.shp', matchWin.mapPoly,matchWin.prj)
            #IO.write_shp('/misc/hy5/scheffler/Temp/otherMapPoly.shp', otherWin.mapPoly,otherWin.prj)
540
541
542
543
544
545
546
547
548
549
550
551
552
553


    def _get_image_windows_to_match(self):
        """Reads the matching window and the other window using subset read, and resamples the other window to the
        resolution and the pixel grid of the matching window. The result consists of two images with the same
        dimensions and exactly the same corner coordinates."""

        self.matchWin.imParams = self.ref   if self.grid2use=='ref' else self.shift
        self.otherWin.imParams = self.shift if self.grid2use=='ref' else self.ref

        # matchWin per subset-read einlesen -> self.matchWin.data
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.matchWin.boxImYX)
        assert np.array_equal(np.abs(np.array([rS,rE,cS,cE])), np.array([rS,rE,cS,cE])), \
            'Got negative values in gdalReadInputs for %s.' %self.matchWin.imParams.imName
554
        self.matchWin.data = self.matchWin.imParams.GeoArray[rS:rE,cS:cE, self.matchWin.imParams.band4match]
555
556
557
558
559

        # otherWin per subset-read einlesen
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.otherWin.boxImYX)
        assert np.array_equal(np.abs(np.array([rS,rE,cS,cE])), np.array([rS,rE,cS,cE])), \
            'Got negative values in gdalReadInputs for %s.' %self.otherWin.imParams.imName
560
        self.otherWin.data = self.otherWin.imParams.GeoArray[rS:rE, cS:cE, self.otherWin.imParams.band4match]
561
562
563
564
565
566
567
568
569
570
571
572
573

        if self.v:
            print('Original matching windows:')
            ref_data, shift_data =  (self.matchWin.data, self.otherWin.data) if self.grid2use=='ref' else \
                                    (self.otherWin.data, self.matchWin.data)
            PLT.subplot_imshow([ref_data, shift_data],[self.ref.title,self.shift.title], grid=True)

        otherWin_subgt = GEO.get_subset_GeoTransform(self.otherWin.gt, self.otherWin.boxImYX)

        # resample otherWin.data to the resolution of matchWin AND make sure the pixel edges are identical
        # (in order to make each image show the same window with the same coordinates)
        # TODO replace cubic resampling by PSF resampling - average resampling leads to sinus like distortions in the fft image that make a precise coregistration impossible. Thats why there is currently no way around cubic resampling.
        tgt_xmin,tgt_xmax,tgt_ymin,tgt_ymax = self.matchWin.boundsMap
574
575
576
577
578
579
        self.otherWin.data = warp_ndarray(self.otherWin.data,
                                          otherWin_subgt,
                                          self.otherWin.imParams.prj,
                                          self.matchWin.imParams.prj,
                                          out_gsd    = (self.imfft_gsd, self.imfft_gsd),
                                          out_bounds = ([tgt_xmin, tgt_ymin, tgt_xmax, tgt_ymax]),
580
                                          rspAlg     = _dict_rspAlg_rsp_Int[self.rspAlg_calc],
581
                                          in_nodata  = self.otherWin.imParams.nodata,
582
                                          CPUs       = None if self.mp else 1,
583
                                          progress   = False) [0]
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

        if self.matchWin.data.shape != self.otherWin.data.shape:
            self.tracked_errors.append(
                RuntimeError('Bad output of get_image_windows_to_match. Reference image shape is %s whereas shift '
                             'image shape is %s.' % (self.matchWin.data.shape, self.otherWin.data.shape)))
            raise self.tracked_errors[-1]
        rows, cols = [i if i % 2 == 0 else i - 1 for i in self.matchWin.data.shape]
        self.matchWin.data, self.otherWin.data = self.matchWin.data[:rows, :cols], self.otherWin.data[:rows, :cols]

        assert self.matchWin.data is not None and self.otherWin.data is not None, 'Creation of matching windows failed.'


    @staticmethod
    def _shrink_winsize_to_binarySize(win_shape_YX, target_size=None):
        # type: (tuple, tuple, int , int) -> tuple
        """Shrinks a given window size to the closest binary window size (a power of 2) -
        separately for X- and Y-dimension.

        :param win_shape_YX:    <tuple> source window shape as pixel units (rows,colums)
        :param target_size:     <tuple> source window shape as pixel units (rows,colums)
        """

        binarySizes   = [2**i for i in range(3,14)] # [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
        possibSizes_X = [i for i in binarySizes if i <= win_shape_YX[1]]
        possibSizes_Y = [i for i in binarySizes if i <= win_shape_YX[0]]
        if possibSizes_X and possibSizes_Y:
            tgt_size_X,tgt_size_Y = target_size if target_size else (max(possibSizes_X),max(possibSizes_Y))
            closest_to_target_X = int(min(possibSizes_X, key=lambda x:abs(x-tgt_size_X)))
            closest_to_target_Y = int(min(possibSizes_Y, key=lambda y:abs(y-tgt_size_Y)))
            return closest_to_target_Y,closest_to_target_X
        else:
            return None


    def _calc_shifted_cross_power_spectrum(self, im0=None, im1=None, precision=np.complex64):
        """Calculates shifted cross power spectrum for quantifying x/y-shifts.

            :param im0:         reference image
            :param im1:         subject image to shift
            :param precision:   to be quantified as a datatype
            :return:            2D-numpy-array of the shifted cross power spectrum
        """

        im0 = im0 if im0 is not None else self.ref.win.data
        im1 = im1 if im1 is not None else self.shift.win.data
        assert im0.shape == im1.shape, 'The reference and the target image must have the same dimensions.'
        if im0.shape[0]%2!=0: warnings.warn('Odd row count in one of the match images!')
        if im1.shape[1]%2!=0: warnings.warn('Odd column count in one of the match images!')

        wsYX = self._shrink_winsize_to_binarySize(im0.shape) if self.bin_ws              else im0.shape
        wsYX = ((min(wsYX),) * 2                            if self.force_quadratic_win else wsYX) if wsYX else None

        if wsYX:
            time0 = time.time()
            if self.v: print('final window size: %s/%s (X/Y)' % (wsYX[1], wsYX[0]))
            center_YX = np.array(im0.shape)/2
            xmin,xmax,ymin,ymax = int(center_YX[1]-wsYX[1]/2), int(center_YX[1]+wsYX[1]/2),\
                                  int(center_YX[0]-wsYX[0]/2), int(center_YX[0]+wsYX[0]/2)
            in_arr0  = im0[ymin:ymax,xmin:xmax].astype(precision)
            in_arr1  = im1[ymin:ymax,xmin:xmax].astype(precision)

            if self.v:
                PLT.subplot_imshow([in_arr0.astype(np.float32), in_arr1.astype(np.float32)],
                               ['FFTin '+self.ref.title,'FFTin '+self.shift.title], grid=True)

649
            if pyfftw: # if module is installed
650
651
652
653
654
                fft_arr0 = pyfftw.FFTW(in_arr0,np.empty_like(in_arr0), axes=(0,1))()
                fft_arr1 = pyfftw.FFTW(in_arr1,np.empty_like(in_arr1), axes=(0,1))()
            else:
                fft_arr0 = np.fft.fft2(in_arr0)
                fft_arr1 = np.fft.fft2(in_arr1)
655

656
657
658
659
660
            if self.v: print('forward FFTW: %.2fs' %(time.time() -time0))

            eps = np.abs(fft_arr1).max() * 1e-15
            # cps == cross-power spectrum of im0 and im2

661
            temp = np.array(fft_arr0 * fft_arr1.conjugate()) / (np.abs(fft_arr0) * np.abs(fft_arr1) + eps)
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

            time0 = time.time()
            if 'pyfft' in globals():
                ifft_arr = pyfftw.FFTW(temp,np.empty_like(temp), axes=(0,1),direction='FFTW_BACKWARD')()
            else:
                ifft_arr = np.fft.ifft2(temp)
            if self.v: print('backward FFTW: %.2fs' %(time.time() -time0))

            cps = np.abs(ifft_arr)
            # scps = shifted cps
            scps = np.fft.fftshift(cps)
            if self.v:
                PLT.subplot_imshow([in_arr0.astype(np.uint16), in_arr1.astype(np.uint16), fft_arr0.astype(np.uint8),
                                fft_arr1.astype(np.uint8), scps], titles=['matching window im0', 'matching window im1',
                                "fft result im0", "fft result im1", "cross power spectrum"], grid=True)
                PLT.subplot_3dsurface(scps.astype(np.float32))
        else:
            self.tracked_errors.append(
                RuntimeError('The matching window became too small for calculating a reliable match. Matching failed.'))
            if self.ignErr:
                scps = None
            else:
                raise self.tracked_errors[-1]

        self.fftw_win_size_YX = wsYX
        return scps


    @staticmethod
    def _get_peakpos(scps):
        max_flat_idx = np.argmax(scps)
693
        return np.array(np.unravel_index(max_flat_idx, scps.shape))
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796


    @staticmethod
    def _get_shifts_from_peakpos(peakpos, arr_shape):
        y_shift = peakpos[0]-arr_shape[0]//2
        x_shift = peakpos[1]-arr_shape[1]//2
        return x_shift,y_shift


    @staticmethod
    def _clip_image(im, center_YX, winSzYX): # TODO this is also implemented in GeoArray
        get_bounds = lambda YX,wsY,wsX: (int(YX[1]-(wsX/2)),int(YX[1]+(wsX/2)),int(YX[0]-(wsY/2)),int(YX[0]+(wsY/2)))
        wsY,wsX    = winSzYX
        xmin,xmax,ymin,ymax = get_bounds(center_YX,wsY,wsX)
        return im[ymin:ymax,xmin:xmax]


    def _get_grossly_deshifted_images(self, im0, im1, x_intshift, y_intshift): # TODO this is also implemented in GeoArray # this should update ref.win.data and shift.win.data
        # get_grossly_deshifted_im0
        old_center_YX = np.array(im0.shape)/2
        new_center_YX = [old_center_YX[0]+y_intshift, old_center_YX[1]+x_intshift]

        x_left  = new_center_YX[1]
        x_right = im0.shape[1]-new_center_YX[1]
        y_above = new_center_YX[0]
        y_below = im0.shape[0]-new_center_YX[0]
        maxposs_winsz = 2*min(x_left,x_right,y_above,y_below)

        gdsh_im0 = self._clip_image(im0, new_center_YX, [maxposs_winsz, maxposs_winsz])

        # get_corresponding_im1_clip
        crsp_im1  = self._clip_image(im1, np.array(im1.shape) / 2, gdsh_im0.shape)

        if self.v:
            PLT.subplot_imshow([self._clip_image(im0, old_center_YX, gdsh_im0.shape), crsp_im1],
                               titles=['reference original', 'target'], grid=True)
            PLT.subplot_imshow([gdsh_im0, crsp_im1], titles=['reference virtually shifted', 'target'], grid=True)
        return gdsh_im0,crsp_im1


    @staticmethod
    def _find_side_maximum(scps, v=0):
        centerpos = [scps.shape[0]//2, scps.shape[1]//2]
        profile_left  = scps[ centerpos [0]  ,:centerpos[1]+1]
        profile_right = scps[ centerpos [0]  , centerpos[1]:]
        profile_above = scps[:centerpos [0]+1, centerpos[1]]
        profile_below = scps[ centerpos [0]: , centerpos[1]]

        if v:
            max_count_vals = 10
            PLT.subplot_2dline([[range(len(profile_left)) [-max_count_vals:], profile_left[-max_count_vals:]],
                                [range(len(profile_right))[:max_count_vals] , profile_right[:max_count_vals]],
                                [range(len(profile_above))[-max_count_vals:], profile_above[-max_count_vals:]],
                                [range(len(profile_below))[:max_count_vals:], profile_below[:max_count_vals]]],
                                titles =['Profile left', 'Profile right', 'Profile above', 'Profile below'],
                                shapetuple=(2,2))

        get_sidemaxVal_from_profile = lambda pf: np.array(pf)[::-1][1] if pf[0]<pf[-1] else np.array(pf)[1]
        sm_dicts_lr  = [{'side':si, 'value': get_sidemaxVal_from_profile(pf)} \
                        for pf,si in zip([profile_left,profile_right],['left','right'])]
        sm_dicts_ab  = [{'side':si, 'value': get_sidemaxVal_from_profile(pf)} \
                        for pf,si in zip([profile_above,profile_below],['above','below'])]
        sm_maxVal_lr = max([i['value'] for i in sm_dicts_lr])
        sm_maxVal_ab = max([i['value'] for i in sm_dicts_ab])
        sidemax_lr   = [sm for sm in sm_dicts_lr if sm['value'] is sm_maxVal_lr][0]
        sidemax_ab   = [sm for sm in sm_dicts_ab if sm['value'] is sm_maxVal_ab][0]
        sidemax_lr['direction_factor'] = {'left':-1, 'right':1} [sidemax_lr['side']]
        sidemax_ab['direction_factor'] = {'above':-1,'below':1} [sidemax_ab['side']]

        if v:
            print('Horizontal side maximum found %s. value: %s' %(sidemax_lr['side'],sidemax_lr['value']))
            print('Vertical side maximum found %s. value: %s' %(sidemax_ab['side'],sidemax_ab['value']))

        return sidemax_lr, sidemax_ab


    def _calc_integer_shifts(self, scps):
        peakpos = self._get_peakpos(scps)
        x_intshift, y_intshift = self._get_shifts_from_peakpos(peakpos, scps.shape)
        return x_intshift, y_intshift


    def _validate_integer_shifts(self, im0, im1, x_intshift, y_intshift):

        if (x_intshift, y_intshift)!=(0,0):
            # temporalily deshift images on the basis of calculated integer shifts
            gdsh_im0, crsp_im1 = self._get_grossly_deshifted_images(im0, im1, x_intshift, y_intshift)

            # check if integer shifts are now gone (0/0)
            scps = self._calc_shifted_cross_power_spectrum(gdsh_im0, crsp_im1)
            if scps is not None:
                peakpos = self._get_peakpos(scps)
                x_shift, y_shift = self._get_shifts_from_peakpos(peakpos, scps.shape)
                if (x_shift, y_shift) == (0,0):
                    return 'valid', 0, 0, scps
                else:
                    return 'invalid', x_shift, y_shift, scps
            else:
                return 'invalid', None, None, scps
        else:
            return 'valid', 0, 0, None


797
    def _calc_subpixel_shifts(self, scps):
798
799
800
801
802
803
804
805
806
807
808
        sidemax_lr, sidemax_ab = self._find_side_maximum(scps, self.v)
        x_subshift = (sidemax_lr['direction_factor']*sidemax_lr['value'])/(np.max(scps)+sidemax_lr['value'])
        y_subshift = (sidemax_ab['direction_factor']*sidemax_ab['value'])/(np.max(scps)+sidemax_ab['value'])
        return x_subshift, y_subshift


    @staticmethod
    def _get_total_shifts(x_intshift, y_intshift, x_subshift, y_subshift):
        return x_intshift+x_subshift, y_intshift+y_subshift


809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
    def _get_deshifted_otherWin(self):
        """Returns a de-shifted version of self.otherWin as a GeoArray instance.The output dimensions and geographic
        bounds are equal to those of self.matchWin and geometric shifts are corrected according to the previously
        computed X/Y shifts within the matching window. This allows direct application of algorithms e.g. measuring
        image similarity.

        The image subset that is resampled in this function is always the same that has been resampled during
        computation of geometric shifts (usually the image with the higher geometric resolution).

        :returns:   GeoArray instance of de-shifted self.otherWin
        """

        # shift vectors have been calculated to fit target image onto reference image
        # -> so the shift vectors have to be inverted if shifts are applied to reference image
        coreg_info = self._get_inverted_coreg_info() if self.otherWin.imParams.imName=='reference image' else \
                     self.coreg_info

        ds_results = DESHIFTER(self.otherWin.imParams.GeoArray, coreg_info,
                               band2process  = self.otherWin.imParams.band4match+1,
                               clipextent    = list(np.array(self.matchWin.boundsMap)[[0,2,1,3]]),
                               target_xyGrid = self.matchWin.imParams.xygrid_specs,
                               q             = True
                               ).correct_shifts()
        return ds_results['GeoArray_shifted']


    def _validate_ssim_improvement(self, v=False):
        """Computes mean structural similarity index between reference and target image before and after correction
        of geometric shifts..

        :param v:   <bool> verbose mode: shows images of the matchWin, otherWin and shifted version of otherWin
        :return:    <tuple> SSIM before an after shift correction
        """

        assert self.success is not None,\
            'Calculate geometric shifts first before trying to measure image similarity improvement!'
        assert self.success in [True, None],\
            'Since calculation of geometric shifts failed, no image similarity improvement can be measured.'

848
849
        # get image dynamic range

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
        dr = max(self.matchWin.data.max(), self.otherWin.data.max()) - \
             min(self.matchWin.data.min(), self.otherWin.data.min())


        # compute SSIM BEFORE shift correction
        self.ssim_orig = calc_ssim(self.matchWin.data, self.otherWin.data, dynamic_range=dr, gaussian_weights=True)


        # compute SSIM AFTER shift correction

        ## resample otherWin while correcting detected shifts and match geographic bounds of matchWin
        otherWin_deshift_geoArr = self._get_deshifted_otherWin()

        ## get the corresponding matchWin data
        matchWinData = self.matchWin.data

        ## check if shapes of two images are equal (due to bug (?), in some cases otherWin_deshift_geoArr does not have
        ## the exact same dimensions as self.matchWin -> maybe bounds are handled differently by gdal.Warp)
        if not self.matchWin.data.shape == otherWin_deshift_geoArr.shape:
            matchWinData, matchWinGt, matchWinPrj = self.matchWin.imParams.GeoArray.get_mapPos(
                    list(np.array(self.matchWin.boundsMap)[[0, 2, 1, 3]]), self.matchWin.imParams.prj, rspAlg='cubic',
                    band2get=self.matchWin.imParams.band4match)

        self.ssim_deshifted = calc_ssim(otherWin_deshift_geoArr[:], matchWinData, dynamic_range=dr, gaussian_weights=True)


        if v:
            GeoArray(matchWinData).show()
            GeoArray(self.otherWin.data).show()
            otherWin_deshift_geoArr.show()

        if not self.q:
            print('Image similarity within the matching window (SSIM before/after correction): %.4f => %.4f'
                  % (self.ssim_orig, self.ssim_deshifted))

        self.ssim_improved = self.ssim_orig < self.ssim_deshifted

        # write win data to disk
        #outDir = '/home/gfz-fe/scheffler/temp/ssim_debugging/'
        #GeoArray(matchWinData, matchWinGt, matchWinPrj).save(outDir+'matchWinData.bsq')

        #otherWinGt = (self.otherWin.boundsMap[0], self.matchWin.imParams.xgsd, 0, self.otherWin.boundsMap[3], 0, -self.matchWin.imParams.ygsd)
        #GeoArray(self.otherWin.data, therWinGt, self.otherWin.imParams.prj).save(outDir+'otherWin.data.bsq')

        # otherWin_deshift_geoArr.save(outDir+''shifted.bsq')

        return self.ssim_orig, self.ssim_deshifted


    @property
    def ssim_improved(self):
        """Returns True if image similarity within the matching window has been improved by correcting the previously
         computed geometric shifts."""
        if self.success is True:
            if self._ssim_improved is None:
                ssim_orig, ssim_deshifted = self._validate_ssim_improvement()
                self._ssim_improved       = ssim_orig <= ssim_deshifted
            return self._ssim_improved


    @ssim_improved.setter
    def ssim_improved(self, has_improved):
        self._ssim_improved = has_improved
913
914


915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    def calculate_spatial_shifts(self):
        if self.success is False: return None,None

        if self.q:  warnings.simplefilter('ignore')

        # set self.ref.win.data and self.shift.win.data
        self._get_image_windows_to_match()

        im0,im1 = self.ref.win.data, self.shift.win.data

        if self.v:
            print('Matching windows with equalized spatial resolution:')
            PLT.subplot_imshow([im0, im1], [self.ref.title, self.shift.title], grid=True)

        gsd_factor = self.imfft_gsd/self.shift.xgsd

        if self.v: print('gsd_factor',         gsd_factor)
        if self.v: print('imfft_gsd_mapvalues',self.imfft_gsd)

        # calculate cross power spectrum without any de-shifting applied
        scps = self._calc_shifted_cross_power_spectrum()

        if scps is None:
            self.success = False
939
940
941
942
943
944
945
946
947
948
949
            warnings.simplefilter('default')

            return 'fail'


        # calculate spatial shifts
        count_iter = 1
        x_intshift, y_intshift = self._calc_integer_shifts(scps)

        if (x_intshift, y_intshift) == (0, 0):
            self.success = True
950
        else:
951
952
            valid_invalid, x_val_shift, y_val_shift, scps = \
                self._validate_integer_shifts(im0, im1, x_intshift, y_intshift)
953

954
955
            while valid_invalid!='valid':
                count_iter += 1
956

957
                if count_iter > self.max_iter:
958
                    self.success = False
959
                    self.tracked_errors.append(RuntimeError('No match found in the given window.'))
960
961
                    if not self.ignErr:
                        raise self.tracked_errors[-1]
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
                    else:
                        warnings.warn('No match found in the given window.'); break

                if valid_invalid=='invalid' and (x_val_shift, y_val_shift)==(None, None):
                    # this happens if matching window became too small
                    self.success = False
                    break

                if not self.q: print('No clear match found yet. Jumping to iteration %s...' % count_iter)
                if not self.q: print('input shifts: ', x_val_shift, y_val_shift)

                valid_invalid, x_val_shift, y_val_shift, scps = \
                    self._validate_integer_shifts(im0, im1, x_val_shift, y_val_shift)

                # overwrite previous integer shifts if a valid match has been found
                if valid_invalid=='valid':
978
                    self.success = True
979
980
981
982
                    x_intshift, y_intshift = x_val_shift, y_val_shift

        if self.success or self.success is None:
            # get total pixel shifts
983
            x_subshift,   y_subshift         = self._calc_subpixel_shifts(scps)
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
            x_totalshift, y_totalshift       = self._get_total_shifts(x_intshift, y_intshift, x_subshift, y_subshift)

            if max([abs(x_totalshift),abs(y_totalshift)]) > self.max_shift:
                self.success = False
                self.tracked_errors.append(
                    RuntimeError("The calculated shift (X: %s px / Y: %s px) is recognized as too large to "
                                 "be valid. If you know that it is valid, just set the '-max_shift' "
                                 "parameter to an appropriate value. Otherwise try to use a different window "
                                 "size for matching via the '-ws' parameter or define the spectral bands "
                                 "to be used for matching manually ('-br' and '-bs')."
                                 % (x_totalshift, y_totalshift)))
                if not self.ignErr:
                    raise self.tracked_errors[-1]
            else:
                self.success = True
                self.x_shift_px, self.y_shift_px = x_totalshift*gsd_factor, y_totalshift*gsd_factor