CoReg.py 82.6 KB
Newer Older
1
2
3
4
5
6
7
8
# -*- coding: utf-8 -*-

import os
import re
import shutil
import subprocess
import time
import warnings
9
from copy import copy
10
11

# custom
12
13
14
15
try:
    import gdal
except ImportError:
    from osgeo import gdal
16
import numpy as np
17

18
19
20
try:
    import pyfftw
except ImportError:
21
    pyfftw = None
22
from shapely.geometry import Point, Polygon
23
from skimage.exposure import rescale_intensity
24
25

# internal modules
26
from .DeShifter import DESHIFTER, _dict_rspAlg_rsp_Int
27
28
29
from . import geometry as GEO
from . import io as IO
from . import plotting as PLT
30

31
from geoarray import GeoArray
32
33
34
35
36
37
38
39
40
41
42
from py_tools_ds.convenience.object_oriented import alias_property
from py_tools_ds.geo.coord_calc import corner_coord_to_minmax, get_corner_coordinates
from py_tools_ds.geo.vector.topology import get_overlap_polygon, get_smallest_boxImYX_that_contains_boxMapYX
from py_tools_ds.geo.projection import prj_equal, get_proj4info
from py_tools_ds.geo.vector.geometry import boxObj, round_shapelyPoly_coords
from py_tools_ds.geo.coord_grid import move_shapelyPoly_to_image_grid
from py_tools_ds.geo.coord_trafo import pixelToMapYX, reproject_shapelyGeometry, mapXY2imXY
from py_tools_ds.geo.raster.reproject import warp_ndarray
from py_tools_ds.geo.map_info import geotransform2mapinfo
from py_tools_ds.numeric.vector import find_nearest
from py_tools_ds.similarity.raster import calc_ssim
43

44
__author__ = 'Daniel Scheffler'
45
46


47
class GeoArray_CoReg(GeoArray):
48
    def __init__(self, CoReg_params, imID):
49
50
        # type: (dict, str) -> None

51
        assert imID in ['ref', 'shift']
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
52

53
54
        # run GeoArray init
        path_or_geoArr = CoReg_params['im_ref'] if imID == 'ref' else CoReg_params['im_tgt']
55
56
57
        nodata = CoReg_params['nodata'][0 if imID == 'ref' else 1]
        progress = CoReg_params['progress']
        q = CoReg_params['q'] if not CoReg_params['v'] else False
58

59
        super(GeoArray_CoReg, self).__init__(path_or_geoArr, nodata=nodata, progress=progress, q=q)
60

61
        self.imID = imID
62
        self.imName = 'reference image' if imID == 'ref' else 'image to be shifted'
63
        self.v = CoReg_params['v']
64
65

        assert isinstance(self, GeoArray), \
66
            'Something went wrong with the creation of GeoArray instance for the %s. The created ' \
67
            'instance does not seem to belong to the GeoArray class. If you are working in Jupyter Notebook, reset ' \
68
            'the kernel and try again.' % self.imName
69

70
        # set title to be used in plots
71
        self.title = os.path.basename(self.filePath) if self.filePath else self.imName
72
73
74
75
76
77
78

        # validate params
        assert self.prj, 'The %s has no projection.' % self.imName
        assert not re.search('LOCAL_CS', self.prj), 'The %s is not georeferenced.' % self.imName
        assert self.gt, 'The %s has no map information.' % self.imName

        # set band4match
79
80
81
82
83
        self.band4match = (CoReg_params['r_b4match'] if imID == 'ref' else CoReg_params['s_b4match']) - 1
        assert self.bands >= self.band4match + 1 >= 1, \
            "The %s has %s %s. So its band number to match must be %s%s. Got %s." \
            % (self.imName, self.bands, 'bands' if self.bands > 1 else
               'band', 'between 1 and ' if self.bands > 1 else '', self.bands, self.band4match)
84

85
86
        # set footprint_poly
        given_footprint_poly = CoReg_params['footprint_poly_%s' % ('ref' if imID == 'ref' else 'tgt')]
87
        given_corner_coord = CoReg_params['data_corners_%s' % ('ref' if imID == 'ref' else 'tgt')]
88
89

        if given_footprint_poly:
90
            self.footprint_poly = given_footprint_poly
91
        elif given_corner_coord is not None:
92
            self.footprint_poly = Polygon(given_corner_coord)
93
94
        elif not CoReg_params['calc_corners']:
            # use the image extent
95
            self.footprint_poly = Polygon(get_corner_coordinates(gt=self.gt, cols=self.cols, rows=self.rows))
96
        else:
97
98
99
            # footprint_poly is calculated automatically by GeoArray
            if not CoReg_params['q']:
                print('Calculating actual data corner coordinates for %s...' % self.imName)
100
            self.calc_mask_nodata(fromBand=self.band4match)  # this avoids that all bands have to be read
101

102
        if not self.q:
Daniel Scheffler's avatar
Daniel Scheffler committed
103
            print('Bounding box of calculated footprint for %s:\n\t%s' % (self.imName, self.footprint_poly.bounds))
104

105
106
107
        # add bad data mask
        given_mask = CoReg_params['mask_baddata_%s' % ('ref' if imID == 'ref' else 'tgt')]
        if given_mask:
108
            self.mask_baddata = given_mask  # runs GeoArray.mask_baddata.setter -> sets it to BadDataMask()
Daniel Scheffler's avatar
Daniel Scheffler committed
109

110
    poly = alias_property('footprint_poly')  # ensures that self.poly is updated if self.footprint_poly is updated
Daniel Scheffler's avatar
Daniel Scheffler committed
111
112


113
class COREG(object):
114
115
    """See help(COREG) for documentation!"""

116
    def __init__(self, im_ref, im_tgt, path_out=None, fmt_out='ENVI', out_crea_options=None, r_b4match=1, s_b4match=1,
117
                 wp=(None, None), ws=(256, 256), max_iter=5, max_shift=5, align_grids=False, match_gsd=False,
118
119
                 out_gsd=None, target_xyGrid=None, resamp_alg_deshift='cubic', resamp_alg_calc='cubic',
                 footprint_poly_ref=None, footprint_poly_tgt=None, data_corners_ref=None, data_corners_tgt=None,
120
                 nodata=(None, None), calc_corners=True, binary_ws=True, mask_baddata_ref=None, mask_baddata_tgt=None,
Daniel Scheffler's avatar
Daniel Scheffler committed
121
                 CPUs=None, force_quadratic_win=True, progress=True, v=False, path_verbose_out=None, q=False,
122
                 ignore_errors=False):
123
124
125
126

        """Detects and corrects global X/Y shifts between a target and refernce image. Geometric shifts are calculated
        at a specific (adjustable) image position. Correction performs a global shifting in X- or Y direction.

127
128
129
130
        :param im_ref(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of reference image
        :param im_tgt(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of image to be shifted
131
        :param path_out(str):           target path of the coregistered image
132
133
134
                                            - if None (default), the method correct_shifts() does not write to disk
                                            - if 'auto': /dir/of/im1/<im1>__shifted_to__<im0>.bsq
        :param fmt_out(str):            raster file format for output file. ignored if path_out is None. can be any GDAL
135
136
                                        compatible raster file format (e.g. 'ENVI', 'GeoTIFF'; default: ENVI). Refer to
                                        http://www.gdal.org/formats_list.html to get a full list of supported formats.
137
138
        :param out_crea_options(list):  GDAL creation options for the output image,
                                        e.g. ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
139
140
141
142
        :param r_b4match(int):          band of reference image to be used for matching (starts with 1; default: 1)
        :param s_b4match(int):          band of shift image to be used for matching (starts with 1; default: 1)
        :param wp(tuple):               custom matching window position as map values in the same projection like the
                                        reference image (default: central position of image overlap)
Daniel Scheffler's avatar
Daniel Scheffler committed
143
        :param ws(tuple):               custom matching window size [pixels] (default: (256,256))
144
145
        :param max_iter(int):           maximum number of iterations for matching (default: 5)
        :param max_shift(int):          maximum shift distance in reference image pixel units (default: 5 px)
146
147
        :param align_grids(bool):       align the coordinate grids of the image to be and the reference image
                                        (default: 0)
148
149
150
        :param match_gsd(bool):         match the output pixel size to pixel size of the reference image (default: 0)
        :param out_gsd(tuple):          xgsd ygsd: set the output pixel size in map units
                                        (default: original pixel size of the image to be shifted)
151
152
        :param target_xyGrid(list):     a list with a target x-grid and a target y-grid like [[15,45], [15,45]]
                                        This overrides 'out_gsd', 'align_grids' and 'match_gsd'.
153
        :param resamp_alg_deshift(str)  the resampling algorithm to be used for shift correction (if neccessary)
154
155
                                        valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                          mode, max, min, med, q1, q3
156
157
158
                                        default: cubic
        :param resamp_alg_calc(str)     the resampling algorithm to be used for all warping processes during calculation
                                        of spatial shifts
159
160
                                        (valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                           mode, max, min, med, q1, q3)
161
                                        default: cubic (highly recommended)
162
163
        :param footprint_poly_ref(str): footprint polygon of the reference image (WKT string or
                                        shapely.geometry.Polygon),
164
165
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
166
167
        :param footprint_poly_tgt(str): footprint polygon of the image to be shifted (WKT string or
                                        shapely.geometry.Polygon)
168
169
170
171
172
173
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param data_corners_ref(list):  map coordinates of data corners within reference image.
                                        ignored if footprint_poly_ref is given.
        :param data_corners_tgt(list):  map coordinates of data corners within image to be shifted.
                                        ignored if footprint_poly_tgt is given.
174
175
176
177
178
        :param nodata(tuple):           no data values for reference image and image to be shifted
        :param calc_corners(bool):      calculate true positions of the dataset corners in order to get a useful
                                        matching window position within the actual image overlap
                                        (default: 1; deactivated if '-cor0' and '-cor1' are given
        :param binary_ws(bool):         use binary X/Y dimensions for the matching window (default: 1)
179
180
181
182
183
184
185
186
187
188
189
190
        :param mask_baddata_ref(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                reference image where all bad data pixels (e.g. clouds) are marked with
                                                True and the remaining pixels with False. Must have the same geographic
                                                extent and projection like 'im_ref'. The mask is used to check if the
                                                chosen matching window position is valid in the sense of useful data.
                                                Otherwise this window position is rejected.
        :param mask_baddata_tgt(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                image to be shifted where all bad data pixels (e.g. clouds) are marked
                                                with True and the remaining pixels with False. Must have the same
                                                geographic extent and projection like 'im_ref'. The mask is used to
                                                check if the chosen matching window position is valid in the sense of
                                                useful data. Otherwise this window position is rejected.
Daniel Scheffler's avatar
Daniel Scheffler committed
191
192
        :param CPUs(int):               number of CPUs to use during pixel grid equalization
                                        (default: None, which means 'all CPUs available')
193
        :param force_quadratic_win(bool):   force a quadratic matching window (default: 1)
194
        :param progress(bool):          show progress bars (default: True)
195
        :param v(bool):                 verbose mode (default: False)
196
197
        :param path_verbose_out(str):   an optional output directory for intermediate results
                                        (if not given, no intermediate results are written to disk)
198
199
        :param q(bool):                 quiet mode (default: False)
        :param ignore_errors(bool):     Useful for batch processing. (default: False)
200
201
202
203
                                        In case of error COREG.success == False and COREG.x_shift_px/COREG.y_shift_px
                                        is None
        """

204
        self.params = dict([x for x in locals().items() if x[0] != "self"])
205

206
        # assertions
207
        assert gdal.GetDriverByName(fmt_out), "'%s' is not a supported GDAL driver." % fmt_out
208
209
210
211
212
213
        if match_gsd and out_gsd:
            warnings.warn("'-out_gsd' is ignored because '-match_gsd' is set.\n")
        if out_gsd:
            assert isinstance(out_gsd, list) and len(out_gsd) == 2, 'out_gsd must be a list with two values.'
        if data_corners_ref and not isinstance(data_corners_ref[0],
                                               list):  # group if not [[x,y],[x,y]..] but [x,y,x,y,]
214
            data_corners_ref = [data_corners_ref[i:i + 2] for i in range(0, len(data_corners_ref), 2)]
215
        if data_corners_tgt and not isinstance(data_corners_tgt[0], list):  # group if not [[x,y],[x,y]..]
216
            data_corners_tgt = [data_corners_tgt[i:i + 2] for i in range(0, len(data_corners_tgt), 2)]
217
218
219
        if nodata:
            assert isinstance(nodata, tuple) and len(nodata) == 2, \
                "'nodata' must be a tuple with two values. Got %s with length %s." % (type(nodata), len(nodata))
220
        for rspAlg in [resamp_alg_deshift, resamp_alg_calc]:
221
            assert rspAlg in _dict_rspAlg_rsp_Int.keys(), "'%s' is not a supported resampling algorithm." % rspAlg
222
        if resamp_alg_calc in ['average', 5] and (v or not q):
223
            warnings.warn("The resampling algorithm 'average' causes sinus-shaped patterns in fft images that will "
224
225
                          "affect the precision of the calculated spatial shifts! It is highly recommended to "
                          "choose another resampling algorithm.")
226

227
228
229
230
231
232
233
234
235
236
237
238
        self.path_out = path_out  # updated by self.set_outpathes
        self.fmt_out = fmt_out
        self.out_creaOpt = out_crea_options
        self.win_pos_XY = wp  # updated by self.get_opt_winpos_winsize()
        self.win_size_XY = ws  # updated by self.get_opt_winpos_winsize()
        self.max_iter = max_iter
        self.max_shift = max_shift
        self.align_grids = align_grids
        self.match_gsd = match_gsd
        self.out_gsd = out_gsd
        self.target_xyGrid = target_xyGrid
        self.rspAlg_DS = resamp_alg_deshift \
239
            if isinstance(resamp_alg_deshift, str) else _dict_rspAlg_rsp_Int[resamp_alg_deshift]
240
        self.rspAlg_calc = resamp_alg_calc \
241
            if isinstance(resamp_alg_calc, str) else _dict_rspAlg_rsp_Int[resamp_alg_calc]
242
243
244
        self.calc_corners = calc_corners
        self.CPUs = CPUs
        self.bin_ws = binary_ws
245
        self.force_quadratic_win = force_quadratic_win
246
247
248
249
250
251
252
        self.v = v
        self.path_verbose_out = path_verbose_out
        self.q = q if not v else False  # overridden by v
        self.progress = progress if not q else False  # overridden by q

        self.ignErr = ignore_errors
        self.max_win_sz_changes = 3  # TODO: änderung der window size, falls nach max_iter kein valider match gefunden
253
254
255
256
257
258
        self.ref = None  # type: GeoArray_CoReg # set by self.get_image_params
        self.shift = None  # type: GeoArray_CoReg # set by self.get_image_params
        self.matchBox = None  # type: boxObj # set by self.get_clip_window_properties()
        self.otherBox = None  # type: boxObj # set by self.get_clip_window_properties()
        self.matchWin = None  # type: GeoArray # set by self._get_image_windows_to_match()
        self.otherWin = None  # type: GeoArray # set by self._get_image_windows_to_match()
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        self.overlap_poly = None  # set by self._get_overlap_properties()
        self.overlap_percentage = None  # set by self._get_overlap_properties()
        self.overlap_area = None  # set by self._get_overlap_properties()
        self.imfft_gsd = None  # set by self.get_clip_window_properties()
        self.fftw_works = None  # set by self._calc_shifted_cross_power_spectrum()
        self.fftw_win_size_YX = None  # set by calc_shifted_cross_power_spectrum()

        self.x_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.y_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.x_shift_map = None  # set by self.get_updated_map_info()
        self.y_shift_map = None  # set by self.get_updated_map_info()
        self.vec_length_map = None
        self.vec_angle_deg = None
        self.updated_map_info = None  # set by self.get_updated_map_info()
        self.ssim_orig = None  # set by self._validate_ssim_improvement()
        self.ssim_deshifted = None  # set by self._validate_ssim_improvement()
        self._ssim_improved = None  # private attribute to be filled by self.ssim_improved
        self.shift_reliability = None  # set by self.calculate_spatial_shifts()

        self.tracked_errors = []  # expanded each time an error occurs
        self.success = None  # default
        self.deshift_results = None  # set by self.correct_shifts()
281
282
283
284

        gdal.AllRegister()
        self._get_image_params()
        self._set_outpathes(im_ref, im_tgt)
285
        self.grid2use = 'ref' if self.shift.xgsd <= self.ref.xgsd else 'shift'
286
287
        if self.v:
            print('resolutions: ', self.ref.xgsd, self.shift.xgsd)
288

289
        self._get_overlap_properties()
290
291

        if self.v and self.path_verbose_out:
292
293
294
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_imref.shp'), self.ref.poly, self.ref.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_im2shift.shp'), self.shift.poly, self.shift.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'overlap_poly.shp'), self.overlap_poly, self.ref.prj)
295

296
297
        # FIXME: transform_mapPt1_to_mapPt2(im2shift_center_map, ds_imref.GetProjection(), ds_im2shift.GetProjection())
        # FIXME später basteln für den fall, dass projektionen nicht gleich sind
298
299
300

        # get_clip_window_properties
        self._get_opt_winpos_winsize()
301
302
303
        if not self.q:
            print('Matching window position (X,Y): %s/%s' % (self.win_pos_XY[0], self.win_pos_XY[1]))
        self._get_clip_window_properties()  # sets self.matchBox, self.otherBox and much more
304

305
        if self.v and self.path_verbose_out and self.matchBox.mapPoly and self.success is not False:
306
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_matchWin.shp'),
307
                         self.matchBox.mapPoly, self.matchBox.prj)
308

309
310
        self.success = False if self.success is False or not self.matchBox.boxMapYX else None
        self._coreg_info = None  # private attribute to be filled by self.coreg_info property
311

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    def _handle_error(self, error, warn=False, warnMsg=None):
        """Appends the given error to self.tracked_errors, sets self.success to False and raises the error in case
        self.ignore_errors = True.

        :param error:   instance of an error
        :param warn:    whether to give a warning in case error would be ignored otherwise
        :param warnMsg: a custom message for the warning
        :return:
        """

        warn = warn or warnMsg is not None or self.v

        self.tracked_errors.append(error)
        self.success = False

        if self.ignErr and warn:
            warnMsg = repr(error) if not warnMsg else warnMsg
329
            print('\nWARNING: ' + warnMsg)
330
331
332
333

        if not self.ignErr:
            raise error

334
    def _set_outpathes(self, im_ref, im_tgt):
335
        assert isinstance(im_ref, (GeoArray, str)) and isinstance(im_tgt, (GeoArray, str)), \
336
            'COREG._set_outpathes() expects two file pathes (string) or two instances of the ' \
337
            'GeoArray class. Received %s and %s.' % (type(im_ref), type(im_tgt))
338

339
        def get_baseN(path): return os.path.splitext(os.path.basename(path))[0]
340
341
342
343
344

        # get input pathes
        path_im_ref = im_ref.filePath if isinstance(im_ref, GeoArray) else im_ref
        path_im_tgt = im_tgt.filePath if isinstance(im_tgt, GeoArray) else im_tgt

345
        if self.path_out:  # this also applies to self.path_out='auto'
346
347
348
349

            if self.path_out == 'auto':
                dir_out, fName_out = os.path.dirname(path_im_tgt), ''
            else:
350
                dir_out, fName_out = os.path.split(self.path_out)
351
352
353
354
355
356
357
358
359
360
361
362
363
364

            if dir_out and fName_out:
                # a valid output path is given => do nothing
                pass

            else:
                # automatically create an output directory and filename if not given
                if not dir_out:
                    if not path_im_ref:
                        dir_out = os.path.abspath(os.path.curdir)
                    else:
                        dir_out = os.path.dirname(path_im_ref)

                if not fName_out:
365
366
367
368
369
                    ext = 'bsq' if self.fmt_out == 'ENVI' else \
                        gdal.GetDriverByName(self.fmt_out).GetMetadataItem(gdal.DMD_EXTENSION)
                    fName_out = fName_out if fName_out not in ['.', ''] else \
                        '%s__shifted_to__%s' % (get_baseN(path_im_tgt), get_baseN(path_im_ref))
                    fName_out = fName_out + '.%s' % ext if ext else fName_out
370

371
                self.path_out = os.path.abspath(os.path.join(dir_out, fName_out))
372
373
374
375

                assert ' ' not in self.path_out, \
                    "The path of the output image contains whitespaces. This is not supported by GDAL."
        else:
376
            # this only happens if COREG is not instanced from within Python and self.path_out is explicitly set to None
377
378
379
380
381
382
383
384
385
386
387
            # => DESHIFTER will return an array
            pass

        if self.v:
            if self.path_verbose_out:
                dir_out, dirname_out = os.path.split(self.path_verbose_out)

                if not dir_out:
                    if self.path_out:
                        self.path_verbose_out = os.path.dirname(self.path_out)
                    else:
388
389
390
                        self.path_verbose_out = \
                            os.path.abspath(os.path.join(os.path.curdir, 'CoReg_verboseOut__%s__shifted_to__%s'
                                                         % (get_baseN(path_im_tgt), get_baseN(path_im_ref))))
391
392
393
394
395
396
397
398
399
                elif dirname_out and not dir_out:
                    self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir, dirname_out))

                assert ' ' not in self.path_verbose_out, \
                    "'path_verbose_out' contains whitespaces. This is not supported by GDAL."

        else:
            self.path_verbose_out = None

400
401
        if self.path_verbose_out and not os.path.isdir(self.path_verbose_out):
            os.makedirs(self.path_verbose_out)
402
403

    def _get_image_params(self):
404
405
406
407
        self.ref = GeoArray_CoReg(self.params, 'ref')
        self.shift = GeoArray_CoReg(self.params, 'shift')
        assert self.ref.prj, 'The reference image has no projection.'
        assert self.shift.prj, 'The target image has no projection.'
408
        assert prj_equal(self.ref.prj, self.shift.prj), \
409
410
            'Input projections are not equal. Different projections are currently not supported. Got %s / %s.' \
            % (get_proj4info(proj=self.ref.prj), get_proj4info(proj=self.shift.prj))
411

412
    def _get_overlap_properties(self):
413
414
415
416
        overlap_tmp = get_overlap_polygon(self.ref.poly, self.shift.poly, self.v)
        self.overlap_poly = overlap_tmp['overlap poly']  # has to be in reference projection
        self.overlap_percentage = overlap_tmp['overlap percentage']
        self.overlap_area = overlap_tmp['overlap area']
417
418
419
420

        assert self.overlap_poly, 'The input images have no spatial overlap.'

        # overlap are must at least cover 16*16 pixels
421
422
423
424
        px_area = self.ref.xgsd * self.ref.ygsd if self.grid2use == 'ref' else self.shift.xgsd * self.shift.ygsd
        px_covered = self.overlap_area / px_area
        assert px_covered > 16 * 16, \
            'Overlap area covers only %s pixels. At least 16*16 pixels are needed.' % px_covered
425

426
427
428
429
    def equalize_pixGrids(self):
        """
        Equalize image grids and projections of reference and target image (align target to reference).
        """
430
431
432
        if not (prj_equal(self.ref.prj, self.shift.prj) and self.ref.xygrid_specs == self.shift.xygrid_specs):
            if not self.q:
                print("Equalizing pixel grids and projections of reference and target image...")
Daniel Scheffler's avatar
Daniel Scheffler committed
433

434
            if self.grid2use == 'ref':
435
                # resample target image to refernce image
436
                self.shift.arr = self.shift[:, :, self.shift.band4match]  # resample the needed band only
437
                self.shift.reproject_to_new_grid(prototype=self.ref, CPUs=self.CPUs)
438
                self.shift.band4match = 0  # after resampling there is only one band in the GeoArray
439
440
441
            else:
                # resample reference image to target image
                # FIXME in case of different projections this will change the projection of the reference image!
442
                self.ref.arr = self.ref[:, :, self.ref.band4match]  # resample the needed band only
443
                self.ref.reproject_to_new_grid(prototype=self.shift, CPUs=self.CPUs)
Daniel Scheffler's avatar
Daniel Scheffler committed
444
                self.ref.band4match = 0  # after resampling there is only one band in the GeoArray
445

446
447
448
449
450
451
452
    def show_image_footprints(self):
        """This method is intended to be called from Jupyter Notebook and shows a web map containing the calculated
        footprints of the input images as well as the corresponding overlap area."""
        # TODO different colors for polygons
        assert self.overlap_poly, 'Please calculate the overlap polygon first.'

        try:
453
454
            import folium
            import geojson
455
        except ImportError:
456
457
            folium, geojson = None, None
        if not folium or not geojson:
458
459
460
            raise ImportError("This method requires the libraries 'folium' and 'geojson'. They can be installed with "
                              "the shell command 'pip install folium geojson'.")

461
462
463
        refPoly = reproject_shapelyGeometry(self.ref.poly, self.ref.epsg, 4326)
        shiftPoly = reproject_shapelyGeometry(self.shift.poly, self.shift.epsg, 4326)
        overlapPoly = reproject_shapelyGeometry(self.overlap_poly, self.shift.epsg, 4326)
464
        matchBoxPoly = reproject_shapelyGeometry(self.matchBox.mapPoly, self.shift.epsg, 4326)
465
466

        m = folium.Map(location=tuple(np.array(overlapPoly.centroid.coords.xy).flatten())[::-1])
467
        for poly in [refPoly, shiftPoly, overlapPoly, matchBoxPoly]:
468
469
470
471
            gjs = geojson.Feature(geometry=poly, properties={})
            folium.GeoJson(gjs).add_to(m)
        return m

472
    def show_matchWin(self, figsize=(15, 15), interactive=True, after_correction=False):
473
        """Show the image content within the matching window.
474

475
476
477
        :param figsize:             <tuple> figure size
        :param interactive:         <bool> whether to return an interactive figure based on 'holoviews' library
        :param after_correction:    <bool> whether to put the image content AFTER shift correction into the figure
478
479
        :return:
        """
480
481
482
483
484
        if interactive:
            # use Holoviews
            try:
                import holoviews as hv
            except ImportError:
485
                hv = None
486
487
488
489
490
491
            if not hv:
                raise ImportError(
                    "This method requires the library 'holoviews'. It can be installed for Anaconda with "
                    "the shell command 'conda install -c ioam holoviews bokeh'.")
            warnings.filterwarnings('ignore')
            hv.notebook_extension('matplotlib')
492
493
494
495
496
497
498
499
500
501
            hv.Store.add_style_opts(hv.Image, ['vmin', 'vmax'])

            # hv.Store.option_setters.options().Image = hv.Options('style', cmap='gnuplot2')
            # hv.Store.add_style_opts(hv.Image, ['cmap'])
            # renderer = hv.Store.renderers['matplotlib'].instance(fig='svg', holomap='gif')
            # RasterPlot = renderer.plotting_class(hv.Image)
            # RasterPlot.cmap = 'gray'
            otherWin_corr = self._get_deshifted_otherWin()
            xmin, xmax, ymin, ymax = self.matchBox.boundsMap

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
            def get_vmin(arr): return np.percentile(arr, 2)

            def get_vmax(arr): return np.percentile(arr, 98)

            def rescale(arr): return rescale_intensity(arr, in_range=(get_vmin(arr), get_vmax(arr)))

            def get_arr(geoArr): return rescale(np.ma.masked_equal(geoArr[:], geoArr.nodata))

            def get_hv_image(geoArr):
                return hv.Image(get_arr(geoArr), bounds=(xmin, ymin, xmax, ymax))(
                    style={'cmap': 'gray',
                           'vmin': get_vmin(geoArr[:]), 'vmax': get_vmax(geoArr[:]),  # does not work
                           'interpolation': 'none'},
                    plot={'fig_inches': figsize, 'show_grid': True})
                #     plot={'fig_size':100, 'show_grid':True})
517
518
519
520
521
522
523
524

            imgs_orig = {1: get_hv_image(self.matchWin), 2: get_hv_image(self.otherWin)}
            imgs_corr = {1: get_hv_image(self.matchWin), 2: get_hv_image(otherWin_corr)}
            # layout = get_hv_image(self.matchWin) + get_hv_image(self.otherWin)

            imgs = {1: get_hv_image(self.matchWin) + get_hv_image(self.matchWin),
                    2: get_hv_image(self.otherWin) + get_hv_image(otherWin_corr)
                    }
525
526
527
528
529

            # Construct a HoloMap by evaluating the function over all the keys
            hmap_orig = hv.HoloMap(imgs_orig, kdims=['image'])
            hmap_corr = hv.HoloMap(imgs_corr, kdims=['image'])

530
            hv.HoloMap(imgs, kdims=['image']).collate().cols(1)  # display this results in a too small figure
531
            # hmap = hv.HoloMap(imgs_corr, kdims=['image']) +  hv.HoloMap(imgs_corr, kdims=['image'])
532

533
534
            # Construct a HoloMap by defining the sampling on the Dimension
            # dmap = hv.DynamicMap(image_slice, kdims=[hv.Dimension('z_axis', values=keys)])
535
            warnings.filterwarnings('default')
536
            # return hmap
537

538
            return hmap_orig if not after_correction else hmap_corr
539

540
541
542
        else:
            # TODO add titles
            self.matchWin.show(figsize=figsize)
543
            if after_correction:
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
                self._get_deshifted_otherWin().show(figsize=figsize)
            else:
                self.otherWin.show(figsize=figsize)

    def show_cross_power_spectrum(self, interactive=False):
        """
        Shows a 3D surface of the cross power spectrum resulting from phase correlating the reference and target
        image within the matching window.

        :param interactive:  whether to return an interactice 3D surface plot based on 'plotly' library
        :return:
        """

        if interactive:
            # create plotly 3D surface

560
            # import plotly.plotly as py # online mode -> every plot is uploaded into online plotly account
561
562
563
564
565
566
            from plotly.offline import iplot, init_notebook_mode
            import plotly.graph_objs as go

            init_notebook_mode(connected=True)

            z_data = self._calc_shifted_cross_power_spectrum()
567
            data = [go.Surface(z=z_data)]
568
569
570
571
572
            layout = go.Layout(
                title='cross power spectrum',
                autosize=False,
                width=1000,
                height=1000,
573
                margin={'l': 65, 'r': 50, 'b': 65, 't': 90})
574
            fig = go.Figure(data=data, layout=layout)
575
576
577
578
579
580
581
582

            return iplot(fig, filename='SCPS')

        else:
            # use matplotlib
            scps = self._calc_shifted_cross_power_spectrum()
            PLT.subplot_3dsurface(scps.astype(np.float32))

583
    def _get_opt_winpos_winsize(self):
584
        # type: (tuple,tuple) -> None
585
586
587
588
        """
        Calculates optimal window position and size in reference image units according to DGM, cloud_mask and
        trueCornerLonLat.
        """
589
590
591
592
        # dummy algorithm: get center position of overlap instead of searching ideal window position in whole overlap
        # TODO automatischer Algorithmus zur Bestimmung der optimalen Window Position

        wp = tuple(self.win_pos_XY)
593
594
        assert type(self.win_pos_XY) in [tuple, list, np.ndarray], \
            'The window position must be a tuple of two elements. Got %s with %s elements.' % (type(wp), len(wp))
595
596
597
        wp = tuple(wp)

        if None in wp:
598
            # use centroid point if possible
599
600
601
            overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.centroid.coords.xy
            wp = (wp[0] if wp[0] else overlap_center_pos_x[0]), (wp[1] if wp[1] else overlap_center_pos_y[0])

602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
            # validate window position
            if not self.overlap_poly.contains(Point(wp)):
                # in case the centroid point is not within overlap area
                if not self.q:
                    warnings.warn("The centroid point of the two input images could not be used as matching window "
                                  "position since it is outside of the overlap area. Instead the so called "
                                  "'representative point' is used. Alternatively you can provide your own window "
                                  "position as input parameter.")

                # -> use representative point: a point that is garanteed to be within overlap polygon
                overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.representative_point().coords.xy
                wp = overlap_center_pos_x[0], overlap_center_pos_y[0]

            assert self.overlap_poly.contains(Point(wp))

        else:
            # validate window position
            if not self.overlap_poly.contains(Point(wp)):
620
                self._handle_error(ValueError('The provided window position %s/%s is outside of the overlap '
621
                                              'area of the two input images. Check the coordinates.' % wp))
622
623
624
625
626
627

        # check if window position is within bad data area if a respective mask has been provided
        for im in [self.ref, self.shift]:
            if im.mask_baddata is not None:
                imX, imY = mapXY2imXY(wp, im.mask_baddata.gt)

628
                if im.mask_baddata[int(imY), int(imX)] is True:
629
                    self._handle_error(
630
                        RuntimeError('According to the provided bad data mask for the %s the chosen window position '
631
632
633
                                     '%s / %s is within a bad data area. Using this window position for coregistration '
                                     'is not reasonable. Please provide a better window position!'
                                     % (im.imName, wp[0], wp[1])))
634

635
636
        self.win_pos_XY = wp
        self.win_size_XY = (int(self.win_size_XY[0]), int(self.win_size_XY[1])) if self.win_size_XY else (512, 512)
637
638
639
640
641
642
643
644

    def _get_clip_window_properties(self):
        """Calculate all properties of the matching window and the other window. These windows are used to read the
        corresponding image positions in the reference and the target image.
        hint: Even if X- and Y-dimension of the target window is equal, the output window can be NOT quadratic!
        """
        # FIXME image sizes like 10000*256 are still possible

645
646
647
648
649
650
651
652
653
        wpX, wpY = self.win_pos_XY
        wsX, wsY = self.win_size_XY
        ref_wsX, ref_wsY = (wsX * self.ref.xgsd, wsY * self.ref.ygsd)  # image units -> map units
        shift_wsX, shift_wsY = (wsX * self.shift.xgsd, wsY * self.shift.ygsd)  # image units -> map units
        ref_box_kwargs = {'wp': (wpX, wpY), 'ws': (ref_wsX, ref_wsY), 'gt': self.ref.gt}
        shift_box_kwargs = {'wp': (wpX, wpY), 'ws': (shift_wsX, shift_wsY), 'gt': self.shift.gt}
        matchBox = boxObj(**ref_box_kwargs) if self.grid2use == 'ref' else boxObj(**shift_box_kwargs)
        otherBox = boxObj(**shift_box_kwargs) if self.grid2use == 'ref' else boxObj(**ref_box_kwargs)
        overlapWin = boxObj(mapPoly=self.overlap_poly, gt=self.ref.gt)
654
655

        # clip matching window to overlap area
656
657
        matchBox.mapPoly = matchBox.mapPoly.intersection(overlapWin.mapPoly)

658
        # check if matchBox extent touches no data area of the image -> if yes: shrink it
659
660
        overlapPoly_within_matchWin = matchBox.mapPoly.intersection(self.overlap_poly)
        if overlapPoly_within_matchWin.area < matchBox.mapPoly.area:
661
662
            wsX_start, wsY_start = 1 if wsX >= wsY else wsX / wsY, 1 if wsY >= wsX else wsY / wsX
            box = boxObj(**dict(wp=(wpX, wpY), ws=(wsX_start, wsY_start), gt=matchBox.gt))
663
            while True:
664
                box.buffer_imXY(1, 1)
665
666
667
668
                if not box.mapPoly.within(overlapPoly_within_matchWin):
                    box.buffer_imXY(-1, -1)
                    matchBox = box
                    break
669
670

        # move matching window to imref grid or im2shift grid
671
672
        mW_rows, mW_cols = (self.ref.rows, self.ref.cols) if self.grid2use == 'ref' else \
            (self.shift.rows, self.shift.cols)
673
        matchBox.mapPoly = move_shapelyPoly_to_image_grid(matchBox.mapPoly, matchBox.gt, mW_rows, mW_cols, 'NW')
674

675
676
        # check, ob durch Verschiebung auf Grid die matchBox außerhalb von overlap_poly geschoben wurde
        if not matchBox.mapPoly.within(overlapWin.mapPoly):
677
            # matchPoly weiter verkleinern # 1 px buffer reicht, weil window nur auf das Grid verschoben wurde
678
            xLarger, yLarger = matchBox.is_larger_DimXY(overlapWin.boundsIm)
679
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
680
681

        # matching_win direkt auf grid2use (Rundungsfehler bei Koordinatentrafo beseitigen)
682
        matchBox.imPoly = round_shapelyPoly_coords(matchBox.imPoly, precision=0, out_dtype=int)
683
684

        # Check, ob match Fenster größer als anderes Fenster
685
        if not (matchBox.mapPoly.within(otherBox.mapPoly) or matchBox.mapPoly == otherBox.mapPoly):
686
            # dann für anderes Fenster kleinstes Fenster finden, das match-Fenster umgibt
687
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX, otherBox.gt)
688
689

        # evtl. kann es sein, dass bei Shift-Fenster-Vergrößerung das shift-Fenster zu groß für den overlap wird
Daniel Scheffler's avatar
Daniel Scheffler committed
690
        t_start = time.time()
691
        while not otherBox.mapPoly.within(overlapWin.mapPoly):
Daniel Scheffler's avatar
Daniel Scheffler committed
692
            # -> match Fenster verkleinern und neues otherBox berechnen
693
694
            xLarger, yLarger = otherBox.is_larger_DimXY(overlapWin.boundsIm)
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
695
696
            previous_area = otherBox.mapPoly.area
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX, otherBox.gt)
697

698
            if previous_area == otherBox.mapPoly.area or time.time() - t_start > 1.5:
Daniel Scheffler's avatar
Daniel Scheffler committed
699
700
                # happens e.g in case of a triangular footprint
                # NOTE: first condition is not always fulfilled -> therefore added timeout of 1.5 sec
701
                self._handle_error(
702
703
                    RuntimeError('Matching window in target image is larger than overlap area but further shrinking '
                                 'the matching window is not possible. Check if the footprints of the input data have '
704
                                 'been computed correctly.' +
705
706
                                 (' Matching window shrinking timed out.' if time.time() - t_start > 5 else '')))
                break  # break out of while loop in order to avoid that code gets stuck here
707

Daniel Scheffler's avatar
Daniel Scheffler committed
708
709
710
711
712
713
714
        # output validation
        for winBox in [matchBox, otherBox]:
            if winBox.imDimsYX[0] < 16 or winBox.imDimsYX[1] < 16:
                self._handle_error(
                    RuntimeError("One of the input images does not have sufficient gray value information "
                                 "(non-no-data values) for placing a matching window at the position %s. "
                                 "Matching failed." % str((wpX, wpY))))
Daniel Scheffler's avatar
Daniel Scheffler committed
715

716
        if self.success is not False:
Daniel Scheffler's avatar
Daniel Scheffler committed
717
            # check result -> ProgrammingError if not fulfilled
718
            def within_equal(inner, outer): return inner.within(outer) or inner.equals(outer)
Daniel Scheffler's avatar
Daniel Scheffler committed
719
720
            assert within_equal(matchBox.mapPoly, otherBox.mapPoly)
            assert within_equal(otherBox.mapPoly, overlapWin.mapPoly)
721

722
723
724
725
726
727
            self.imfft_gsd = self.ref.xgsd if self.grid2use == 'ref' else self.shift.xgsd
            self.ref.win, self.shift.win = (matchBox, otherBox) if self.grid2use == 'ref' else (otherBox, matchBox)
            self.matchBox, self.otherBox = matchBox, otherBox
            self.ref.win.size_YX = tuple([int(i) for i in self.ref.win.imDimsYX])
            self.shift.win.size_YX = tuple([int(i) for i in self.shift.win.imDimsYX])
            match_win_size_XY = tuple(reversed([int(i) for i in matchBox.imDimsYX]))
728

729
730
            if not self.q and match_win_size_XY != self.win_size_XY:
                print('Target window size %s not possible due to too small overlap area or window position too close '
731
                      'to an image edge. New matching window size: %s.' % (self.win_size_XY, match_win_size_XY))
732

733
734
                # IO.write_shp('/misc/hy5/scheffler/Temp/matchMapPoly.shp', matchBox.mapPoly,matchBox.prj)
                # IO.write_shp('/misc/hy5/scheffler/Temp/otherMapPoly.shp', otherBox.mapPoly,otherBox.prj)
735
736
737
738
739
740

    def _get_image_windows_to_match(self):
        """Reads the matching window and the other window using subset read, and resamples the other window to the
        resolution and the pixel grid of the matching window. The result consists of two images with the same
        dimensions and exactly the same corner coordinates."""

741
742
        match_fullGeoArr = self.ref if self.grid2use == 'ref' else self.shift
        other_fullGeoArr = self.shift if self.grid2use == 'ref' else self.ref
743
744

        # matchWin per subset-read einlesen -> self.matchWin.data
745
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.matchBox.boxImYX)
746
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
747
            rE <= match_fullGeoArr.rows and cE <= match_fullGeoArr.cols, \
748
749
750
751
752
            'Requested area is not completely within the input array for %s.' % match_fullGeoArr.imName
        self.matchWin = GeoArray(match_fullGeoArr[rS:rE + 1, cS:cE + 1, match_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(match_fullGeoArr.gt, self.matchBox.boxImYX),
                                 projection=copy(match_fullGeoArr.prj),
                                 nodata=copy(match_fullGeoArr.nodata))
753
        self.matchWin.imID = match_fullGeoArr.imID
754
755

        # otherWin per subset-read einlesen
756
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.otherBox.boxImYX)
757
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
758
            rE <= other_fullGeoArr.rows and cE <= other_fullGeoArr.cols, \
759
760
761
762
763
            'Requested area is not completely within the input array for %s.' % other_fullGeoArr.imName
        self.otherWin = GeoArray(other_fullGeoArr[rS:rE + 1, cS:cE + 1, other_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(other_fullGeoArr.gt, self.otherBox.boxImYX),
                                 projection=copy(other_fullGeoArr.prj),
                                 nodata=copy(other_fullGeoArr.nodata))
764
        self.otherWin.imID = other_fullGeoArr.imID
765

766
767
        # self.matchWin.deepcopy_array()
        # self.otherWin.deepcopy_array()
768
769
770

        if self.v:
            print('Original matching windows:')
771
772
773
            ref_data, shift_data = (self.matchWin[:], self.otherWin[:]) if self.grid2use == 'ref' else \
                (self.otherWin[:], self.matchWin[:])
            PLT.subplot_imshow([ref_data, shift_data], [self.ref.title, self.shift.title], grid=True)
774

775
        # resample otherWin.arr to the resolution of matchWin AND make sure the pixel edges are identical
776
        # (in order to make each image show the same window with the same coordinates)
777
778
779
780
        # TODO replace cubic resampling by PSF resampling - average resampling leads to sinus like distortions in the
        # TODO fft image that make a precise coregistration impossible. Thats why there is currently no way around
        # TODO cubic resampling.
        tgt_xmin, tgt_xmax, tgt_ymin, tgt_ymax = self.matchBox.boundsMap
781
782

        # equalize pixel grids and projection of matchWin and otherWin (ONLY if grids are really different)
783
784
        if not (self.matchWin.xygrid_specs == self.otherWin.xygrid_specs and
                prj_equal(self.matchWin.prj, self.otherWin.prj)):
785
786
787
788
            self.otherWin.arr, self.otherWin.gt = warp_ndarray(self.otherWin.arr,
                                                               self.otherWin.gt,
                                                               self.otherWin.prj,
                                                               self.matchWin.prj,
789
790
791
792
793
794
                                                               out_gsd=(self.imfft_gsd, self.imfft_gsd),
                                                               out_bounds=([tgt_xmin, tgt_ymin, tgt_xmax, tgt_ymax]),
                                                               rspAlg=_dict_rspAlg_rsp_Int[self.rspAlg_calc],
                                                               in_nodata=self.otherWin.nodata,
                                                               CPUs=self.CPUs,
                                                               progress=False)[:2]
795
796

        if self.matchWin.shape != self.otherWin.shape:
797
798
799
            self._handle_error(
                RuntimeError('Catched a possible ProgrammingError at window position %s: Bad output of '
                             'get_image_windows_to_match. Reference image shape is %s whereas shift '
800
                             'image shape is %s.' % (str(self.matchBox.wp), self.matchWin.shape, self.otherWin.shape)),
801
802
                warn=True)

Daniel Scheffler's avatar
Daniel Scheffler committed
803
        # check of odd dimensions of output images
804
805
        rows, cols = [i if i % 2 == 0 else i - 1 for i in self.matchWin.shape]
        self.matchWin.arr, self.otherWin.arr = self.matchWin.arr[:rows, :cols], self.otherWin.arr[:rows, :cols]
Daniel Scheffler's avatar
Daniel Scheffler committed
806
        if self.matchWin.box.imDimsYX != self.matchBox.imDimsYX:
807
808
            self.matchBox = self.matchWin.box  # update matchBox
            self.otherBox = self.otherWin.box  # update otherBox
809

810
        assert self.matchWin.arr is not None and self.otherWin.arr is not None, 'Creation of matching windows failed.'
811
812
813

    @staticmethod
    def _shrink_winsize_to_binarySize(win_shape_YX, target_size=None):
814
        # type: (tuple, tuple, int , int) -> any
815
816
817
818
819
820
821
        """Shrinks a given window size to the closest binary window size (a power of 2) -
        separately for X- and Y-dimension.

        :param win_shape_YX:    <tuple> source window shape as pixel units (rows,colums)
        :param target_size:     <tuple> source window shape as pixel units (rows,colums)
        """

822
        binarySizes = [2 ** i for i in range(3, 14)]  # [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
823
824
825
        possibSizes_X = [i for i in binarySizes if i <= win_shape_YX[1]]
        possibSizes_Y = [i for i in binarySizes if i <= win_shape_YX[0]]
        if possibSizes_X and possibSizes_Y:
826
827
828
829
            tgt_size_X, tgt_size_Y = target_size if target_size else (max(possibSizes_X), max(possibSizes_Y))
            closest_to_target_X = int(min(possibSizes_X, key=lambda x: abs(x - tgt_size_X)))
            closest_to_target_Y = int(min(possibSizes_Y, key=lambda y: abs(y - tgt_size_Y)))
            return closest_to_target_Y, closest_to_target_X
830
831
832
833
834
835
        else:
            return None

    def _calc_shifted_cross_power_spectrum(self, im0=None, im1=None, precision=np.complex64):
        """Calculates shifted cross power spectrum for quantifying x/y-shifts.

836
837
838
839
        :param im0:         reference image
        :param im1:         subject image to shift
        :param precision:   to be quantified as a datatype
        :return:            2D-numpy-array of the shifted cross power spectrum
840
841
        """

842
843
        im0 = im0 if im0 is not None else self.matchWin[:] if self.matchWin.imID == 'ref' else self.otherWin[:]
        im1 = im1 if im1 is not None else self.otherWin[:] if self.otherWin.imID == 'shift' else self.matchWin[:]
844

845
        assert im0.shape == im1.shape, 'The reference and the target image must have the same dimensions.'
846
847
848
849
        if im0.shape[0] % 2 != 0:
            warnings.warn('Odd row count in one of the match images!')
        if im1.shape[1] % 2 != 0:
            warnings.warn('Odd column count in one of the match images!')
850

851
852
        wsYX = self._shrink_winsize_to_binarySize(im0.shape) if self.bin_ws else im0.shape
        wsYX = ((min(wsYX),) * 2 if self.force_quadratic_win else wsYX) if wsYX else None
853

854
        if wsYX not in [None, (0, 0)]:
855
            time0 = time.time()
856
857
858
859
860
            if self.v:
                print('final window size: %s/%s (X/Y)' % (wsYX[1], wsYX[0]))
                # FIXME size of self.matchWin is not updated
                # FIXME CoRegPoints_grid.WIN_SZ is taken from self.matchBox.imDimsYX but this is not updated

861
            center_YX = np.array(im0.shape) / 2
862
863
            xmin, xmax = int(center_YX[1] - wsYX[1] / 2), int(center_YX[1] + wsYX[1] / 2)
            ymin, ymax = int(center_YX[0] - wsYX[0] / 2), int(center_YX[0] + wsYX[0] / 2)
864

865
866
            in_arr0 = im0[ymin:ymax, xmin:xmax].astype(precision)
            in_arr1 = im1[ymin:ymax, xmin:xmax].astype(precision)
867
868

            if self.v:
869
                PLT.subplot_imshow([np.real(in_arr0).astype(np.float32), np.real(in_arr1).astype(np.float32)],
870
                                   ['FFTin ' + self.ref.title, 'FFTin ' + self.shift.title], grid=True)
871

872
873
874
            if pyfftw and self.fftw_works is not False:  # if module is installed and working
                fft_arr0 = pyfftw.FFTW(in_arr0, np.empty_like(in_arr0), axes=(0, 1))()
                fft_arr1 = pyfftw.FFTW(in_arr1, np.empty_like(in_arr1), axes=(0, 1))()
875
876

                # catch empty output arrays (for some reason this happens sometimes..) -> use numpy fft
877
878
                # => this is caused by the call of pyfftw.FFTW. Exactly in that moment the input array in_arr0 is
                #    overwritten with zeros (maybe this is a bug in pyFFTW?)
879
                if self.fftw_works in [None, True] and (np.std(fft_arr0) == 0 or np.std(fft_arr1) == 0):
880
881
882
883
884
885
                    self.fftw_works = False
                    # recreate input arrays and use numpy fft as fallback
                    in_arr0 = im0[ymin:ymax, xmin:xmax].astype(precision)
                    in_arr1 = im1[ymin:ymax, xmin:xmax].astype(precision)
                    fft_arr0 = np.fft.fft2(in_arr0)
                    fft_arr1 = np.fft.fft2(in_arr1)
886
887
                else:
                    self.fftw_works = True
888
889
890
            else:
                fft_arr0 = np.fft.fft2(in_arr0)
                fft_arr1 = np.fft.fft2(in_arr1)
891

892
893
            # GeoArray(fft_arr0.astype(np.float32)).show(figsize=(15,15))
            # GeoArray(fft_arr1.astype(np.float32)).show(figsize=(15,15))
894

895
896
            if self.v:
                print('forward FFTW: %.2fs' % (time.time() - time0))
897
898
899
900

            eps = np.abs(fft_arr1).max() * 1e-15
            # cps == cross-power spectrum of im0 and im2

901
            temp = np.array(fft_arr0 * fft_arr1.conjugate()) / (np.abs(fft_arr0) * np.abs(fft_arr1) + eps)
902
903
904

            time0 = time.time()
            if 'pyfft' in globals():
905
                ifft_arr = pyfftw.FFTW(temp, np.empty_like(temp), axes=(0, 1), direction='FFTW_BACKWARD')()
906
907
            else:
                ifft_arr = np.fft.ifft2(temp)
908
909
            if self.v:
                print('backward FFTW: %.2fs' % (time.time() - time0))
910
911

            cps = np.abs(ifft_arr)
912
            # scps = shifted cps  => shift the zero-frequency component to the center of the spectrum
913
914
            scps = np.fft.fftshift(cps)
            if self.v:
915
916
917
918
919
                PLT.subplot_imshow([np.real(in_arr0).astype(np.uint16), np.real(in_arr1).astype(np.uint16),
                                    np.real(fft_arr0).astype(np.uint8), np.real(fft_arr1).astype(np.uint8), scps],
                                   titles=['matching window im0', 'matching window im1',
                                           "fft result im0", "fft result im1", "cross power spectrum"], grid=True)
                PLT.subplot_3dsurface(np.real(scps).astype(np.float32))
920
        else:
921
922
            scps = None
            self._handle_error(
923
924
925
926
927
928
929
                RuntimeError('The matching window became too small for calculating a reliable match. Matching failed.'))

        self.fftw_win_size_YX = wsYX
        return scps

    @staticmethod
    def _get_peakpos(scps):
930
931
932
        """Returns the row/column position of the peak within the given cross power spectrum.

        :param scps: <np.ndarray> shifted cross power spectrum
Daniel Scheffler's avatar
Daniel Scheffler committed
933
        :return:     <np.ndarray> [row, column]
934
        """
935
        max_flat_idx = np.argmax(scps)
936
        return np.array(np.unravel_index(max_flat_idx, scps.shape))
937
938
939

    @staticmethod
    def _get_shifts_from_peakpos(peakpos, arr_shape):
940
941
942
        y_shift = peakpos[0] - arr_shape[0] // 2
        x_shift = peakpos[1] - arr_shape[1] // 2
        return x_shift, y_shift
943
944

    @staticmethod
945
    def _clip_image(im, center_YX, winSzYX):  # TODO this is also implemented in GeoArray
946
947
948
949

        def get_bounds(YX, wsY, wsX):
            return int(YX[1] - (wsX / 2)), int(YX[1] + (wsX / 2)), int(YX[0] - (wsY / 2)), int(YX[0] + (wsY / 2))

950
951
952
953
954
955
956
957
        wsY, wsX = winSzYX
        xmin, xmax, ymin, ymax = get_bounds(center_YX, wsY, wsX)
        return im[ymin:ymax, xmin:xmax]

    def _get_grossly_deshifted_images(self, im0, im1, x_intshift, y_intshift):
        # TODO this is also implemented in GeoArray # this should update ref.win.data and shift.win.data
        # FIXME avoid that matching window gets smaller although shifting it  with the previous win_size would not move
        # FIXME it into nodata-area
958
        # get_grossly_deshifted_im0
959
960
        old_center_YX = np.array(im0.shape) / 2
        new_center_YX = [old_center_YX[0] + y_intshift, old_center_YX[1] + x_intshift]
961