CoReg.py 75.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
# -*- coding: utf-8 -*-
__author__='Daniel Scheffler'

import os
import re
import shutil
import subprocess
import time
import warnings
10
from copy import copy
11
12

# custom
13
14
15
16
try:
    import gdal
except ImportError:
    from osgeo import gdal
17
import numpy as np
18
19
20
try:
    import pyfftw
except ImportError:
21
    pyfftw = None
22
from shapely.geometry import Point, Polygon
23
from skimage.exposure import rescale_intensity
24
25

# internal modules
26
from .DeShifter import DESHIFTER, _dict_rspAlg_rsp_Int
27
28
29
30
31
32
from .          import geometry  as GEO
from .          import io        as IO
from .          import plotting  as PLT

from py_tools_ds.ptds                      import GeoArray
from py_tools_ds.ptds.geo.coord_calc       import corner_coord_to_minmax, get_corner_coordinates
33
from py_tools_ds.ptds.geo.vector.topology  import get_overlap_polygon, get_smallest_boxImYX_that_contains_boxMapYX
34
from py_tools_ds.ptds.geo.projection       import prj_equal, get_proj4info
35
36
from py_tools_ds.ptds.geo.vector.geometry  import boxObj, round_shapelyPoly_coords
from py_tools_ds.ptds.geo.coord_grid       import move_shapelyPoly_to_image_grid
37
from py_tools_ds.ptds.geo.coord_trafo      import pixelToMapYX, reproject_shapelyGeometry, mapXY2imXY
38
39
40
from py_tools_ds.ptds.geo.raster.reproject import warp_ndarray
from py_tools_ds.ptds.geo.map_info         import geotransform2mapinfo
from py_tools_ds.ptds.numeric.vector       import find_nearest
41
from py_tools_ds.ptds.similarity.raster    import calc_ssim
42
43
44
45




46
class GeoArray_CoReg(GeoArray):
47
48
    def __init__(self, CoReg_params, imID):
        assert imID in ['ref', 'shift']
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
49

50
51
52
53
54
55
        # run GeoArray init
        path_or_geoArr = CoReg_params['im_ref'] if imID == 'ref' else CoReg_params['im_tgt']
        nodata         = CoReg_params['nodata'][0 if imID == 'ref' else 1]
        progress       = CoReg_params['progress']
        q              = CoReg_params['q'] if not CoReg_params['v'] else False

56
        super(GeoArray_CoReg, self).__init__(path_or_geoArr, nodata=nodata, progress=progress, q=q)
57
58

        self.imID   = imID
59
        self.imName = 'reference image' if imID == 'ref' else 'image to be shifted'
60
61
62
        self.v      = CoReg_params['v']

        assert isinstance(self, GeoArray), \
63
64
65
66
            'Something went wrong with the creation of GeoArray instance for the %s. The created ' \
            'instance does not seem to belong to the GeoArray class. If you are working in Jupyter Notebook, reset the ' \
            'kernel and try again.' %self.imName

67
        # set title to be used in plots
68
        self.title = os.path.basename(self.filePath) if self.filePath else self.imName
69
70
71
72
73
74
75

        # validate params
        assert self.prj, 'The %s has no projection.' % self.imName
        assert not re.search('LOCAL_CS', self.prj), 'The %s is not georeferenced.' % self.imName
        assert self.gt, 'The %s has no map information.' % self.imName

        # set band4match
76
        self.band4match = (CoReg_params['r_b4match'] if imID == 'ref' else CoReg_params['s_b4match'])-1
77
78
79
        assert self.bands >= self.band4match+1 >= 1, "The %s has %s %s. So its band number to match must be %s%s. " \
            "Got %s." % (self.imName, self.bands, 'bands' if self.bands > 1 else 'band', 'between 1 and '
            if self.bands > 1 else '', self.bands, self.band4match)
80

81
82
83
84
85
        # set footprint_poly
        given_footprint_poly = CoReg_params['footprint_poly_%s' % ('ref' if imID == 'ref' else 'tgt')]
        given_corner_coord   = CoReg_params['data_corners_%s'   % ('ref' if imID == 'ref' else 'tgt')]

        if given_footprint_poly:
86
            self.footprint_poly = given_footprint_poly
87
        elif given_corner_coord is not None:
88
            self.footprint_poly = Polygon(given_corner_coord)
89
90
        elif not CoReg_params['calc_corners']:
            # use the image extent
91
            self.footprint_poly = Polygon(get_corner_coordinates(gt=self.gt, cols=self.cols,rows=self.rows))
92
        else:
93
94
95
            # footprint_poly is calculated automatically by GeoArray
            if not CoReg_params['q']:
                print('Calculating actual data corner coordinates for %s...' % self.imName)
96
            self.calc_mask_nodata(fromBand=self.band4match)  # this avoids that all bands have to be read
97

98
        self.poly = self.footprint_poly  # returns a shapely geometry
99

100
        if not self.q:
101
            print('Bounding box of calculated footprint for %s:\n\t%s' % (self.imName, self.poly.bounds))
102

103
104
105
        # add bad data mask
        given_mask = CoReg_params['mask_baddata_%s' % ('ref' if imID == 'ref' else 'tgt')]
        if given_mask:
106
            self.mask_baddata = given_mask
107

108
109
110


class COREG(object):
111
112
    """See help(COREG) for documentation!"""

113
114
    def __init__(self, im_ref, im_tgt, path_out=None, fmt_out='ENVI', out_crea_options=None, r_b4match=1, s_b4match=1,
                 wp=(None,None), ws=(512, 512), max_iter=5, max_shift=5, align_grids=False, match_gsd=False,
115
116
                 out_gsd=None, target_xyGrid=None, resamp_alg_deshift='cubic', resamp_alg_calc='cubic',
                 footprint_poly_ref=None, footprint_poly_tgt=None, data_corners_ref=None, data_corners_tgt=None,
117
118
119
                 nodata=(None,None), calc_corners=True, binary_ws=True, mask_baddata_ref=None, mask_baddata_tgt=None,
                 multiproc=True, force_quadratic_win=True, progress=True, v=False, path_verbose_out=None, q=False,
                 ignore_errors=False):
120
121
122
123

        """Detects and corrects global X/Y shifts between a target and refernce image. Geometric shifts are calculated
        at a specific (adjustable) image position. Correction performs a global shifting in X- or Y direction.

124
125
126
127
        :param im_ref(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of reference image
        :param im_tgt(str, GeoArray):   source path (any GDAL compatible image format is supported) or GeoArray instance
                                        of image to be shifted
128
        :param path_out(str):           target path of the coregistered image
129
130
131
132
                                            - if None (default), the method correct_shifts() does not write to disk
                                            - if 'auto': /dir/of/im1/<im1>__shifted_to__<im0>.bsq
        :param fmt_out(str):            raster file format for output file. ignored if path_out is None. can be any GDAL
                                        compatible raster file format (e.g. 'ENVI', 'GeoTIFF'; default: ENVI)
133
134
        :param out_crea_options(list):  GDAL creation options for the output image,
                                        e.g. ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
135
136
137
138
139
140
141
142
143
144
145
        :param r_b4match(int):          band of reference image to be used for matching (starts with 1; default: 1)
        :param s_b4match(int):          band of shift image to be used for matching (starts with 1; default: 1)
        :param wp(tuple):               custom matching window position as map values in the same projection like the
                                        reference image (default: central position of image overlap)
        :param ws(tuple):               custom matching window size [pixels] (default: (512,512))
        :param max_iter(int):           maximum number of iterations for matching (default: 5)
        :param max_shift(int):          maximum shift distance in reference image pixel units (default: 5 px)
        :param align_grids(bool):       align the coordinate grids of the image to be and the reference image (default: 0)
        :param match_gsd(bool):         match the output pixel size to pixel size of the reference image (default: 0)
        :param out_gsd(tuple):          xgsd ygsd: set the output pixel size in map units
                                        (default: original pixel size of the image to be shifted)
146
147
        :param target_xyGrid(list):     a list with a target x-grid and a target y-grid like [[15,45], [15,45]]
                                        This overrides 'out_gsd', 'align_grids' and 'match_gsd'.
148
149
150
151
152
153
154
155
156
        :param resamp_alg_deshift(str)  the resampling algorithm to be used for shift correction (if neccessary)
                                        valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average, mode,
                                                          max, min, med, q1, q3
                                        default: cubic
        :param resamp_alg_calc(str)     the resampling algorithm to be used for all warping processes during calculation
                                        of spatial shifts
                                        (valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average, mode,
                                                       max, min, med, q1, q3)
                                        default: cubic (highly recommended)
157
158
159
160
161
162
163
164
165
166
        :param footprint_poly_ref(str): footprint polygon of the reference image (WKT string or shapely.geometry.Polygon),
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param footprint_poly_tgt(str): footprint polygon of the image to be shifted (WKT string or shapely.geometry.Polygon)
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param data_corners_ref(list):  map coordinates of data corners within reference image.
                                        ignored if footprint_poly_ref is given.
        :param data_corners_tgt(list):  map coordinates of data corners within image to be shifted.
                                        ignored if footprint_poly_tgt is given.
167
168
169
170
171
        :param nodata(tuple):           no data values for reference image and image to be shifted
        :param calc_corners(bool):      calculate true positions of the dataset corners in order to get a useful
                                        matching window position within the actual image overlap
                                        (default: 1; deactivated if '-cor0' and '-cor1' are given
        :param binary_ws(bool):         use binary X/Y dimensions for the matching window (default: 1)
172
173
174
175
176
177
178
179
180
181
182
183
184
        :param mask_baddata_ref(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                reference image where all bad data pixels (e.g. clouds) are marked with
                                                True and the remaining pixels with False. Must have the same geographic
                                                extent and projection like 'im_ref'. The mask is used to check if the
                                                chosen matching window position is valid in the sense of useful data.
                                                Otherwise this window position is rejected.
        :param mask_baddata_tgt(str, GeoArray): path to a 2D boolean mask file (or an instance of GeoArray) for the
                                                image to be shifted where all bad data pixels (e.g. clouds) are marked
                                                with True and the remaining pixels with False. Must have the same
                                                geographic extent and projection like 'im_ref'. The mask is used to
                                                check if the chosen matching window position is valid in the sense of
                                                useful data. Otherwise this window position is rejected.
        :param multiproc(bool):         enable multiprocessing (default: 1)
185
        :param force_quadratic_win(bool):   force a quadratic matching window (default: 1)
186
        :param progress(bool):          show progress bars (default: True)
187
        :param v(bool):                 verbose mode (default: False)
188
189
        :param path_verbose_out(str):   an optional output directory for intermediate results
                                        (if not given, no intermediate results are written to disk)
190
191
        :param q(bool):                 quiet mode (default: False)
        :param ignore_errors(bool):     Useful for batch processing. (default: False)
192
193
194
195
196
197
                                        In case of error COREG.success == False and COREG.x_shift_px/COREG.y_shift_px
                                        is None
        """

        self.params              = dict([x for x in locals().items() if x[0] != "self"])

198
199
        # assertions
        assert fmt_out, "'%s' is not a valid GDAL driver code." %fmt_out
200
201
        if match_gsd and out_gsd: warnings.warn("'-out_gsd' is ignored because '-match_gsd' is set.\n")
        if out_gsd:  assert isinstance(out_gsd, list) and len(out_gsd) == 2, 'out_gsd must be a list with two values.'
202
203
204
205
        if data_corners_ref and not isinstance(data_corners_ref[0], list): # group if not [[x,y],[x,y]..] but [x,y,x,y,]
            data_corners_ref = [data_corners_ref[i:i + 2] for i in range(0, len(data_corners_ref), 2)]
        if data_corners_tgt and not isinstance(data_corners_tgt[0], list): # group if not [[x,y],[x,y]..]
            data_corners_tgt = [data_corners_tgt[i:i + 2] for i in range(0, len(data_corners_tgt), 2)]
206
207
        if nodata: assert isinstance(nodata, tuple) and len(nodata) == 2, "'nodata' must be a tuple with two values." \
                                                                          "Got %s with length %s." %(type(nodata),len(nodata))
208
        for rspAlg in [resamp_alg_deshift, resamp_alg_calc]:
209
            assert rspAlg in _dict_rspAlg_rsp_Int.keys(), "'%s' is not a supported resampling algorithm." % rspAlg
210
        if resamp_alg_calc=='average' and (v or not q):
211
            warnings.warn("The resampling algorithm 'average' causes sinus-shaped patterns in fft images that will "
212
213
                          "affect the precision of the calculated spatial shifts! It is highly recommended to "
                          "choose another resampling algorithm.")
214
215

        self.path_out            = path_out            # updated by self.set_outpathes
216
        self.fmt_out             = fmt_out
217
        self.out_creaOpt         = out_crea_options
218
219
220
221
222
223
224
        self.win_pos_XY          = wp                  # updated by self.get_opt_winpos_winsize()
        self.win_size_XY         = ws                  # updated by self.get_opt_winpos_winsize()
        self.max_iter            = max_iter
        self.max_shift           = max_shift
        self.align_grids         = align_grids
        self.match_gsd           = match_gsd
        self.out_gsd             = out_gsd
225
        self.target_xyGrid       = target_xyGrid
226
227
        self.rspAlg_DS           = resamp_alg_deshift
        self.rspAlg_calc         = resamp_alg_calc
228
229
230
231
232
233
        self.calc_corners        = calc_corners
        self.mp                  = multiproc
        self.bin_ws              = binary_ws
        self.force_quadratic_win = force_quadratic_win
        self.v                   = v
        self.path_verbose_out    = path_verbose_out
234
235
236
        self.q                   = q if not v else False # overridden by v
        self.progress            = progress if not q else False  # overridden by q

237
238
239
240
        self.ignErr              = ignore_errors
        self.max_win_sz_changes  = 3                   # TODO: änderung der window size, falls nach max_iter kein valider match gefunden
        self.ref                 = None                # set by self.get_image_params
        self.shift               = None                # set by self.get_image_params
241
242
243
244
        self.matchBox            = None                # set by self.get_clip_window_properties()  => boxObj
        self.otherBox            = None                # set by self.get_clip_window_properties()  => boxObj
        self.matchWin            = None                # set by self._get_image_windows_to_match() => GeoArray
        self.otherWin            = None                # set by self._get_image_windows_to_match() => GeoArray
245
        self.imfft_gsd           = None                # set by self.get_clip_window_properties()
246
        self.fftw_win_size_YX    = None                # set by calc_shifted_cross_power_spectrum()
247
248
249
250
251

        self.x_shift_px          = None                # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.y_shift_px          = None                # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.x_shift_map         = None                # set by self.get_updated_map_info()
        self.y_shift_map         = None                # set by self.get_updated_map_info()
252
253
        self.vec_length_map      = None
        self.vec_angle_deg       = None
254
        self.updated_map_info    = None                # set by self.get_updated_map_info()
255
256
257
        self.ssim_orig           = None                # set by self._validate_ssim_improvement()
        self.ssim_deshifted      = None                # set by self._validate_ssim_improvement()
        self._ssim_improved      = None                # private attribute to be filled by self.ssim_improved
258
        self.shift_reliability   = None                # set by self.calculate_spatial_shifts()
259
260

        self.tracked_errors      = []                  # expanded each time an error occurs
261
        self.success             = None                # default
262
        self.deshift_results     = None                # set by self.correct_shifts()
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

        gdal.AllRegister()
        self._get_image_params()
        self._set_outpathes(im_ref, im_tgt)
        self.grid2use                 = 'ref' if self.shift.xgsd <= self.ref.xgsd else 'shift'
        if self.v: print('resolutions: ', self.ref.xgsd, self.shift.xgsd)

        overlap_tmp                   = get_overlap_polygon(self.ref.poly, self.shift.poly, self.v)
        self.overlap_poly             = overlap_tmp['overlap poly'] # has to be in reference projection
        assert self.overlap_poly, 'The input images have no spatial overlap.'
        self.overlap_percentage       = overlap_tmp['overlap percentage']
        self.overlap_area             = overlap_tmp['overlap area']

        if self.v and self.path_verbose_out:
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_imref.shp'),    self.ref.poly,     self.ref.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_im2shift.shp'), self.shift.poly,   self.shift.prj)
            IO.write_shp(os.path.join(self.path_verbose_out, 'overlap_poly.shp'),  self.overlap_poly, self.ref.prj)

        ### FIXME: transform_mapPt1_to_mapPt2(im2shift_center_map, ds_imref.GetProjection(), ds_im2shift.GetProjection()) # später basteln für den fall, dass projektionen nicht gleich sind

        # get_clip_window_properties
        self._get_opt_winpos_winsize()
        if not self.q: print('Matching window position (X,Y): %s/%s' % (self.win_pos_XY[0], self.win_pos_XY[1]))
286
        self._get_clip_window_properties() # sets self.matchBox, self.otherBox and much more
287

288
        if self.v and self.path_verbose_out and self.matchBox.mapPoly and self.success is not False:
289
            IO.write_shp(os.path.join(self.path_verbose_out, 'poly_matchWin.shp'),
290
                         self.matchBox.mapPoly, self.matchBox.prj)
291

292
        self.success     = False if self.success is False or not self.matchBox.boxMapYX else None
293
        self._coreg_info = None # private attribute to be filled by self.coreg_info property
294
295
296


    def _set_outpathes(self, im_ref, im_tgt):
297
298
299
300
        assert isinstance(im_ref, (GeoArray, str)) and isinstance(im_tgt, (GeoArray, str)),\
            'COREG._set_outpathes() expects two file pathes (string) or two instances of the ' \
            'GeoArray class. Received %s and %s.' %(type(im_ref), type(im_tgt))

301
302
303
304
305
306
        get_baseN = lambda path: os.path.splitext(os.path.basename(path))[0]

        # get input pathes
        path_im_ref = im_ref.filePath if isinstance(im_ref, GeoArray) else im_ref
        path_im_tgt = im_tgt.filePath if isinstance(im_tgt, GeoArray) else im_tgt

307
308
309
310
311
        if self.path_out: # this also applies to self.path_out='auto'

            if self.path_out == 'auto':
                dir_out, fName_out = os.path.dirname(path_im_tgt), ''
            else:
312
                dir_out, fName_out = os.path.split(self.path_out)
313
314
315
316
317
318
319
320
321
322
323
324
325
326

            if dir_out and fName_out:
                # a valid output path is given => do nothing
                pass

            else:
                # automatically create an output directory and filename if not given
                if not dir_out:
                    if not path_im_ref:
                        dir_out = os.path.abspath(os.path.curdir)
                    else:
                        dir_out = os.path.dirname(path_im_ref)

                if not fName_out:
327
328
329
330
331
                    ext         = 'bsq' if self.fmt_out=='ENVI' else \
                                    gdal.GetDriverByName(self.fmt_out).GetMetadataItem(gdal.DMD_EXTENSION)
                    fName_out   = fName_out if not fName_out in ['.',''] else '%s__shifted_to__%s' \
                                    %(get_baseN(path_im_tgt), get_baseN(path_im_ref))
                    fName_out   = fName_out+'.%s'%ext if ext else fName_out
332

333
                self.path_out   = os.path.abspath(os.path.join(dir_out,fName_out))
334
335
336
337

                assert ' ' not in self.path_out, \
                    "The path of the output image contains whitespaces. This is not supported by GDAL."
        else:
338
            # this only happens if COREG is not instanced from within Python and self.path_out is explicitly set to None
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
            # => DESHIFTER will return an array
            pass

        if self.v:
            if self.path_verbose_out:
                dir_out, dirname_out = os.path.split(self.path_verbose_out)

                if not dir_out:
                    if self.path_out:
                        self.path_verbose_out = os.path.dirname(self.path_out)
                    else:
                        self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir,
                            'CoReg_verboseOut__%s__shifted_to__%s' % (get_baseN(path_im_tgt), get_baseN(path_im_ref))))
                elif dirname_out and not dir_out:
                    self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir, dirname_out))

                assert ' ' not in self.path_verbose_out, \
                    "'path_verbose_out' contains whitespaces. This is not supported by GDAL."

        else:
            self.path_verbose_out = None

        if self.path_verbose_out and not os.path.isdir(self.path_verbose_out): os.makedirs(self.path_verbose_out)


    def _get_image_params(self):
365
366
        self.ref   = GeoArray_CoReg(self.params,'ref')
        self.shift = GeoArray_CoReg(self.params,'shift')
367
        assert prj_equal(self.ref.prj, self.shift.prj), \
368
369
            'Input projections are not equal. Different projections are currently not supported. Got %s / %s.'\
            %(get_proj4info(proj=self.ref.prj), get_proj4info(proj=self.shift.prj))
370
371


372
373
374
375
376
377
378
379
380
    def show_image_footprints(self):
        """This method is intended to be called from Jupyter Notebook and shows a web map containing the calculated
        footprints of the input images as well as the corresponding overlap area."""
        # TODO different colors for polygons
        assert self.overlap_poly, 'Please calculate the overlap polygon first.'

        try:
            import folium, geojson
        except ImportError:
381
382
            folium, geojson = None, None
        if not folium or not geojson:
383
384
385
            raise ImportError("This method requires the libraries 'folium' and 'geojson'. They can be installed with "
                              "the shell command 'pip install folium geojson'.")

386
387
388
389
        refPoly      = reproject_shapelyGeometry(self.ref  .poly      , self.ref  .epsg, 4326)
        shiftPoly    = reproject_shapelyGeometry(self.shift.poly      , self.shift.epsg, 4326)
        overlapPoly  = reproject_shapelyGeometry(self.overlap_poly    , self.shift.epsg, 4326)
        matchBoxPoly = reproject_shapelyGeometry(self.matchBox.mapPoly, self.shift.epsg, 4326)
390
391

        m = folium.Map(location=tuple(np.array(overlapPoly.centroid.coords.xy).flatten())[::-1])
392
        for poly in [refPoly, shiftPoly, overlapPoly, matchBoxPoly]:
393
394
395
396
397
            gjs = geojson.Feature(geometry=poly, properties={})
            folium.GeoJson(gjs).add_to(m)
        return m


398
399
    def show_matchWin(self, figsize=(15,15), interactive=True, deshifted=False):
        """Show the image content within the matching window.
400

401
402
403
404
405
        :param figsize:      <tuple> figure size
        :param interactive:  <bool> whether to return an interactive figure based on 'holoviews' library
        :param deshifted:    <bool> whether to put the image content AFTER shift correction into the figure
        :return:
        """
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        if interactive:
            # use Holoviews
            try:
                import holoviews as hv
            except ImportError:
                hv =None
            if not hv:
                raise ImportError(
                    "This method requires the library 'holoviews'. It can be installed for Anaconda with "
                    "the shell command 'conda install -c ioam holoviews bokeh'.")
            warnings.filterwarnings('ignore')
            hv.notebook_extension('matplotlib')
            hv.Store.add_style_opts(hv.Image, ['vmin','vmax'])

            #hv.Store.option_setters.options().Image = hv.Options('style', cmap='gnuplot2')
            #hv.Store.add_style_opts(hv.Image, ['cmap'])
            #renderer = hv.Store.renderers['matplotlib'].instance(fig='svg', holomap='gif')
            #RasterPlot = renderer.plotting_class(hv.Image)
            #RasterPlot.cmap = 'gray'
425
426
            otherWin_corr       = self._get_deshifted_otherWin()
            xmin,xmax,ymin,ymax = self.matchBox.boundsMap
427
428
429
430


            get_vmin     = lambda arr: np.percentile(arr, 2)
            get_vmax     = lambda arr: np.percentile(arr, 98)
431
432
433
            rescale      = lambda arr: rescale_intensity(arr, in_range=(get_vmin(arr), get_vmax(arr)))
            get_arr      = lambda geoArr: rescale(np.ma.masked_equal(geoArr[:], geoArr.nodata))
            get_hv_image = lambda geoArr: hv.Image(get_arr(geoArr), bounds=(xmin,ymin,xmax,ymax))(
434
                style={'cmap':'gray',
435
                       'vmin':get_vmin(geoArr[:]), 'vmax':get_vmax(geoArr[:]), # does not work
436
                       'interpolation':'none'},
437
                plot={'fig_inches':figsize, 'show_grid':True})
438
439
                #plot={'fig_size':100, 'show_grid':True})

440
441
442
            imgs_orig = {1 : get_hv_image(self.matchWin), 2 : get_hv_image(self.otherWin)}
            imgs_corr = {1 : get_hv_image(self.matchWin), 2 : get_hv_image(otherWin_corr)}
            #layout = get_hv_image(self.matchWin) + get_hv_image(self.otherWin)
443

444
445
            imgs = {1 : get_hv_image(self.matchWin) + get_hv_image(self.matchWin),
                    2 : get_hv_image(self.otherWin) + get_hv_image(otherWin_corr)
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
                        }

            # Construct a HoloMap by evaluating the function over all the keys
            hmap_orig = hv.HoloMap(imgs_orig, kdims=['image'])
            hmap_corr = hv.HoloMap(imgs_corr, kdims=['image'])

            hmap      = hv.HoloMap(imgs, kdims=['image']).collate().cols(1) # displaying this results in a too small figure
            #hmap = hv.HoloMap(imgs_corr, kdims=['image']) +  hv.HoloMap(imgs_corr, kdims=['image'])

            ## Construct a HoloMap by defining the sampling on the Dimension
            #dmap = hv.DynamicMap(image_slice, kdims=[hv.Dimension('z_axis', values=keys)])
            warnings.filterwarnings('default')
            #return hmap

            return hmap_orig if not deshifted else hmap_corr

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        else:
            # TODO add titles
            self.matchWin.show(figsize=figsize)
            if deshifted:
                self._get_deshifted_otherWin().show(figsize=figsize)
            else:
                self.otherWin.show(figsize=figsize)


    def show_cross_power_spectrum(self, interactive=False):
        """
        Shows a 3D surface of the cross power spectrum resulting from phase correlating the reference and target
        image within the matching window.

        :param interactive:  whether to return an interactice 3D surface plot based on 'plotly' library
        :return:
        """

        if interactive:
            # create plotly 3D surface

            #import plotly.plotly as py # online mode -> every plot is uploaded into online plotly account
            from plotly.offline import iplot, init_notebook_mode
            import plotly.graph_objs as go

            init_notebook_mode(connected=True)

            z_data = self._calc_shifted_cross_power_spectrum()
            data   = [go.Surface(z=z_data)]
            layout = go.Layout(
                title='cross power spectrum',
                autosize=False,
                width=1000,
                height=1000,
                margin=dict(l=65, r=50, b=65, t=90))
            fig    = go.Figure(data=data, layout=layout)

            return iplot(fig, filename='SCPS')

        else:
            # use matplotlib
            scps = self._calc_shifted_cross_power_spectrum()
            PLT.subplot_3dsurface(scps.astype(np.float32))

506

507
508
    def _get_opt_winpos_winsize(self):
        # type: (tuple,tuple) -> tuple,tuple
509
510
511
512
        """
        Calculates optimal window position and size in reference image units according to DGM, cloud_mask and
        trueCornerLonLat.
        """
513
514
515
516
517
518
519
520
521
522
523
524
        # dummy algorithm: get center position of overlap instead of searching ideal window position in whole overlap
        # TODO automatischer Algorithmus zur Bestimmung der optimalen Window Position

        wp = tuple(self.win_pos_XY)
        assert type(self.win_pos_XY) in [tuple,list,np.ndarray],\
            'The window position must be a tuple of two elements. Got %s with %s elements.' %(type(wp),len(wp))
        wp = tuple(wp)

        if None in wp:
            overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.centroid.coords.xy
            wp = (wp[0] if wp[0] else overlap_center_pos_x[0]), (wp[1] if wp[1] else overlap_center_pos_y[0])

525
        # validate window position
526
527
528
529
530
531
        if not self.overlap_poly.contains(Point(wp)):
            self.success=False
            self.tracked_errors.append(ValueError('The provided window position %s/%s is outside of the overlap ' \
                                                  'area of the two input images. Check the coordinates.' %wp))
            if not self.ignErr:
                raise self.tracked_errors[-1]
532
533
534
535
536
537

        # check if window position is within bad data area if a respective mask has been provided
        for im in [self.ref, self.shift]:
            if im.mask_baddata is not None:
                imX, imY = mapXY2imXY(wp, im.mask_baddata.gt)

538
                if im.mask_baddata[int(imY), int(imX)] is True:
539
540
541
542
543
544
545
                    self.tracked_errors.append(
                        RuntimeError('According to the provided bad data mask for the %s the chosen window position '
                            '%s / %s is within a bad data area. Using this window position for coregistration '
                            'is not reasonable. Please provide a better window position!' %(im.imName, wp[0], wp[1])))
                    self.success = False
                    if not self.ignErr:
                        raise self.tracked_errors[-1]
546

547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        self.win_pos_XY  = wp
        self.win_size_XY = (int(self.win_size_XY[0]), int(self.win_size_XY[1])) if self.win_size_XY else (512,512)


    def _get_clip_window_properties(self):
        """Calculate all properties of the matching window and the other window. These windows are used to read the
        corresponding image positions in the reference and the target image.
        hint: Even if X- and Y-dimension of the target window is equal, the output window can be NOT quadratic!
        """
        # FIXME image sizes like 10000*256 are still possible

        wpX,wpY             = self.win_pos_XY
        wsX,wsY             = self.win_size_XY
        ref_wsX, ref_wsY    = (wsX*self.ref.xgsd  , wsY*self.ref.ygsd)   # image units -> map units
        shift_wsX,shift_wsY = (wsX*self.shift.xgsd, wsY*self.shift.ygsd) # image units -> map units
        ref_box_kwargs      = {'wp':(wpX,wpY),'ws':(ref_wsX,ref_wsY)    ,'gt':self.ref.gt  }
        shift_box_kwargs    = {'wp':(wpX,wpY),'ws':(shift_wsX,shift_wsY),'gt':self.shift.gt}
564
565
        matchBox            = boxObj(**ref_box_kwargs)   if self.grid2use=='ref' else boxObj(**shift_box_kwargs)
        otherBox            = boxObj(**shift_box_kwargs) if self.grid2use=='ref' else boxObj(**ref_box_kwargs)
566
567
568
        overlapWin          = boxObj(mapPoly=self.overlap_poly,gt=self.ref.gt)

        # clip matching window to overlap area
569
570
571
572
573
574
575
576
577
578
579
580
581
        matchBox.mapPoly = matchBox.mapPoly.intersection(overlapWin.mapPoly)

        #check if matchBox extent touches no data area of the image -> if yes: shrink it
        overlapPoly_within_matchWin = matchBox.mapPoly.intersection(self.overlap_poly)
        if overlapPoly_within_matchWin.area < matchBox.mapPoly.area:
            wsX_start, wsY_start = 1 if wsX>=wsY else wsX/wsY, 1 if wsY>=wsX else wsY/wsX
            box = boxObj(**dict(wp=(wpX,wpY),ws=(wsX_start, wsY_start), gt=matchBox.gt))
            while True:
                box.buffer_imXY(1,1)
                if not box.mapPoly.within(overlapPoly_within_matchWin):
                    box.buffer_imXY(-1, -1)
                    matchBox = box
                    break
582
583
584

        # move matching window to imref grid or im2shift grid
        mW_rows, mW_cols = (self.ref.rows, self.ref.cols) if self.grid2use == 'ref' else (self.shift.rows, self.shift.cols)
585
        matchBox.mapPoly = move_shapelyPoly_to_image_grid(matchBox.mapPoly, matchBox.gt, mW_rows, mW_cols, 'NW')
586

587
588
        # check, ob durch Verschiebung auf Grid die matchBox außerhalb von overlap_poly geschoben wurde
        if not matchBox.mapPoly.within(overlapWin.mapPoly):
589
            # matchPoly weiter verkleinern # 1 px buffer reicht, weil window nur auf das Grid verschoben wurde
590
591
            xLarger,yLarger = matchBox.is_larger_DimXY(overlapWin.boundsIm)
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
592
593

        # matching_win direkt auf grid2use (Rundungsfehler bei Koordinatentrafo beseitigen)
594
        matchBox.imPoly = round_shapelyPoly_coords(matchBox.imPoly, precision=0, out_dtype=int)
595
596

        # Check, ob match Fenster größer als anderes Fenster
597
        if not (matchBox.mapPoly.within(otherBox.mapPoly) or matchBox.mapPoly==otherBox.mapPoly):
598
            # dann für anderes Fenster kleinstes Fenster finden, das match-Fenster umgibt
599
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX,otherBox.gt)
600
601

        # evtl. kann es sein, dass bei Shift-Fenster-Vergrößerung das shift-Fenster zu groß für den overlap wird
602
        while not otherBox.mapPoly.within(overlapWin.mapPoly):
603
            # -> match Fenster verkleinern und neues anderes Fenster berechnen
604
605
606
607
            xLarger, yLarger = otherBox.is_larger_DimXY(overlapWin.boundsIm)
            matchBox.buffer_imXY(-1 if xLarger else 0, -1 if yLarger else 0)
            previous_area    = otherBox.mapPoly.area
            otherBox.boxImYX = get_smallest_boxImYX_that_contains_boxMapYX(matchBox.boxMapYX,otherBox.gt)
608

609
            if previous_area == otherBox.mapPoly.area:
610
611
612
613
614
615
616
617
618
619
620
621
                self.tracked_errors.append(
                    RuntimeError('Matching window in target image is larger than overlap area but further shrinking '
                                 'the matching window is not possible. Check if the footprints of the input data have '
                                 'been computed correctly. '))
                if not self.ignErr:
                    raise self.tracked_errors[-1]
                break # break out of while loop in order to avoid that code gets stuck here

        if self.tracked_errors:
            self.success = False
        else:
            # check results
622
623
            assert matchBox.mapPoly.within(otherBox.mapPoly)
            assert otherBox.mapPoly.within(overlapWin.mapPoly)
624
625

            self.imfft_gsd              = self.ref.xgsd       if self.grid2use =='ref' else self.shift.xgsd
626
627
            self.ref.win,self.shift.win = (matchBox,otherBox) if self.grid2use =='ref' else (otherBox,matchBox)
            self.matchBox,self.otherBox = matchBox, otherBox
628
629
            self.ref.  win.size_YX      = tuple([int(i) for i in self.ref.  win.imDimsYX])
            self.shift.win.size_YX      = tuple([int(i) for i in self.shift.win.imDimsYX])
630
            match_win_size_XY           = tuple(reversed([int(i) for i in matchBox.imDimsYX]))
631
632
633
            if not self.q and match_win_size_XY != self.win_size_XY:
                print('Target window size %s not possible due to too small overlap area or window position too close '
                      'to an image edge. New matching window size: %s.' %(self.win_size_XY,match_win_size_XY))
634
635
            #IO.write_shp('/misc/hy5/scheffler/Temp/matchMapPoly.shp', matchBox.mapPoly,matchBox.prj)
            #IO.write_shp('/misc/hy5/scheffler/Temp/otherMapPoly.shp', otherBox.mapPoly,otherBox.prj)
636
637
638
639
640
641
642


    def _get_image_windows_to_match(self):
        """Reads the matching window and the other window using subset read, and resamples the other window to the
        resolution and the pixel grid of the matching window. The result consists of two images with the same
        dimensions and exactly the same corner coordinates."""

643
644
645
646
647
648
649
650
        match_fullGeoArr = self.ref   if self.grid2use=='ref' else self.shift
        other_fullGeoArr = self.shift if self.grid2use=='ref' else self.ref
        self.matchWin = GeoArray(np.array([]), copy(match_fullGeoArr.gt), copy(match_fullGeoArr.prj),
                                 nodata=copy(match_fullGeoArr.nodata)) # array data is overwritten later
        self.otherWin = GeoArray(np.array([]), copy(other_fullGeoArr.gt), copy(other_fullGeoArr.prj),
                                 nodata=copy(other_fullGeoArr.nodata)) # array data is overwritten later
        self.matchWin.imID = match_fullGeoArr.imID
        self.otherWin.imID = other_fullGeoArr.imID
651
652

        # matchWin per subset-read einlesen -> self.matchWin.data
653
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.matchBox.boxImYX)
654
        assert np.array_equal(np.abs(np.array([rS,rE,cS,cE])), np.array([rS,rE,cS,cE])), \
655
656
657
            'Got negative values in gdalReadInputs for %s.' %match_fullGeoArr.imName
        self.matchWin.arr = match_fullGeoArr[rS:rE,cS:cE, match_fullGeoArr.band4match]
        self.matchWin.gt  = GEO.get_subset_GeoTransform(match_fullGeoArr.gt, self.matchBox.boxImYX)
658
659

        # otherWin per subset-read einlesen
660
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.otherBox.boxImYX)
661
        assert np.array_equal(np.abs(np.array([rS,rE,cS,cE])), np.array([rS,rE,cS,cE])), \
662
663
664
665
666
667
            'Got negative values in gdalReadInputs for %s.' %other_fullGeoArr.imName
        self.otherWin.arr = other_fullGeoArr[rS:rE, cS:cE, other_fullGeoArr.band4match]
        self.otherWin.gt  = GEO.get_subset_GeoTransform(other_fullGeoArr.gt, self.otherBox.boxImYX)

        #self.matchWin.deepcopy_array()
        #self.otherWin.deepcopy_array()
668
669
670

        if self.v:
            print('Original matching windows:')
671
672
            ref_data, shift_data =  (self.matchWin[:], self.otherWin[:]) if self.grid2use=='ref' else \
                                    (self.otherWin[:], self.matchWin[:])
673
674
            PLT.subplot_imshow([ref_data, shift_data],[self.ref.title,self.shift.title], grid=True)

675
        # resample otherWin.arr to the resolution of matchWin AND make sure the pixel edges are identical
676
677
        # (in order to make each image show the same window with the same coordinates)
        # TODO replace cubic resampling by PSF resampling - average resampling leads to sinus like distortions in the fft image that make a precise coregistration impossible. Thats why there is currently no way around cubic resampling.
678
679
680
681
682
683
684
685
686
687
688
689
690
        tgt_xmin,tgt_xmax,tgt_ymin,tgt_ymax = self.matchBox.boundsMap
        self.otherWin.arr, self.otherWin.gt = warp_ndarray(self.otherWin.arr,
                                                           self.otherWin.gt,
                                                           self.otherWin.prj,
                                                           self.matchWin.prj,
                                                           out_gsd    = (self.imfft_gsd, self.imfft_gsd),
                                                           out_bounds = ([tgt_xmin, tgt_ymin, tgt_xmax, tgt_ymax]),
                                                           rspAlg     = _dict_rspAlg_rsp_Int[self.rspAlg_calc],
                                                           in_nodata  = self.otherWin.nodata,
                                                           CPUs       = None if self.mp else 1,
                                                           progress   = False) [:2]

        if self.matchWin.shape != self.otherWin.shape:
691
692
            self.tracked_errors.append(
                RuntimeError('Bad output of get_image_windows_to_match. Reference image shape is %s whereas shift '
693
                             'image shape is %s.' % (self.matchWin.shape, self.otherWin.shape)))
694
            raise self.tracked_errors[-1]
695
696
        rows, cols = [i if i % 2 == 0 else i - 1 for i in self.matchWin.shape]
        self.matchWin.arr, self.otherWin.arr = self.matchWin.arr[:rows, :cols], self.otherWin.arr[:rows, :cols]
697

698
        assert self.matchWin.arr is not None and self.otherWin.arr is not None, 'Creation of matching windows failed.'
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731


    @staticmethod
    def _shrink_winsize_to_binarySize(win_shape_YX, target_size=None):
        # type: (tuple, tuple, int , int) -> tuple
        """Shrinks a given window size to the closest binary window size (a power of 2) -
        separately for X- and Y-dimension.

        :param win_shape_YX:    <tuple> source window shape as pixel units (rows,colums)
        :param target_size:     <tuple> source window shape as pixel units (rows,colums)
        """

        binarySizes   = [2**i for i in range(3,14)] # [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
        possibSizes_X = [i for i in binarySizes if i <= win_shape_YX[1]]
        possibSizes_Y = [i for i in binarySizes if i <= win_shape_YX[0]]
        if possibSizes_X and possibSizes_Y:
            tgt_size_X,tgt_size_Y = target_size if target_size else (max(possibSizes_X),max(possibSizes_Y))
            closest_to_target_X = int(min(possibSizes_X, key=lambda x:abs(x-tgt_size_X)))
            closest_to_target_Y = int(min(possibSizes_Y, key=lambda y:abs(y-tgt_size_Y)))
            return closest_to_target_Y,closest_to_target_X
        else:
            return None


    def _calc_shifted_cross_power_spectrum(self, im0=None, im1=None, precision=np.complex64):
        """Calculates shifted cross power spectrum for quantifying x/y-shifts.

            :param im0:         reference image
            :param im1:         subject image to shift
            :param precision:   to be quantified as a datatype
            :return:            2D-numpy-array of the shifted cross power spectrum
        """

732
733
734
        im0 = im0 if im0 is not None else self.matchWin[:] if self.matchWin.imID=='ref'   else self.otherWin[:]
        im1 = im1 if im1 is not None else self.otherWin[:] if self.otherWin.imID=='shift' else self.matchWin[:]

735
736
737
738
739
        assert im0.shape == im1.shape, 'The reference and the target image must have the same dimensions.'
        if im0.shape[0]%2!=0: warnings.warn('Odd row count in one of the match images!')
        if im1.shape[1]%2!=0: warnings.warn('Odd column count in one of the match images!')

        wsYX = self._shrink_winsize_to_binarySize(im0.shape) if self.bin_ws              else im0.shape
740
        wsYX = ((min(wsYX),) * 2                             if self.force_quadratic_win else wsYX) if wsYX else None
741
742
743
744
745
746
747

        if wsYX:
            time0 = time.time()
            if self.v: print('final window size: %s/%s (X/Y)' % (wsYX[1], wsYX[0]))
            center_YX = np.array(im0.shape)/2
            xmin,xmax,ymin,ymax = int(center_YX[1]-wsYX[1]/2), int(center_YX[1]+wsYX[1]/2),\
                                  int(center_YX[0]-wsYX[0]/2), int(center_YX[0]+wsYX[0]/2)
748

749
750
751
752
753
754
755
            in_arr0  = im0[ymin:ymax,xmin:xmax].astype(precision)
            in_arr1  = im1[ymin:ymax,xmin:xmax].astype(precision)

            if self.v:
                PLT.subplot_imshow([in_arr0.astype(np.float32), in_arr1.astype(np.float32)],
                               ['FFTin '+self.ref.title,'FFTin '+self.shift.title], grid=True)

756
            if pyfftw: # if module is installed
757
758
759
760
761
                fft_arr0 = pyfftw.FFTW(in_arr0,np.empty_like(in_arr0), axes=(0,1))()
                fft_arr1 = pyfftw.FFTW(in_arr1,np.empty_like(in_arr1), axes=(0,1))()
            else:
                fft_arr0 = np.fft.fft2(in_arr0)
                fft_arr1 = np.fft.fft2(in_arr1)
762

763
764
765
766
767
            if self.v: print('forward FFTW: %.2fs' %(time.time() -time0))

            eps = np.abs(fft_arr1).max() * 1e-15
            # cps == cross-power spectrum of im0 and im2

768
            temp = np.array(fft_arr0 * fft_arr1.conjugate()) / (np.abs(fft_arr0) * np.abs(fft_arr1) + eps)
769
770
771

            time0 = time.time()
            if 'pyfft' in globals():
772
                ifft_arr = pyfftw.FFTW(temp,np.empty_like(temp), axes=(0,1), direction='FFTW_BACKWARD')()
773
774
775
776
777
778
779
780
781
782
783
784
785
            else:
                ifft_arr = np.fft.ifft2(temp)
            if self.v: print('backward FFTW: %.2fs' %(time.time() -time0))

            cps = np.abs(ifft_arr)
            # scps = shifted cps
            scps = np.fft.fftshift(cps)
            if self.v:
                PLT.subplot_imshow([in_arr0.astype(np.uint16), in_arr1.astype(np.uint16), fft_arr0.astype(np.uint8),
                                fft_arr1.astype(np.uint8), scps], titles=['matching window im0', 'matching window im1',
                                "fft result im0", "fft result im1", "cross power spectrum"], grid=True)
                PLT.subplot_3dsurface(scps.astype(np.float32))
        else:
786
            self.success = False
787
788
789
790
791
792
793
794
795
796
797
798
799
            self.tracked_errors.append(
                RuntimeError('The matching window became too small for calculating a reliable match. Matching failed.'))
            if self.ignErr:
                scps = None
            else:
                raise self.tracked_errors[-1]

        self.fftw_win_size_YX = wsYX
        return scps


    @staticmethod
    def _get_peakpos(scps):
800
801
802
803
804
        """Returns the row/column position of the peak within the given cross power spectrum.

        :param scps: <np.ndarray> shifted cross power spectrum
        :return:     <np.ndarray> [row, column>
        """
805
        max_flat_idx = np.argmax(scps)
806
        return np.array(np.unravel_index(max_flat_idx, scps.shape))
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848


    @staticmethod
    def _get_shifts_from_peakpos(peakpos, arr_shape):
        y_shift = peakpos[0]-arr_shape[0]//2
        x_shift = peakpos[1]-arr_shape[1]//2
        return x_shift,y_shift


    @staticmethod
    def _clip_image(im, center_YX, winSzYX): # TODO this is also implemented in GeoArray
        get_bounds = lambda YX,wsY,wsX: (int(YX[1]-(wsX/2)),int(YX[1]+(wsX/2)),int(YX[0]-(wsY/2)),int(YX[0]+(wsY/2)))
        wsY,wsX    = winSzYX
        xmin,xmax,ymin,ymax = get_bounds(center_YX,wsY,wsX)
        return im[ymin:ymax,xmin:xmax]


    def _get_grossly_deshifted_images(self, im0, im1, x_intshift, y_intshift): # TODO this is also implemented in GeoArray # this should update ref.win.data and shift.win.data
        # get_grossly_deshifted_im0
        old_center_YX = np.array(im0.shape)/2
        new_center_YX = [old_center_YX[0]+y_intshift, old_center_YX[1]+x_intshift]

        x_left  = new_center_YX[1]
        x_right = im0.shape[1]-new_center_YX[1]
        y_above = new_center_YX[0]
        y_below = im0.shape[0]-new_center_YX[0]
        maxposs_winsz = 2*min(x_left,x_right,y_above,y_below)

        gdsh_im0 = self._clip_image(im0, new_center_YX, [maxposs_winsz, maxposs_winsz])

        # get_corresponding_im1_clip
        crsp_im1  = self._clip_image(im1, np.array(im1.shape) / 2, gdsh_im0.shape)

        if self.v:
            PLT.subplot_imshow([self._clip_image(im0, old_center_YX, gdsh_im0.shape), crsp_im1],
                               titles=['reference original', 'target'], grid=True)
            PLT.subplot_imshow([gdsh_im0, crsp_im1], titles=['reference virtually shifted', 'target'], grid=True)
        return gdsh_im0,crsp_im1


    @staticmethod
    def _find_side_maximum(scps, v=0):
849
        centerpos     = [scps.shape[0]//2, scps.shape[1]//2]
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
        profile_left  = scps[ centerpos [0]  ,:centerpos[1]+1]
        profile_right = scps[ centerpos [0]  , centerpos[1]:]
        profile_above = scps[:centerpos [0]+1, centerpos[1]]
        profile_below = scps[ centerpos [0]: , centerpos[1]]

        if v:
            max_count_vals = 10
            PLT.subplot_2dline([[range(len(profile_left)) [-max_count_vals:], profile_left[-max_count_vals:]],
                                [range(len(profile_right))[:max_count_vals] , profile_right[:max_count_vals]],
                                [range(len(profile_above))[-max_count_vals:], profile_above[-max_count_vals:]],
                                [range(len(profile_below))[:max_count_vals:], profile_below[:max_count_vals]]],
                                titles =['Profile left', 'Profile right', 'Profile above', 'Profile below'],
                                shapetuple=(2,2))

        get_sidemaxVal_from_profile = lambda pf: np.array(pf)[::-1][1] if pf[0]<pf[-1] else np.array(pf)[1]
        sm_dicts_lr  = [{'side':si, 'value': get_sidemaxVal_from_profile(pf)} \
                        for pf,si in zip([profile_left,profile_right],['left','right'])]
        sm_dicts_ab  = [{'side':si, 'value': get_sidemaxVal_from_profile(pf)} \
                        for pf,si in zip([profile_above,profile_below],['above','below'])]
        sm_maxVal_lr = max([i['value'] for i in sm_dicts_lr])
        sm_maxVal_ab = max([i['value'] for i in sm_dicts_ab])
        sidemax_lr   = [sm for sm in sm_dicts_lr if sm['value'] is sm_maxVal_lr][0]
        sidemax_ab   = [sm for sm in sm_dicts_ab if sm['value'] is sm_maxVal_ab][0]
        sidemax_lr['direction_factor'] = {'left':-1, 'right':1} [sidemax_lr['side']]
        sidemax_ab['direction_factor'] = {'above':-1,'below':1} [sidemax_ab['side']]

        if v:
            print('Horizontal side maximum found %s. value: %s' %(sidemax_lr['side'],sidemax_lr['value']))
878
            print('Vertical side maximum found %s. value: %s'   %(sidemax_ab['side'],sidemax_ab['value']))
879
880
881
882
883
884
885
886
887
888

        return sidemax_lr, sidemax_ab


    def _calc_integer_shifts(self, scps):
        peakpos = self._get_peakpos(scps)
        x_intshift, y_intshift = self._get_shifts_from_peakpos(peakpos, scps.shape)
        return x_intshift, y_intshift


889
    def _calc_shift_reliability(self, scps):
890
891
892
893
894
895
896
897
898
899
900
901
902
903
        """Calculates a confidence percentage that can be used as an assessment for reliability of the calculated shifts.

        :param scps:    <np.ndarray> shifted cross power spectrum
        :return:
        """

        # calculate mean power at peak
        peakR, peakC  = self._get_peakpos(scps)
        power_at_peak = np.mean(scps[peakR-1:peakR+2, peakC-1:peakC+2])

        # calculate mean power without peak + 3* standard deviation
        scps_masked        = scps
        scps_masked[peakR-1:peakR+2, peakC-1:peakC+2] = -9999
        scps_masked        = np.ma.masked_equal(scps_masked, -9999)
904
        power_without_peak = np.mean(scps_masked) + 2* np.std(scps_masked)
905
906
907
908
909
910

        # calculate confidence
        confid = 100-((power_without_peak/power_at_peak)*100)
        confid = 100 if confid > 100 else 0 if confid < 0 else confid

        if not self.q:
911
            print('Estimated reliability of the calculated shifts:  %.1f' %confid, '%')
912
913
914
915

        return confid


916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
    def _validate_integer_shifts(self, im0, im1, x_intshift, y_intshift):

        if (x_intshift, y_intshift)!=(0,0):
            # temporalily deshift images on the basis of calculated integer shifts
            gdsh_im0, crsp_im1 = self._get_grossly_deshifted_images(im0, im1, x_intshift, y_intshift)

            # check if integer shifts are now gone (0/0)
            scps = self._calc_shifted_cross_power_spectrum(gdsh_im0, crsp_im1)
            if scps is not None:
                peakpos = self._get_peakpos(scps)
                x_shift, y_shift = self._get_shifts_from_peakpos(peakpos, scps.shape)
                if (x_shift, y_shift) == (0,0):
                    return 'valid', 0, 0, scps
                else:
                    return 'invalid', x_shift, y_shift, scps
            else:
                return 'invalid', None, None, scps
        else:
            return 'valid', 0, 0, None


937
    def _calc_subpixel_shifts(self, scps):
938
939
940
941
942
943
944
945
946
947
948
        sidemax_lr, sidemax_ab = self._find_side_maximum(scps, self.v)
        x_subshift = (sidemax_lr['direction_factor']*sidemax_lr['value'])/(np.max(scps)+sidemax_lr['value'])
        y_subshift = (sidemax_ab['direction_factor']*sidemax_ab['value'])/(np.max(scps)+sidemax_ab['value'])
        return x_subshift, y_subshift


    @staticmethod
    def _get_total_shifts(x_intshift, y_intshift, x_subshift, y_subshift):
        return x_intshift+x_subshift, y_intshift+y_subshift


949
950
951
952
953
954
955
956
957
958
959
960
961
962
    def _get_deshifted_otherWin(self):
        """Returns a de-shifted version of self.otherWin as a GeoArray instance.The output dimensions and geographic
        bounds are equal to those of self.matchWin and geometric shifts are corrected according to the previously
        computed X/Y shifts within the matching window. This allows direct application of algorithms e.g. measuring
        image similarity.

        The image subset that is resampled in this function is always the same that has been resampled during
        computation of geometric shifts (usually the image with the higher geometric resolution).

        :returns:   GeoArray instance of de-shifted self.otherWin
        """

        # shift vectors have been calculated to fit target image onto reference image
        # -> so the shift vectors have to be inverted if shifts are applied to reference image
963
964
965
966
967
968
969
970
        coreg_info = self._get_inverted_coreg_info() if self.otherWin.imID=='ref' else self.coreg_info

        matchFull = self.ref if self.matchWin.imID=='ref' else self.shift
        otherFull = self.ref if self.otherWin.imID=='ref' else self.shift
        ds_results = DESHIFTER(otherFull, coreg_info,
                               band2process  = otherFull.band4match+1,
                               clipextent    = list(np.array(self.matchBox.boundsMap)[[0,2,1,3]]),
                               target_xyGrid = matchFull.xygrid_specs,
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
                               q             = True
                               ).correct_shifts()
        return ds_results['GeoArray_shifted']


    def _validate_ssim_improvement(self, v=False):
        """Computes mean structural similarity index between reference and target image before and after correction
        of geometric shifts..

        :param v:   <bool> verbose mode: shows images of the matchWin, otherWin and shifted version of otherWin
        :return:    <tuple> SSIM before an after shift correction
        """

        assert self.success is not None,\
            'Calculate geometric shifts first before trying to measure image similarity improvement!'
        assert self.success in [True, None],\
            'Since calculation of geometric shifts failed, no image similarity improvement can be measured.'

989
        # get image dynamic range
990
991
        dr = max(self.matchWin[:].max(), self.otherWin[:].max()) - \
             min(self.matchWin[:].min(), self.otherWin[:].min())
992
993
994


        # compute SSIM BEFORE shift correction
995
        self.ssim_orig = calc_ssim(self.matchWin[:], self.otherWin[:], dynamic_range=dr) # using gaussian weights could lead to value errors in case of small images when the automatically calulated window size exceeds the image size
996
997
998
999
1000


        # compute SSIM AFTER shift correction

        ## resample otherWin while correcting detected shifts and match geographic bounds of matchWin