CoReg.py 80.8 KB
Newer Older
1
2
# -*- coding: utf-8 -*-

3
4
# AROSICS - Automated and Robust Open-Source Image Co-Registration Software
#
Daniel Scheffler's avatar
Daniel Scheffler committed
5
# Copyright (C) 2017-2021  Daniel Scheffler (GFZ Potsdam, daniel.scheffler@gfz-potsdam.de)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# This software was developed within the context of the GeoMultiSens project funded
# by the German Federal Ministry of Education and Research
# (project grant code: 01 IS 14 010 A-C).
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program.  If not, see <http://www.gnu.org/licenses/>.

24
25
26
import os
import time
import warnings
27
from copy import copy
28
from typing import Iterable, Union, Tuple, List, Optional  # noqa F401
29
30

# custom
31
from osgeo import gdal
32
import numpy as np
33

34
35
36
try:
    import pyfftw
except ImportError:
37
    pyfftw = None
38
from shapely.geometry import Point, Polygon
39
40

# internal modules
41
from .DeShifter import DESHIFTER, _dict_rspAlg_rsp_Int
42
43
from . import geometry as GEO
from . import plotting as PLT
44

45
from geoarray import GeoArray
46
from py_tools_ds.convenience.object_oriented import alias_property
47
from py_tools_ds.geo.coord_calc import get_corner_coordinates
48
from py_tools_ds.geo.vector.topology import get_overlap_polygon, get_smallest_boxImYX_that_contains_boxMapYX
49
from py_tools_ds.geo.projection import prj_equal
50
from py_tools_ds.geo.vector.geometry import boxObj, round_shapelyPoly_coords
51
from py_tools_ds.geo.coord_grid import move_shapelyPoly_to_image_grid, is_coord_grid_equal
52
from py_tools_ds.geo.coord_trafo import reproject_shapelyGeometry, mapXY2imXY, imXY2mapXY
53
54
from py_tools_ds.geo.raster.reproject import warp_ndarray
from py_tools_ds.geo.map_info import geotransform2mapinfo
55
from py_tools_ds.io.vector.writer import write_shp
56

57
__author__ = 'Daniel Scheffler'
58
59


60
class GeoArray_CoReg(GeoArray):
61
62
63
64
    def __init__(self,
                 CoReg_params: dict,
                 imID: str
                 ) -> None:
65
        assert imID in ['ref', 'shift']
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
66

67
68
        # run GeoArray init
        path_or_geoArr = CoReg_params['im_ref'] if imID == 'ref' else CoReg_params['im_tgt']
69
70
71
        nodata = CoReg_params['nodata'][0 if imID == 'ref' else 1]
        progress = CoReg_params['progress']
        q = CoReg_params['q'] if not CoReg_params['v'] else False
72

73
        super(GeoArray_CoReg, self).__init__(path_or_geoArr, nodata=nodata, progress=progress, q=q)
74

75
        self.imID = imID
76
        self.imName = 'reference image' if imID == 'ref' else 'image to be shifted'
77
        self.v = CoReg_params['v']
78
79

        assert isinstance(self, GeoArray), \
80
            'Something went wrong with the creation of GeoArray instance for the %s. The created ' \
81
            'instance does not seem to belong to the GeoArray class. If you are working in Jupyter Notebook, reset ' \
82
            'the kernel and try again.' % self.imName
83

84
        # set title to be used in plots
85
        self.title = os.path.basename(self.filePath) if self.filePath else self.imName
86
87

        # validate params
88
89
        # assert self.prj, 'The %s has no projection.' % self.imName # TODO
        # assert not re.search('LOCAL_CS', self.prj), 'The %s is not georeferenced.' % self.imName # TODO
90
91
92
        assert self.gt, 'The %s has no map information.' % self.imName

        # set band4match
93
94
95
96
97
        self.band4match = (CoReg_params['r_b4match'] if imID == 'ref' else CoReg_params['s_b4match']) - 1
        assert self.bands >= self.band4match + 1 >= 1, \
            "The %s has %s %s. So its band number to match must be %s%s. Got %s." \
            % (self.imName, self.bands, 'bands' if self.bands > 1 else
               'band', 'between 1 and ' if self.bands > 1 else '', self.bands, self.band4match)
98

99
100
        # set footprint_poly
        given_footprint_poly = CoReg_params['footprint_poly_%s' % ('ref' if imID == 'ref' else 'tgt')]
101
        given_corner_coord = CoReg_params['data_corners_%s' % ('ref' if imID == 'ref' else 'tgt')]
102
103

        if given_footprint_poly:
104
            self.footprint_poly = given_footprint_poly
105
        elif given_corner_coord is not None:
106
            self.footprint_poly = Polygon(given_corner_coord)
107
108
        elif not CoReg_params['calc_corners']:
            # use the image extent
109
            self.footprint_poly = Polygon(get_corner_coordinates(gt=self.gt, cols=self.cols, rows=self.rows))
110
        else:
111
112
113
            # footprint_poly is calculated automatically by GeoArray
            if not CoReg_params['q']:
                print('Calculating actual data corner coordinates for %s...' % self.imName)
114

115
            self.calc_mask_nodata(fromBand=self.band4match)  # this avoids that all bands have to be read
116

117
118
119
120
121
122
123
124
            with warnings.catch_warnings(record=True) as w:
                _ = self.footprint_poly  # execute getter

            if len(w) > 0 and 'disjunct polygone(s) outside' in str(w[-1].message):
                warnings.warn('The footprint of the %s contains multiple separate image parts. '
                              'AROSICS will only process the largest image part.' % self.imName)
                # FIXME use a convex hull as footprint poly

125
126
127
128
        # validate footprint poly
        if not self.footprint_poly.is_valid:
            self.footprint_poly = self.footprint_poly.buffer(0)

129
        if not self.q:
Daniel Scheffler's avatar
Daniel Scheffler committed
130
            print('Bounding box of calculated footprint for %s:\n\t%s' % (self.imName, self.footprint_poly.bounds))
131

132
133
134
        # add bad data mask
        given_mask = CoReg_params['mask_baddata_%s' % ('ref' if imID == 'ref' else 'tgt')]
        if given_mask:
135
            self.mask_baddata = given_mask  # runs GeoArray.mask_baddata.setter -> sets it to BadDataMask()
Daniel Scheffler's avatar
Daniel Scheffler committed
136

137
    poly = alias_property('footprint_poly')  # ensures that self.poly is updated if self.footprint_poly is updated
Daniel Scheffler's avatar
Daniel Scheffler committed
138
139


140
class COREG(object):
141
    """The COREG class detects and corrects global X/Y shifts between a target and reference image.
Daniel Scheffler's avatar
Daniel Scheffler committed
142
143
144
145
146
147

    Geometric shifts are calculated at a specific (adjustable) image position. Correction performs a global shifting
    in X- or Y direction.

    See help(COREG) for documentation!
    """
148

149
150
151
152
153
154
155
156
    def __init__(self,
                 im_ref: Union[GeoArray, str],
                 im_tgt: Union[GeoArray, str],
                 path_out: str = None,
                 fmt_out: str = 'ENVI',
                 out_crea_options: list = None,
                 r_b4match: int = 1,
                 s_b4match: int = 1,
Daniel Scheffler's avatar
Daniel Scheffler committed
157
                 wp: Tuple[float, float] = (None, None),
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
                 ws: Tuple[int, int] = (256, 256),
                 max_iter: int = 5,
                 max_shift: int = 5,
                 align_grids: bool = False,
                 match_gsd: bool = False,
                 out_gsd: Tuple[float] = None,
                 target_xyGrid: List[List] = None,
                 resamp_alg_deshift: str = 'cubic',
                 resamp_alg_calc: str = 'cubic',
                 footprint_poly_ref: str = None,
                 footprint_poly_tgt: str = None,
                 data_corners_ref: list = None,
                 data_corners_tgt: list = None,
                 nodata: Tuple = (None, None),
                 calc_corners: bool = True,
                 binary_ws: bool = True,
                 mask_baddata_ref: Union[GeoArray, str] = None,
                 mask_baddata_tgt: Union[GeoArray, str] = None,
                 CPUs: int = None,
                 force_quadratic_win: bool = True,
                 progress: bool = True,
                 v: bool = False,
                 path_verbose_out: str = None,
                 q: bool = False,
                 ignore_errors: bool = False
                 ) -> None:
Daniel Scheffler's avatar
Daniel Scheffler committed
184
        """Get an instance of the COREG class.
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        :param im_ref:
            source path (any GDAL compatible image format is supported) or GeoArray instance of reference image

        :param im_tgt:
            source path (any GDAL compatible image format is supported) or GeoArray instance of image to be shifted

        :param path_out:
            target path of the coregistered image
            - if None (default), the method correct_shifts() does not write to disk
            - if 'auto': /dir/of/im1/<im1>__shifted_to__<im0>.bsq

        :param fmt_out:
            raster file format for output file. ignored if path_out is None. can be any GDAL compatible raster file
            format (e.g. 'ENVI', 'GTIFF'; default: ENVI). Refer to http://www.gdal.org/formats_list.html to get a full
            list of supported formats.

        :param out_crea_options:
          GDAL creation options for the output image, e.g. ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]

        :param r_b4match:
            band of reference image to be used for matching (starts with 1; default: 1)

        :param s_b4match:
            band of shift image to be used for matching (starts with 1; default: 1)

        :param wp:
212
            custom matching window position as (X, Y) map coordinate in the same projection like the reference image
213
214
215
            (default: central position of image overlap)

        :param ws:
216
            custom matching window size [pixels] as (X, Y) tuple (default: (256,256))
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

        :param max_iter:
            maximum number of iterations for matching (default: 5)

        :param max_shift:
            maximum shift distance in reference image pixel units (default: 5 px)

        :param align_grids:
            align the coordinate grids of the image to be and the reference image (default: False)

        :param match_gsd:
            match the output pixel size to pixel size of the reference image (default: False)

        :param out_gsd:
            xgsd ygsd: set the output pixel size in map units
            (default: original pixel size of the image to be shifted)

        :param target_xyGrid:
            a list with a target x-grid and a target y-grid like [[15,45], [15,45]]
            This overrides 'out_gsd', 'align_grids' and 'match_gsd'.

        :param resamp_alg_deshift:
            the resampling algorithm to be used for shift correction (if neccessary)
            - valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average, mode, max, min, med, q1, q3
            - default: cubic

        :param resamp_alg_calc:
            the resampling algorithm to be used for all warping processes during calculatio of spatial shift
            - valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average, mode, max, min, med, q1, q3
            - default: cubic (highly recommended)

        :param footprint_poly_ref:
            footprint polygon of the reference image (WKT string or shapely.geometry.Polygon),
             e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000, 299999 6000000))'

        :param footprint_poly_tgt:
            footprint polygon of the image to be shifted (WKT string or shapely.geometry.Polygon)
            e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000, 299999 6000000))'

        :param data_corners_ref:
            map coordinates of data corners within reference image. ignored if footprint_poly_ref is given.

        :param data_corners_tgt:
            map coordinates of data corners within image to be shifted. ignored if footprint_poly_tgt is given.

        :param nodata:
            no data values for reference image and image to be shifted

        :param calc_corners:
             calculate true positions of the dataset corners in order to get a useful matching window position within
             the actual image overlap (default: 1; deactivated if '-cor0' and '-cor1' are given

        :param binary_ws:
            use binary X/Y dimensions for the matching window (default: 1)

        :param mask_baddata_ref:
            path to a 2D boolean mask file (or an instance of GeoArray) for the reference image where all bad data
            pixels (e.g. clouds) are marked with True and the remaining pixels with False. Must have the same
            geographic extent and projection like 'im_ref'. The mask is used to check if the chosen matching window
            position is valid in the sense of useful data. Otherwise this window position is rejected.

        :param mask_baddata_tgt:
            path to a 2D boolean mask file (or an instance of GeoArray) for the image to be shifted where all bad data
            pixels (e.g. clouds) are marked with True and the remaining pixels with False. Must have the same
            geographic extent and projection like 'im_ref'. The mask is used to check if the chosen matching window
            position is valid in the sense of useful data. Otherwise this window position is rejected.

        :param CPUs:
            number of CPUs to use during pixel grid equalization (default: None, which means 'all CPUs available')

        :param force_quadratic_win:
            force a quadratic matching window (default: 1)

        :param progress:
            show progress bars (default: True)

        :param v:
            verbose mode (default: False)

        :param path_verbose_out:
            an optional output directory for intermediate results
            (if not given, no intermediate results are written to disk)

        :param q:
            quiet mode (default: False)

        :param ignore_errors:
            Useful for batch processing. (default: False)
            In case of error COREG.success == False and COREG.x_shift_px/COREG.y_shift_px is None
306
        """
307
        self.params = dict([x for x in locals().items() if x[0] != "self"])
308

309
310
311
312
        # input validation
        if gdal.GetDriverByName(fmt_out) is None:
            raise ValueError(fmt_out, "'%s' is not a supported GDAL driver." % fmt_out)

313
314
        if match_gsd and out_gsd:
            warnings.warn("'-out_gsd' is ignored because '-match_gsd' is set.\n")
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

        if out_gsd and (not isinstance(out_gsd, list) or len(out_gsd) != 2):
            raise ValueError(out_gsd, 'out_gsd must be a list with two values.')

        if data_corners_ref and not isinstance(data_corners_ref[0], list):
            # group if not [[x,y],[x,y]..] but [x,y,x,y,]
            data_corners_ref = [data_corners_ref[i:i + 2]
                                for i in range(0, len(data_corners_ref), 2)]

        if data_corners_tgt and not isinstance(data_corners_tgt[0], list):
            # group if not [[x,y],[x,y]..]
            data_corners_tgt = [data_corners_tgt[i:i + 2]
                                for i in range(0, len(data_corners_tgt), 2)]

        if nodata and (not isinstance(nodata, Iterable) or len(nodata) != 2):
            raise ValueError(nodata, "'nodata' must be an iterable with two values. "
                                     "Got %s with length %s." % (type(nodata), len(nodata)))

333
        for rspAlg in [resamp_alg_deshift, resamp_alg_calc]:
334
335
336
            if rspAlg not in _dict_rspAlg_rsp_Int.keys():
                raise ValueError("'%s' is not a supported resampling algorithm." % rspAlg)

337
        if resamp_alg_calc in ['average', 5] and (v or not q):
338
            warnings.warn("The resampling algorithm 'average' causes sinus-shaped patterns in fft images that will "
339
340
                          "affect the precision of the calculated spatial shifts! It is highly recommended to "
                          "choose another resampling algorithm.")
341

342
343
344
345
346
347
348
349
350
351
352
353
        self.path_out = path_out  # updated by self.set_outpathes
        self.fmt_out = fmt_out
        self.out_creaOpt = out_crea_options
        self.win_pos_XY = wp  # updated by self.get_opt_winpos_winsize()
        self.win_size_XY = ws  # updated by self.get_opt_winpos_winsize()
        self.max_iter = max_iter
        self.max_shift = max_shift
        self.align_grids = align_grids
        self.match_gsd = match_gsd
        self.out_gsd = out_gsd
        self.target_xyGrid = target_xyGrid
        self.rspAlg_DS = resamp_alg_deshift \
354
            if isinstance(resamp_alg_deshift, str) else _dict_rspAlg_rsp_Int[resamp_alg_deshift]
355
        self.rspAlg_calc = resamp_alg_calc \
356
            if isinstance(resamp_alg_calc, str) else _dict_rspAlg_rsp_Int[resamp_alg_calc]
357
358
359
        self.calc_corners = calc_corners
        self.CPUs = CPUs
        self.bin_ws = binary_ws
360
        self.force_quadratic_win = force_quadratic_win
361
362
363
364
365
366
367
        self.v = v
        self.path_verbose_out = path_verbose_out
        self.q = q if not v else False  # overridden by v
        self.progress = progress if not q else False  # overridden by q

        self.ignErr = ignore_errors
        self.max_win_sz_changes = 3  # TODO: änderung der window size, falls nach max_iter kein valider match gefunden
368
369
370
371
372
373
        self.ref: Optional[GeoArray_CoReg] = None  # set by self.get_image_params
        self.shift: Optional[GeoArray_CoReg] = None  # set by self.get_image_params
        self.matchBox: Optional[boxObj] = None  # set by self.get_clip_window_properties()
        self.otherBox: Optional[boxObj] = None  # set by self.get_clip_window_properties()
        self.matchWin: Optional[GeoArray] = None  # set by self._get_image_windows_to_match()
        self.otherWin: Optional[GeoArray] = None  # set by self._get_image_windows_to_match()
374
375
376
        self.overlap_poly = None  # set by self._get_overlap_properties()
        self.overlap_percentage = None  # set by self._get_overlap_properties()
        self.overlap_area = None  # set by self._get_overlap_properties()
377
378
        self.imfft_xgsd = None  # set by self.get_clip_window_properties()
        self.imfft_ygsd = None  # set by self.get_clip_window_properties()
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
        self.fftw_works = None  # set by self._calc_shifted_cross_power_spectrum()
        self.fftw_win_size_YX = None  # set by calc_shifted_cross_power_spectrum()

        self.x_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.y_shift_px = None  # always in shift image units (image coords) # set by calculate_spatial_shifts()
        self.x_shift_map = None  # set by self.get_updated_map_info()
        self.y_shift_map = None  # set by self.get_updated_map_info()
        self.vec_length_map = None
        self.vec_angle_deg = None
        self.updated_map_info = None  # set by self.get_updated_map_info()
        self.ssim_orig = None  # set by self._validate_ssim_improvement()
        self.ssim_deshifted = None  # set by self._validate_ssim_improvement()
        self._ssim_improved = None  # private attribute to be filled by self.ssim_improved
        self.shift_reliability = None  # set by self.calculate_spatial_shifts()

        self.tracked_errors = []  # expanded each time an error occurs
        self.success = None  # default
        self.deshift_results = None  # set by self.correct_shifts()
397

398
        # try:
399
400
401
        gdal.AllRegister()
        self._get_image_params()
        self._set_outpathes(im_ref, im_tgt)
402
        self.grid2use = 'ref' if self.shift.xgsd <= self.ref.xgsd else 'shift'
403
404
        if self.v:
            print('resolutions: ', self.ref.xgsd, self.shift.xgsd)
405

406
        self._get_overlap_properties()
407
408

        if self.v and self.path_verbose_out:
409
410
411
            write_shp(os.path.join(self.path_verbose_out, 'poly_imref.shp'), self.ref.poly, self.ref.prj)
            write_shp(os.path.join(self.path_verbose_out, 'poly_im2shift.shp'), self.shift.poly, self.shift.prj)
            write_shp(os.path.join(self.path_verbose_out, 'overlap_poly.shp'), self.overlap_poly, self.ref.prj)
412

413
414
        # FIXME: transform_mapPt1_to_mapPt2(im2shift_center_map, ds_imref.GetProjection(), ds_im2shift.GetProjection())
        # FIXME später basteln für den fall, dass projektionen nicht gleich sind
415
416
417

        # get_clip_window_properties
        self._get_opt_winpos_winsize()
418
419
420
        if not self.q:
            print('Matching window position (X,Y): %s/%s' % (self.win_pos_XY[0], self.win_pos_XY[1]))
        self._get_clip_window_properties()  # sets self.matchBox, self.otherBox and much more
421

422
        if self.v and self.path_verbose_out and self.matchBox.mapPoly and self.success is not False:
423
424
            write_shp(os.path.join(self.path_verbose_out, 'poly_matchWin.shp'),
                      self.matchBox.mapPoly, self.matchBox.prj)
425

426
        self.success = False if self.success is False or not self.matchBox.boxMapYX else None
427
428
429

        # except BaseException:

430
        self._coreg_info = None  # private attribute to be filled by self.coreg_info property
431

432
    def _handle_error(self, error, warn=False, warnMsg=None):
Daniel Scheffler's avatar
Daniel Scheffler committed
433
434
435
        """Append the given error to self.tracked_errors.

        This sets self.success to False and raises the error in case self.ignore_errors = True.
436
437
438
439
440
441
442
443
444
445
446
447
448

        :param error:   instance of an error
        :param warn:    whether to give a warning in case error would be ignored otherwise
        :param warnMsg: a custom message for the warning
        :return:
        """
        warn = warn or warnMsg is not None or self.v

        self.tracked_errors.append(error)
        self.success = False

        if self.ignErr and warn:
            warnMsg = repr(error) if not warnMsg else warnMsg
449
            print('\nWARNING: ' + warnMsg)
450
451
452
453

        if not self.ignErr:
            raise error

454
455
456
457
    def _set_outpathes(self,
                       im_ref: Union[(GeoArray, str)],
                       im_tgt: Union[(GeoArray, str)]
                       ) -> None:
458
459
460
461
462
        def get_baseN(path):
            return os.path.splitext(os.path.basename(path))[0]

        # get input paths
        def get_input_path(im):
Daniel Scheffler's avatar
Daniel Scheffler committed
463
464
465
466
467
468
469
470
            path = im.filePath if isinstance(im, GeoArray) else im

            if isinstance(im, GeoArray) and im.filePath is None and self.path_out == 'auto':
                raise ValueError(self.path_out, "The output path must be explicitly set in case the input "
                                                "reference or target image is in-memory (without a reference to a "
                                                "physical file on disk). Received path_out='%s'." % self.path_out)

            return path
471

Daniel Scheffler's avatar
Daniel Scheffler committed
472
473
        path_im_ref = get_input_path(im_ref)
        path_im_tgt = get_input_path(im_tgt)
474

475
        if self.path_out:  # this also applies to self.path_out='auto'
476
477
478
479

            if self.path_out == 'auto':
                dir_out, fName_out = os.path.dirname(path_im_tgt), ''
            else:
480
                dir_out, fName_out = os.path.split(self.path_out)
481
482
483
484
485
486
487
488
489
490
491
492
493
494

            if dir_out and fName_out:
                # a valid output path is given => do nothing
                pass

            else:
                # automatically create an output directory and filename if not given
                if not dir_out:
                    if not path_im_ref:
                        dir_out = os.path.abspath(os.path.curdir)
                    else:
                        dir_out = os.path.dirname(path_im_ref)

                if not fName_out:
495
496
497
498
499
                    ext = 'bsq' if self.fmt_out == 'ENVI' else \
                        gdal.GetDriverByName(self.fmt_out).GetMetadataItem(gdal.DMD_EXTENSION)
                    fName_out = fName_out if fName_out not in ['.', ''] else \
                        '%s__shifted_to__%s' % (get_baseN(path_im_tgt), get_baseN(path_im_ref))
                    fName_out = fName_out + '.%s' % ext if ext else fName_out
500

501
                self.path_out = os.path.abspath(os.path.join(dir_out, fName_out))
502
503
504
505

                assert ' ' not in self.path_out, \
                    "The path of the output image contains whitespaces. This is not supported by GDAL."
        else:
506
            # this only happens if COREG is not instanced from within Python and self.path_out is explicitly set to None
507
508
509
510
511
512
513
514
515
516
517
            # => DESHIFTER will return an array
            pass

        if self.v:
            if self.path_verbose_out:
                dir_out, dirname_out = os.path.split(self.path_verbose_out)

                if not dir_out:
                    if self.path_out:
                        self.path_verbose_out = os.path.dirname(self.path_out)
                    else:
518
519
520
                        self.path_verbose_out = \
                            os.path.abspath(os.path.join(os.path.curdir, 'CoReg_verboseOut__%s__shifted_to__%s'
                                                         % (get_baseN(path_im_tgt), get_baseN(path_im_ref))))
521
522
523
524
525
526
527
528
529
                elif dirname_out and not dir_out:
                    self.path_verbose_out = os.path.abspath(os.path.join(os.path.curdir, dirname_out))

                assert ' ' not in self.path_verbose_out, \
                    "'path_verbose_out' contains whitespaces. This is not supported by GDAL."

        else:
            self.path_verbose_out = None

530
531
        if self.path_verbose_out and not os.path.isdir(self.path_verbose_out):
            os.makedirs(self.path_verbose_out)
532

533
    def _get_image_params(self) -> None:
534
535
        self.ref = GeoArray_CoReg(self.params, 'ref')
        self.shift = GeoArray_CoReg(self.params, 'shift')
536
537

        if not prj_equal(self.ref.prj, self.shift.prj):
538
539
            from pyproj import CRS

540
            raise RuntimeError(
541
                'Input projections are not equal. Different projections are currently not supported. '
542
543
                'Got %s / %s.' % (CRS.from_user_input(self.ref.prj).name,
                                  CRS.from_user_input(self.shift.prj).name))
544

545
    def _get_overlap_properties(self) -> None:
546
547
548
549
        overlap_tmp = get_overlap_polygon(self.ref.poly, self.shift.poly, self.v)
        self.overlap_poly = overlap_tmp['overlap poly']  # has to be in reference projection
        self.overlap_percentage = overlap_tmp['overlap percentage']
        self.overlap_area = overlap_tmp['overlap area']
550
551
552
553

        assert self.overlap_poly, 'The input images have no spatial overlap.'

        # overlap are must at least cover 16*16 pixels
554
555
556
557
        px_area = self.ref.xgsd * self.ref.ygsd if self.grid2use == 'ref' else self.shift.xgsd * self.shift.ygsd
        px_covered = self.overlap_area / px_area
        assert px_covered > 16 * 16, \
            'Overlap area covers only %s pixels. At least 16*16 pixels are needed.' % px_covered
558

559
    def equalize_pixGrids(self) -> None:
Daniel Scheffler's avatar
Daniel Scheffler committed
560
        """Equalize image grids and projections of reference and target image (align target to reference)."""
561
        if not (prj_equal(self.ref.prj, self.shift.prj) and
562
                is_coord_grid_equal(self.ref.gt, *self.shift.xygrid_specs, tolerance=1e8)):
563
564
            if not self.q:
                print("Equalizing pixel grids and projections of reference and target image...")
Daniel Scheffler's avatar
Daniel Scheffler committed
565

566
            if self.grid2use == 'ref':
567
                # resample target image to reference image
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
568
569
                if self.shift.bands > 1:
                    self.shift = self.shift.get_subset(zslice=slice(self.shift.band4match, self.shift.band4match + 1))
570
                self.shift.reproject_to_new_grid(prototype=self.ref, CPUs=self.CPUs)
571
                self.shift.band4match = 0  # after resampling there is only one band in the GeoArray
572

573
574
            else:
                # resample reference image to target image
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
575
576
                if self.ref.bands > 1:
                    self.ref = self.ref.get_subset(zslice=slice(self.ref.band4match, self.ref.band4match + 1))
577
                self.ref.reproject_to_new_grid(prototype=self.shift, CPUs=self.CPUs)
Daniel Scheffler's avatar
Daniel Scheffler committed
578
                self.ref.band4match = 0  # after resampling there is only one band in the GeoArray
579

580
581
582
            # self.ref.gt = (self.ref.gt[0], 1, self.ref.gt[2], self.ref.gt[3], self.ref.gt[4], -1)
            # self.shift.gt = (self.shift.gt[0], 1, self.shift.gt[2], self.shift.gt[3], self.shift.gt[4], -1)

583
    def show_image_footprints(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
584
585
586
587
        """Show a web map containing the calculated footprints and overlap area of the input images.

        NOTE: This method is intended to be called from Jupyter Notebook.
        """
588
589
590
        # TODO different colors for polygons
        assert self.overlap_poly, 'Please calculate the overlap polygon first.'

591
592
        import folium
        import geojson
593

594
595
596
597
        refPoly = reproject_shapelyGeometry(self.ref.poly, self.ref.prj, 4326)
        shiftPoly = reproject_shapelyGeometry(self.shift.poly, self.shift.prj, 4326)
        overlapPoly = reproject_shapelyGeometry(self.overlap_poly, self.shift.prj, 4326)
        matchBoxPoly = reproject_shapelyGeometry(self.matchBox.mapPoly, self.shift.prj, 4326)
598
599

        m = folium.Map(location=tuple(np.array(overlapPoly.centroid.coords.xy).flatten())[::-1])
600
        for poly in [refPoly, shiftPoly, overlapPoly, matchBoxPoly]:
601
602
603
604
            gjs = geojson.Feature(geometry=poly, properties={})
            folium.GeoJson(gjs).add_to(m)
        return m

605
606
607
608
609
610
    def show_matchWin(self,
                      figsize: tuple = (15, 15),
                      interactive: bool = True,
                      after_correction: bool = None,
                      pmin=2,
                      pmax=98):
611
        """Show the image content within the matching window.
612

613
614
        :param figsize:             figure size
        :param interactive:         whether to return an interactive figure based on 'holoviews' library
615
616
617
618
619
        :param after_correction:    True/False: show the image content AFTER shift correction or before
                                    None: show both states - before and after correction (default)
        :param pmin:                percentage to be used for excluding the darkest pixels from stretching (default: 2)
        :param pmax:                percentage to be used for excluding the brightest pixels from stretching
                                    (default: 98)
620
621
        :return:
        """
622
623
624
625
626
        if interactive:
            # use Holoviews
            try:
                import holoviews as hv
            except ImportError:
627
                hv = None
628
629
630
            if not hv:
                raise ImportError(
                    "This method requires the library 'holoviews'. It can be installed for Anaconda with "
631
                    "the shell command 'conda install -c conda-forge holoviews bokeh'.")
632

633
            hv.notebook_extension('matplotlib')
634
635
636
637
638
639
640
641
642
643
            hv.Store.add_style_opts(hv.Image, ['vmin', 'vmax'])

            # hv.Store.option_setters.options().Image = hv.Options('style', cmap='gnuplot2')
            # hv.Store.add_style_opts(hv.Image, ['cmap'])
            # renderer = hv.Store.renderers['matplotlib'].instance(fig='svg', holomap='gif')
            # RasterPlot = renderer.plotting_class(hv.Image)
            # RasterPlot.cmap = 'gray'
            otherWin_corr = self._get_deshifted_otherWin()
            xmin, xmax, ymin, ymax = self.matchBox.boundsMap

644
            def get_hv_image(geoArr):
645
646
                from skimage.exposure import rescale_intensity  # import here to avoid static TLS ImportError

647
648
649
650
651
                arr_masked = np.ma.masked_equal(geoArr[:], geoArr.nodata)
                vmin = np.nanpercentile(arr_masked.compressed(), pmin)
                vmax = np.nanpercentile(arr_masked.compressed(), pmax)
                arr2plot = rescale_intensity(arr_masked, in_range=(vmin, vmax), out_range='int8')

652
653
654
655
656
657
658
659
                return hv.Image(arr2plot, bounds=(xmin, ymin, xmax, ymax))\
                    .opts(style={'cmap': 'gray',
                                 'vmin': vmin,
                                 'vmax': vmax,
                                 'interpolation': 'none'},
                          plot={'fig_inches': figsize,
                                # 'fig_size': 100,
                                'show_grid': True})
660

661
662
663
            hvIm_matchWin = get_hv_image(self.matchWin)
            hvIm_otherWin_orig = get_hv_image(self.otherWin)
            hvIm_otherWin_corr = get_hv_image(otherWin_corr)
664

665
666
667
            if after_correction is None:
                # view both states
                print('Matching window before and after correction (above and below): ')
668

669
                # get layouts (docs on options: https://holoviews.org/user_guide)
670
671
                layout_before = (hvIm_matchWin + hvIm_matchWin).opts(plot=dict(fig_inches=figsize))
                layout_after = (hvIm_otherWin_orig + hvIm_otherWin_corr).opts(plot=dict(fig_inches=figsize))
672

673
674
675
676
677
678
679
680
681
682
                # plot!
                imgs = {1: layout_before, 2: layout_after}
                hmap = hv.HoloMap(imgs, kdims=['image']).collate().cols(1)

            else:
                # view state before or after correction
                imgs = {1: hvIm_matchWin, 2: hvIm_otherWin_corr if after_correction else hvIm_otherWin_orig}
                hmap = hv.HoloMap(imgs, kdims=['image'])

            # Construct a HoloMap by evaluating the function over all the keys
683
            # hmap = hv.HoloMap(imgs_corr, kdims=['image']) +  hv.HoloMap(imgs_corr, kdims=['image'])
684

685
686
            # Construct a HoloMap by defining the sampling on the Dimension
            # dmap = hv.DynamicMap(image_slice, kdims=[hv.Dimension('z_axis', values=keys)])
687

688
            return hmap
689

690
691
        else:
            # TODO add titles
Daniel Scheffler's avatar
Daniel Scheffler committed
692
            # TODO handle after_correction=None here
693
            self.matchWin.show(figsize=figsize)
694
            if after_correction:
695
                self._get_deshifted_otherWin().show(figsize=figsize, pmin=pmin, pmax=pmax)
696
            else:
697
                self.otherWin.show(figsize=figsize, pmin=pmin, pmax=pmax)
698

699
    def show_cross_power_spectrum(self, interactive: bool = False) -> None:
Daniel Scheffler's avatar
Daniel Scheffler committed
700
701
702
703
        """Show a 3D surface of the cross power spectrum.

        NOTE: The cross power spectrum is the result from phase correlating the reference and target
              image within the matching window.
704
705
706
707
708
709
710

        :param interactive:  whether to return an interactice 3D surface plot based on 'plotly' library
        :return:
        """
        if interactive:
            # create plotly 3D surface

711
            # import plotly.plotly as py # online mode -> every plot is uploaded into online plotly account
712
713
714
715
716
717
            from plotly.offline import iplot, init_notebook_mode
            import plotly.graph_objs as go

            init_notebook_mode(connected=True)

            z_data = self._calc_shifted_cross_power_spectrum()
718
            data = [go.Surface(z=z_data)]
719
720
721
722
723
            layout = go.Layout(
                title='cross power spectrum',
                autosize=False,
                width=1000,
                height=1000,
724
                margin={'l': 65, 'r': 50, 'b': 65, 't': 90})
725
            fig = go.Figure(data=data, layout=layout)
726
727
728
729
730
731
732
733

            return iplot(fig, filename='SCPS')

        else:
            # use matplotlib
            scps = self._calc_shifted_cross_power_spectrum()
            PLT.subplot_3dsurface(scps.astype(np.float32))

734
    def _get_opt_winpos_winsize(self) -> None:
Daniel Scheffler's avatar
Daniel Scheffler committed
735
736
737
        """Calculate optimal window position and size in reference image units.

        NOTE: The returned values are computed according to DGM, cloud_mask and trueCornerLonLat.
738
        """
739
740
741
742
        # dummy algorithm: get center position of overlap instead of searching ideal window position in whole overlap
        # TODO automatischer Algorithmus zur Bestimmung der optimalen Window Position

        wp = tuple(self.win_pos_XY)
743
744
        assert type(self.win_pos_XY) in [tuple, list, np.ndarray], \
            'The window position must be a tuple of two elements. Got %s with %s elements.' % (type(wp), len(wp))
745
746
747
        wp = tuple(wp)

        if None in wp:
748
            # use centroid point if possible
749
750
751
            overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.centroid.coords.xy
            wp = (wp[0] if wp[0] else overlap_center_pos_x[0]), (wp[1] if wp[1] else overlap_center_pos_y[0])

752
            # validate window position
753
            if not self.overlap_poly.buffer(1e-5).contains(Point(wp)):
754
755
756
757
758
759
760
761
762
763
764
                # in case the centroid point is not within overlap area
                if not self.q:
                    warnings.warn("The centroid point of the two input images could not be used as matching window "
                                  "position since it is outside of the overlap area. Instead the so called "
                                  "'representative point' is used. Alternatively you can provide your own window "
                                  "position as input parameter.")

                # -> use representative point: a point that is garanteed to be within overlap polygon
                overlap_center_pos_x, overlap_center_pos_y = self.overlap_poly.representative_point().coords.xy
                wp = overlap_center_pos_x[0], overlap_center_pos_y[0]

765
            assert self.overlap_poly.buffer(1e-5).contains(Point(wp))
766
767
768

        else:
            # validate window position
769
            if not self.overlap_poly.buffer(1e-5).contains(Point(wp)):
770
                self._handle_error(ValueError('The provided window position %s/%s is outside of the overlap '
771
                                              'area of the two input images. Check the coordinates.' % wp))
772
773
774
775
776
777

        # check if window position is within bad data area if a respective mask has been provided
        for im in [self.ref, self.shift]:
            if im.mask_baddata is not None:
                imX, imY = mapXY2imXY(wp, im.mask_baddata.gt)

778
                if im.mask_baddata[int(imY), int(imX)] is True:
779
                    self._handle_error(
780
                        RuntimeError('According to the provided bad data mask for the %s the chosen window position '
781
782
783
                                     '%s / %s is within a bad data area. Using this window position for coregistration '
                                     'is not reasonable. Please provide a better window position!'
                                     % (im.imName, wp[0], wp[1])))
784

785
786
        self.win_pos_XY = wp
        self.win_size_XY = (int(self.win_size_XY[0]), int(self.win_size_XY[1])) if self.win_size_XY else (512, 512)
787

788
    def _get_clip_window_properties(self) -> None:
Daniel Scheffler's avatar
Daniel Scheffler committed
789
790
791
792
793
        """Calculate all properties of the matching window and the other window.

        These windows are used to read the corresponding image positions in the reference and the target image.

        NOTE: Even if X- and Y-dimension of the target window is equal, the output window can be NON-quadratic!
794
795
796
        """
        # FIXME image sizes like 10000*256 are still possible

797
798
        wpX, wpY = self.win_pos_XY
        wsX, wsY = self.win_size_XY
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

        # image units -> map units
        ref_wsX = wsX * self.ref.xgsd
        ref_wsY = wsY * self.ref.ygsd
        shift_wsX = wsX * self.shift.xgsd
        shift_wsY = wsY * self.shift.ygsd

        ref_box_kwargs = \
            dict(wp=(wpX, wpY),
                 ws=(ref_wsX, ref_wsY),
                 gt=self.ref.gt)
        shift_box_kwargs = \
            dict(wp=(wpX, wpY),
                 ws=(shift_wsX, shift_wsY),
                 gt=self.shift.gt)
        matchBox =\
            boxObj(**ref_box_kwargs) if self.grid2use == 'ref' else \
            boxObj(**shift_box_kwargs)
        otherBox = \
            boxObj(**shift_box_kwargs) if self.grid2use == 'ref' else \
            boxObj(**ref_box_kwargs)
        overlapWin = \
            boxObj(mapPoly=self.overlap_poly,
                   gt=self.ref.gt)
823
824

        # clip matching window to overlap area
825
826
        matchBox.mapPoly = matchBox.mapPoly.intersection(overlapWin.mapPoly)

827
        # check if matchBox extent touches no data area of the image -> if yes: shrink it
828
829
        overlapPoly_within_matchWin = matchBox.mapPoly.intersection(self.overlap_poly)
        if overlapPoly_within_matchWin.area < matchBox.mapPoly.area:
830
831
832
833
834
835
836
            wsX_start, wsY_start = \
                1 if wsX >= wsY else \
                wsX / wsY, 1 if wsY >= wsX else \
                wsY / wsX
            box = boxObj(**dict(wp=(wpX, wpY),
                                ws=(wsX_start, wsY_start),
                                gt=matchBox.gt))
837
            while True:
838
                box.buffer_imXY(1, 1)
839
840
841
842
                if not box.mapPoly.within(overlapPoly_within_matchWin):
                    box.buffer_imXY(-1, -1)
                    matchBox = box
                    break
843
844

        # move matching window to imref grid or im2shift grid
845
846
        mW_rows, mW_cols = \
            (self.ref.rows, self.ref.cols) if self.grid2use == 'ref' else \
847
            (self.shift.rows, self.shift.cols)
848
849
850
851
        matchBox.mapPoly = move_shapelyPoly_to_image_grid(matchBox.mapPoly,
                                                          matchBox.gt, mW_rows,
                                                          mW_cols,
                                                          'NW')
852

853
        # check, if matchBox was moved outside of overlap_poly when moving it to the image grid
854
        if not matchBox.mapPoly.within(overlapWin.mapPoly):
855
            # further shrink matchPoly (1 px buffer is enough because the window was only moved to the grid)
856
            xLarger, yLarger = matchBox.is_larger_DimXY(overlapWin.boundsIm)
857
858
            matchBox.buffer_imXY(-1 if xLarger else 0,
                                 -1 if yLarger else 0)
859

860
        # matching_win directly on grid2use (fix rounding error through coordinate transformation)
861
        matchBox.imPoly = round_shapelyPoly_coords(matchBox.imPoly, precision=0)
862

863
864
865
866
867
868
869
870
871
872
873
874
875
        # check if matching window larger than the other one or equal
        if not (matchBox.mapPoly.within(otherBox.mapPoly) or
                matchBox.mapPoly == otherBox.mapPoly):
            # if yes, find the smallest 'other window' that encloses the matching window
            otherBox.boxImYX = \
                get_smallest_boxImYX_that_contains_boxMapYX(
                    matchBox.boxMapYX,
                    otherBox.gt,
                    tolerance_ndigits=5  # avoids float coordinate rounding issues
                )

        # in case after enlarging the 'other window', it gets too large for the overlap area
        # -> shrink match window and recompute smallest possible other window until everything is fine
Daniel Scheffler's avatar
Daniel Scheffler committed
876
        t_start = time.time()
877
878
        while not otherBox.mapPoly.within(overlapWin.mapPoly):
            xLarger, yLarger = otherBox.is_larger_DimXY(overlapWin.boundsIm)
879
880
            matchBox.buffer_imXY(-1 if xLarger else 0,
                                 -1 if yLarger else 0)
881
            previous_area = otherBox.mapPoly.area
882
883
884
885
886
887
888
889
890
            otherBox.boxImYX = \
                get_smallest_boxImYX_that_contains_boxMapYX(
                    matchBox.boxMapYX,
                    otherBox.gt,
                    tolerance_ndigits=5  # avoids float coordinate rounding issues
                )

            if previous_area == otherBox.mapPoly.area or \
               time.time() - t_start > 1.5:
Daniel Scheffler's avatar
Daniel Scheffler committed
891
892
                # happens e.g in case of a triangular footprint
                # NOTE: first condition is not always fulfilled -> therefore added timeout of 1.5 sec
893
                self._handle_error(
894
895
                    RuntimeError('Matching window in target image is larger than overlap area but further shrinking '
                                 'the matching window is not possible. Check if the footprints of the input data have '
896
                                 'been computed correctly.' +
897
898
                                 (' Matching window shrinking timed out.' if time.time() - t_start > 5 else '')))
                break  # break out of while loop in order to avoid that code gets stuck here
899

Daniel Scheffler's avatar
Daniel Scheffler committed
900
901
        # output validation
        for winBox in [matchBox, otherBox]:
902
903
            if winBox.imDimsYX[0] < 16 or \
               winBox.imDimsYX[1] < 16:
Daniel Scheffler's avatar
Daniel Scheffler committed
904
905
906
907
                self._handle_error(
                    RuntimeError("One of the input images does not have sufficient gray value information "
                                 "(non-no-data values) for placing a matching window at the position %s. "
                                 "Matching failed." % str((wpX, wpY))))
Daniel Scheffler's avatar
Daniel Scheffler committed
908

909
        if self.success is not False:
Daniel Scheffler's avatar
Daniel Scheffler committed
910
            # check result -> ProgrammingError if not fulfilled
911
            def within_equal(inner, outer):
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
                return inner.within(outer.buffer(1e-5)) or \
                       inner.equals(outer)

            assert within_equal(matchBox.mapPoly,
                                otherBox.mapPoly)
            assert within_equal(otherBox.mapPoly,
                                overlapWin.mapPoly)

            if self.grid2use == 'ref':
                self.imfft_xgsd = self.ref.xgsd
                self.imfft_ygsd = self.ref.ygsd
                self.ref.win = matchBox
                self.shift.win = otherBox
            else:
                self.imfft_xgsd = self.shift.xgsd
                self.imfft_ygsd = self.shift.ygsd
                self.ref.win = otherBox
                self.shift.win = matchBox
930

931
932
            self.matchBox = matchBox
            self.otherBox = otherBox
933

934
935
936
            self.ref.win.size_YX = tuple([int(i) for i in self.ref.win.imDimsYX])
            self.shift.win.size_YX = tuple([int(i) for i in self.shift.win.imDimsYX])
            match_win_size_XY = tuple(reversed([int(i) for i in matchBox.imDimsYX]))
937

938
939
            if not self.q and \
               match_win_size_XY != self.win_size_XY:
940
                print('Target window size %s not possible due to too small overlap area or window position too close '
941
                      'to an image edge. New matching window size: %s.' % (self.win_size_XY, match_win_size_XY))
942

943
944
                # write_shp('matchMapPoly.shp', matchBox.mapPoly,matchBox.prj)
                # write_shp('otherMapPoly.shp', otherBox.mapPoly,otherBox.prj)
945

946
    def _get_image_windows_to_match(self) -> None:
Daniel Scheffler's avatar
Daniel Scheffler committed
947
        """Read the matching window and the other window as subsets.
948

Daniel Scheffler's avatar
Daniel Scheffler committed
949
950
951
        Th other window is resampled to the resolution and the pixel grid of the matching window.
        The result consists of two images with the same dimensions and exactly the same corner coordinates.
        """
952
953
        match_fullGeoArr = self.ref if self.grid2use == 'ref' else self.shift
        other_fullGeoArr = self.shift if self.grid2use == 'ref' else self.ref
954

Daniel Scheffler's avatar
Daniel Scheffler committed
955
        # read matchWin via subset-read -> self.matchWin.data
956
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.matchBox.boxImYX)
957
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
958
            rE <= match_fullGeoArr.rows and cE <= match_fullGeoArr.cols, \
959
960
961
962
963
            'Requested area is not completely within the input array for %s.' % match_fullGeoArr.imName
        self.matchWin = GeoArray(match_fullGeoArr[rS:rE + 1, cS:cE + 1, match_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(match_fullGeoArr.gt, self.matchBox.boxImYX),
                                 projection=copy(match_fullGeoArr.prj),
                                 nodata=copy(match_fullGeoArr.nodata))
964
        self.matchWin.imID = match_fullGeoArr.imID
965

Daniel Scheffler's avatar
Daniel Scheffler committed
966
        # read otherWin via subset-read
967
        rS, rE, cS, cE = GEO.get_GeoArrayPosition_from_boxImYX(self.otherBox.boxImYX)
968
        assert np.array_equal(np.abs(np.array([rS, rE, cS, cE])), np.array([rS, rE, cS, cE])) and \
Daniel Scheffler's avatar
Daniel Scheffler committed
969
            rE <= other_fullGeoArr.rows and cE <= other_fullGeoArr.cols, \
970
971
972
973
974
            'Requested area is not completely within the input array for %s.' % other_fullGeoArr.imName
        self.otherWin = GeoArray(other_fullGeoArr[rS:rE + 1, cS:cE + 1, other_fullGeoArr.band4match],
                                 geotransform=GEO.get_subset_GeoTransform(other_fullGeoArr.gt, self.otherBox.boxImYX),
                                 projection=copy(other_fullGeoArr.prj),
                                 nodata=copy(other_fullGeoArr.nodata))
975
        self.otherWin.imID = other_fullGeoArr.imID
976

977
978
        # self.matchWin.deepcopy_array()
        # self.otherWin.deepcopy_array()
979
980
981

        if self.v:
            print('Original matching windows:')
982
983
984
            ref_data, shift_data = (self.matchWin[:], self.otherWin[:]) if self.grid2use == 'ref' else \
                (self.otherWin[:], self.matchWin[:])
            PLT.subplot_imshow([ref_data, shift_data], [self.ref.title, self.shift.title], grid=True)
985

986
        # resample otherWin.arr to the resolution of matchWin AND make sure the pixel edges are identical
987
        # (in order to make each image show the same window with the same coordinates)
988
989
990
991
        # TODO replace cubic resampling by PSF resampling - average resampling leads to sinus like distortions in the
        # TODO fft image that make a precise coregistration impossible. Thats why there is currently no way around
        # TODO cubic resampling.
        tgt_xmin, tgt_xmax, tgt_ymin, tgt_ymax = self.matchBox.boundsMap
992
993

        # equalize pixel grids and projection of matchWin and otherWin (ONLY if grids are really different)
994
995
        if not (self.matchWin.xygrid_specs == self.otherWin.xygrid_specs and
                prj_equal(self.matchWin.prj, self.otherWin.prj)):
996
997
998
999
            self.otherWin.arr, self.otherWin.gt = warp_ndarray(self.otherWin.arr,
                                                               self.otherWin.gt,
                                                               self.otherWin.prj,
                                                               self.matchWin.prj,
1000
                                                               out_gsd=(self.imfft_xgsd, abs(self.imfft_ygsd)),
For faster browsing, not all history is shown. View entire blame